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¢ =2C|,.s » classical elasticity tensor
Torigorl identity map on R*® or 2
1= (B,v) a (dead) load
L all loads with total force zero
L(T,2,RY all lincar maps of Ty#2 to R?
LT 2B, R)* linear maps of L(7x2.R) to R
sym(TyB, Tx2) symmetric linear maps of 7y to T2
S0(3) {QELRY,RY)| Q0 =L det Q =1}
RP? real projective 2-space; lines through (0, 0, 0) in R?
M, L(R3,RY)
sym symmelric elements of M,
skew = 50(3) ~ skew symmetric elements of M,
v infinitesimal rotation about the axis v
2, equilibrated loads
k: % — M, astatic load map
A=k() astatic load for a load {
J= (k| {ket k)y~ non-singular part of k
Skew = j (skew) skew viewed in load space
Sym = j (sym) sym viewed in load space
P: 6~ ®¢$) = (~-DIVP,P.N)
U =TE the space of linearized displacements
Yy orthogonal complement to Skew in ¥
L:¥ym—+ &, linearized operator: L = D®(I)
1, the equilibrated part of I according to the decompo-

sition 2 = &, @ Skew
uy (Ul = 1g,) linearized solution: Lu, = I,
&) . L? pairing
B(ly, 1) = by, ) = (e(Vuy), Vu,>

Betti form
Sa Qs in SO(3) that equilibrate A

o . tubular neighborhood for SO(3) in ¥
V$) = [ W(F)dV — i, 4 )

potential function for the static problem
V,=Vog potential function in new coordinates
J10Q) = V£Q, $0) reduced potential function on SO(3)

-~ A
AN =@\ D~ T <e(Vul). Vug) + O@%) + O@ |1 — L)
second reduced potential on S,,

§ 1. Introdection

In Part I of this paper (CHILLINGWORTH, MARSDEN & WaN [1982] —hereafier
referred to as [1]), we reformulated the traction problem in clastostatics in various
forms, gave a classification of loads and gave a complete analysis of solutions
of the traction problem that are nearly stress-free for loads near loads of type 0
and type 1. This part develops the basic theory as well as giving an analysis of
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solutions for loads of types 2, 3 and 4. It includes a count of the numbers of
solutions and an analysis of their stability and the structural stability of the
bifurcation diagrams.,

We begin in Section 2 with a derivation of a potential formulation of the prob-
lem on SO(3). The “second order potential” used in (I] can be recovered as a
special case. It follows from this that the traction problem always has at least
four solutions, at least one of which is neutrally stable. For loads of type 0,

. we showed in (I} that there are exactly four solutions near SO(3); for the other

types there can be many more ... up to 40, Scctions 3, 4 and 5 examine types 2,
3 and 4 respectively, in 2 manner analogous to our treatment of types 0 and 1 in
([}. Loads of type 3 and 4 have some special features already studied in the
literature in connection with parallel loads. These special features wilt be discussed
and other connections with the existing literature will be made at appropriate
points throughout the paper.

In a related paper MARSDEN & WaN {1983] study the linearization stability
of the traction problem, which is related to the power serics methods in the
literatuce (see for example TRUESDELL & Nott [1965]). One of the main results
we prove is that even without the assumptions of non-degeneracy, the Signorini
compatibility conditions at first order arc sufficient for lincarization stability;
this means that one can obtain a Signorini-type expansion for the solution just
under the assumption of compatibility at first order. The classical expansions
occur as special cases.

We begin by recalling some of the principal notations used in (I}

Let @ CR? denote the reference configuration and let % = {$: 8 —>R3|
#0) = 0} denote the set of all deformations (with the W*? topology, s>
(3/p) + 1). The space of all loads I = (B, *) with total force zero is denoted 2.
The astatic load map is denoted k: % — M,, where M, denotes the set of
33 matrices. Thus

KO = [BO0® XdV0 + [wX)® X dA(D). m
zJ

"~ We have "k(I) ="k(I, I)” whére I is the identity and where

k(, ¢) = ‘f BX) ® HX)dV(X) + \ ! X) ® HX) dA(X). @

We let sym C M, denote the symmetric matrices and skew C A, denote the
skew symmetric ones. The equilibrated loads are denoted £, = k~!(sym).

Let F denote the deformation gradient D¢ and let W(F) denote a materially
frame indifferent stored energy function. We assume W(I) = 0 without loss of
generality. Let P o= 8W/2F denote the first Piola-Kirchhoff stress and A =
8P{oF the elasticity tensor. As in [I] we assume that the material is frame indiffer-
ent and that

(H1) the undeformed state is stress free;
(H2) the strong ellipticity condition holds, and, moreover, the linearized theory
satisfies the stability condition.
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Let I,€ 2, be a given load and 4 a small parameter. We seek solutions of

wherc:- lis near f, and &(¢) = (=DIV P, P.N). Solving (3) is equivalent (under
sufficient regularity) to finding critical points of

V="Vu:¥>R; V= [WFYdV — U, @
L

where ¢ ,> denotes the L? pairing, given by
O =JB(X)' HX)dV(X) +af (X)) - H(X) dA(X)

= tr [k(l, 9)].
To see this equivalence, observe that for u¢ T,.¥ = ¥

DV(¢)-u = IZL:.VudV— (AL u)
P

= —f(DIVP)-udV+ f(P-N)-udA—(i.l.u)
- 4

=(P@)— U, u), ®

The group SO(3) of proper orthogonal linear transformations of R? plays a
key role in our work. Its Lic algebra is skew, the collection of 3x 3 skew sym-
metric matrices. We identify skew with R3 by the map * : R*— skew, given by

Ww) = wxy. ©

The.inx_ier product we usc on AM; is (A, B) = tr (ABT); we note that (v, w) =
+<{0, %), The map ~ has an additional usefut property: if A€sym and we let
Ly=(rA) I~ 46 M,, then

(L) =Aﬁ-.§-'ﬁAb for 7 veR’ N ) i7)
The group SO(3) acts on € and £ by
Qp=Q-¢ and QIX)=(QB(X), Qr(X)).

The algebra skew acts by the same formulas.
The astatic load map satisfies

and ®
k(l, W¢) = k(1, ¢) WY, k(W1, $) = Wk(l, ¢), W € skew,
From (8) and (5) we have, for example,

L, We) = te (k(, $) WT) = <k, 9), W), ®
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The divergence thecorem enables one to establish readily the following identities
from [l}:

K@ ¢)= [odo (10)
on
and

Kow) = [PV, an

where o is the Cauchy stress; P = JoF~T, J = det F. From (10) it follows that
k(P(¢), $) € sym; ie., the torque in the configuration ¢ is zero.
The lincarization of @ is given by

DP($)- u = (—DIV(A-Vu),(A-Vu). N), (12)

where A is regarded as a linear operator from L(7T,®, R3) to itself, as in [I],
and u€¥ = T;€ is a displacement for the linearized theory. At ¢ =/, (12)
becomes

DI(I)- u = (—DIV(c-e),(c- &) N), (13)

where ¢ is the classical elasticity tensor, regarded as a linear map of sym to itseifl
(sce (I]) and where e = 4 [Vu 4 (Yu)T] is the linearized strain tensor. We some-
times write ¢-Vu for ¢-e.

Let L = D®(I) denote the linear operator of classical elasticity, given by
(13). This has a kernel equal to skew (there are no translations since we have
demanded 4(0) =0 and w(0) =0) and range equal to &,, the equilibrated
loads. This follows from the stability condition, as was explained in [I). A con-
venient complement to skew in & = I;¥ is obtained as follows.

Let j: My— & bearight inverse for k : & — M, (forexample, j = (k|(ker k)!)~"
as in [1]) and let

[N - wneeem Skew = j(skew). - e e e
Thus, we have the algebraic decomposition
L =%, ¢ Skew,

where %, denotes the equilibrated loads, related to & by &, = k~*(sym) (sece
Figure 1).

Now let ,,,, denote the orthogonal complement to Skew in the pairing (5).
That is,

Uym ={BEU | (l,u) =0 for all € Skew).

Since the pairing (4) is (weakly) non-degenerate between & and %, %, is a
complement to skew in 4, Notc that %,,,, and skew need not be L? orthogonal
in %, however. What is more convenient for later use is to have ., the orthogonal
complement of Skew (sec Lemma 2.2 below),
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It follows from the theory of elliptic equations that
Lg%,

is an isomorphism. Given I€ Z,, let u,€ ¥, satisfy L(u) <! Define the
Betti form B: ¥, x%,—+R by

B(l, ) = {4y, uy) (14)
(the inner product is defined as in equation (4)). The divergence theorem shows that
B, 1) ={c-Vu,, Vu, >, s

Here the inner product means

(e Vuy, Vu ) = j 1 [(e- Vs ) (T )T} oV,

Since ¢ is symmetric, 8(J,, I,) is symmetric in I, and . This is the Betti reciprocity
theorem, which will be uscful in the next section. Notice that (15) is unchanged
if uyis replaced by u, + K for K¢ skew. Thus the same formula (15) holds
independent of the choice of complement to skew in . This freedom is convenien
for computations that will be given later in the paper. ’

Next we recall that loads ! are classified into five types according to the way
in which the orbit of A = k({), under the left action of SO(3) on M, meets sym.
See [I), § 6. An important set is

Sa = {Q€S0(3) | QA€ sym). 16)

In (1] we established the following descriptions of S,

Load Type Sa

four points

two points \/ §! s RP!
one point \/ RP3

RP! V RP! (disjoint)
SO(3) ~ RP?

AW —0O
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Notice that
TiSa = {WE skew | WA + AW = 0}.

Since " is an isomorphism, (7) implies that
TiSa~{veR? |Av = (tir A) v); (€]
i.e., the cigenspace of A with ecigenvalue tr A. Thus, from Proposition 3.3 of [f),

- TS, consists of the axes of equilibria for /.

Under hypotheses of non-degeneracy on the equations of linear elasticity,
we shall prove in Sections 3, 4 and $, the existeace of the following numbers of
solutions for the nonlinear traction problem:

Load Type Number of Solutions
0 4

1 4=ns 6

2 4sns 14

3 45ns 8

4 45540

A formula for the index will be given in Section 2. In particular, this will enable
us to determine the stable solutions which have index = 0. The key to determining
the number of solutions is the quadratic function Q++ B(QZ, Qf) restricted to
Sa.

The number of solutions is related to the vanishing of derivatives of real
non-degenerate quadratic forms on RPY, 5 = 1, 2, 3. In fact, using Bezout's
theorem applied to associated cubic polynomials on the double covering, we find

that the number of solutions branching out from RP’ in the above table is at
s+l

2

most

. For instance the maximum in type 2 is

3 -1

2
-

1 (for the single point) + = 14,

We also show that the bifurcation diagrams obtained are structurally stable;
that is, in a sense made precise in [I] and in § 3, 4, 5, insensitive to small perturba-
tions. Finally we note that cusps occur for loads of type | (see [[]) and double
cusps occur for loads of type 2.

The role of symmetry in the present problem is somewhat different from that
discussed by others. Our group SO(3) acts frecly on € and also acts on &, whose
clements play the role of parameters. The orbit of the identity of SO(3) in €
compriscs the trivial solutions. In all the papers we have seen (GOLUBITSKY &
SCHAErFER [1979], DANCER [1980), ARMS, MARSDEN & MONCRIEF [1981) and
HaLe & Tasoas [1980] are examples) the trivial solutions have some isotropy
and there is still some symmetry left when one passes to a slice for the group
action. In these problems the bifurcation equation is on the slice. In our problem
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however, the bifurcation equation is on the orbit itself. However, when one is
considering bifurcations in the traction problem near a stressed state or when
the loads have special symmetries, a combination of the two methods is necessary,
The treatment of this topic is given in Part I of this series of papers,

Finally we note that some information in related problems can be obtained
by the methods here. Specifically, in Rivun's problem of homogeneous incom-
pressible deformations of a cubs, BALL & SCHAEFFER [1982] have continued
RivLin's original analysis by examining perturbations from a neo-Hookean to
a Mooney-Riviin_material by using the Golubitsky-Schaeffer bifurcation theory
for problems with S, symmetry. Methods of the present paper cnable one to
show that for any isotropic material, the solutions near SO(3) for small tractions
are all homogenecous and are in one-to-one correspondence with the union of
a point with RP%. (The tractions can be positive or negative and the material
can be compressible or incompressible.) Details are given in Section 2, in Part 11l
and in Wan (1983},

§ 2. A Potential Function on SO(3) and Sa,

Recall from § | that #,,,,, is the L2 orthogonal complement to Skew in %/ = TS,
We first note that a neighborhood of 0 in #yym yiclds a slice for the action of
SO(3) in the sense that when translated around the orbit of 7 (which we identify
with SO(3) itself), it becomes a tubular neighborhood of SO(3).

2.1 Lemma. There is a neighborhood U of 0 € Uyym such that the map
2:S0Q)x(F+ )~ €,
defined by
o{Q, 1+ u)= Q- + Q-tu, (18)
is a diffeomorphism onto & neighborhood of SO(3) in .

This follows by a standard argument using compactness of SO(3) and the
implicit function theorem; ¢f. Lemma 4.1 of (I). We use O~* and not Q in (18)
only for consistency with fI],

Recall that we are seeking critical points of the function Vi = V given by
(@). Let

Ve = Voo:SOB)X(I + U)—>R.
Thus, if ¢ =14 u, then
V(Q, ) = [ W(Q-'F)dV(X)— i}, 0'¢) = [WEPaV(X)— QLS  (19)
& @

by material frame-indifference.
Clearly (Q, ¢) is a critical point of V, if and only if Q=4 is a critical point
of V.
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Next we break up the problem of finding a critical point of ¥, into a transverse
and tangential part relative to SO(3) C 4. Note that for if = 0, each point of
§O(3) is a critical point; the set of these points are the “trivial solutions™,

Now we may regard @ as the gradient of V (relative to the L? pairing between
&£ and ). This gradient takes values in & which can be decomposed into_the
two components along %, and Skew. In terms of ¥, we are led to the following.

2.2 Lemma. Let (Q, )€ SO@)X(f + U). Then (Q, ¢) is a critical point of V,
if and only if

@ ($) — AQI € Skew

and (20)
(ii) AWQL ¢> =0 for all W¢ skew.

Proof. We have

aw
DV, u = fa—F-VudV—(lOl, u)
]

=)[(-mvr)-udv+ j(P-N')-udA~(lOl.u)
)

= {P($) — 204, u).

This is zero for all u¢ ¥,,,, if and only if P($) — iQI¢ Skew since ¥, and
Skew are L* orthogonal, e

Next, DoV, : (WQ) = —(iWQl, ¢), which vanishes if and only if (ii)
holds. W

2.3.-Remark. We can rephrase lemma 2.2 as.follows: Conditions (i) and (ii) to--

gether are equivalent to P(¢) = 2Q!; ie. P(Q-'¢)=Al for ¢€l+U. It
is instructive to see that the equivalence remains valid for Cauchy materials (i.e.,
materials for which a stored energy function need not exist). Since 2:(Q, ¢)—
Q-'¢ is a diffcomorphism. To-6 ~ % = {—Q~'Wé | W skew} ©
{Q'u|u€e,,), and thus # = Q¥ = {—W¢ | We skew} © ¥,,,. Hence,
O(¢) — 1Q¢ = 0 if and only if

Gy (P($) — Q1 1) = 0 for all ue #,,,
and
Gy (@) — AQI, —W¢> = 0 for all W skew.

From the fact that (®(¢), $) = f o dv€ sym (sec equation (10)), <B(¢), —Wé>
= (=W, k(P(¢), $)> = 0. Thus equation (ji)’ becomes —(AWQ!, ¢> =0 for
all We skew. Therefore ©(¢) = AQ! if and only if conditions (i) and (ii) hold.

3
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Now we are ready to perform the Liapunov-Schmidt procedure on our equa-
tion ®(¢) = AQL. We wish to do this in a way that retains the potential form.
A convenieat way to do this is to use the ideas in the splitting lemma of GromorLL
& MEYER (1969] and the related bifurcation theory of Reeken [1973] and WeiN-
STEIN [1978]. Our construction proceeds directly as follows:

2.4 Lemma. There is aunique function from SO(3) to I + U (shrinking U if necessary)
denoted Q v+ g (and depending on Al) such that equation (20i) is satisfied; i.c.,

D($g) — AQIE Skew. [¥1)]

Proof. This follows from the fact that DP(I): ¥, — &, is an isomorphism
and from the implicit function theorem. [

Now define f: SO(3)—~R by
RQ) = V[0, ¢o). (22)

Then we have

2.5 Theorem. The set of solutions of ®($) = Al in a neighborhood of SO(3) in
@ is put in one-to-one correspondence with critical points of f by the correspondence
Q-'4o— Q.

Proof. We have
Df(Q) = DoV (Q, dg) + D,V (Q, $g) - Dodo-

However, ¢¢ was chosen to make D,V (Q, $o) vanish. Thus DAQ) = 0 precisely
when DV, = (Do¥,, D,V,) vanishes at (Q, ¢o); i.e, when DV(Q-'¢g) =0,
which is equivalent to P(Q-2¢g) = U by (5). M

Recall that the index of a critical point is the dimension of the largest sub-
space on which the second derivative is negative-definite. Now the second deriva-
tive of ¥ in a direction orthogonal to SO(3) is always positive-definite, by the
stability of the elasticity tensor ¢ and Korn's inequality (see FicHERA {1972]
and (I, Theorem 5.5]). Thus we have

2.6 Proposition. Let Q be a critical point for f so that ¢ = Q-'¢q is a critical
point for V. Then

index (V, ¢) = index (f; Q).

In particular, if Q is a strict local minimum for f, then ¢ is a strict local minimum
Jor V.

A point will be called srable if it is a strict local minimum for ¥, If it is a mini-

mum, but not necessarily strict, it will be called neutrally stable.

2.7 Corollary, For I given and for A sufficiently smail, the traction problem $(¢)= Al
has at least four solutions. One of them is neutrally stable.
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Proof. The (Liusternik-Shnirel’'man) category of SO(3) ~ RP? is 4, so any smooth
real valued function on it has at least four critical points, one of which is the mini-
mum, Now use 2.5 and 2.6. [l

Notice that the existence of at least four solutions has nothing to do with the
load type. However, for loads of type 0 we proved in [I] that there are exactly
four solutions and exactly one is stable. For loads near a load of type | we simi-

. larly proved that the number of solutions is between 4 and 6, and at least one is

stable.
- The load classification will enter through the following development.
From (19) and (22) we have

Q)= j W(F ) dV(X) ~ QI $o>, @3

where Fg = Déq. By the construction of g,

o =1+ dug, + O(4%). (29)
where L(ug) = (Qf), and (Qf), denotes the equilibrated part of OalW according
to the decomposition & = &, @ Skew. Since W(I)=0 and P(/)= F (N=0,

_ it follows that

ew
JwEQavn = | [0+ 255 @) Tua

A2 aw
+ 7 ‘;-W.(l) < (Vug, Vug) + 0(‘1’)] av(x)

= ; J {e(Vugy), Vuge dV(X) + O(A%). 29

Also, using (15), we obtain

<Q1, 40> = CQL 1> + AQ1, ug)) + O
=, o'n + l(c(v"ol), qul> + 0. (26)
Substituting (25) and (26) into (23) gives
Q)= -4 [(’- oh + % {e(Vugy), Vugd + 0(/1’)] . 2n

Let us writc u} = ugq, and consider the case in which |{ — ;| and A are
small. Then (27) yields the following

2.8 Propasition. We have

@ = =3[, Q1> + - (oVu), Tuy + 0 + OG-kl 29
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It is instructive to see the derivation of (28) in an abstract form. Let £ be a
Banach space with 0¢ E a nondegenerate critical point of a 2 function g: E~+R
ie. Dg(0)=0¢€ E* = L(E,R) and D%g(0) = T¢ L(E, £*) is invertible. (In
examples, including ours, one must replace E* by a suitable Banach space in
duality with £) Let h: £-»R be another C* function; then the implicit function
theorem shows that for small A€ R, the perturbed function g + 4 has a unique
critical point near 0 of the form w(d) = Av* + O(2%):

Dyl + O(3%) + A Dh(M* + O(A%) = O¢ E®.
Comparing terms of order 2 we find that 7 = —DA(0). Evaluating g + A4
at this critical point gives

2
(g + 40) (D) = (g + &) @) + 1* DHO) () + T, 1 + OG)

22
= §(0) + M4(0) — 5 (Tt iy 4 O, e

Let us apply this formula to the case in which
E =%, and identify E* =~ &, via (, >,
g} = [ W(I + Vu)dV so that g(0) = 0 and T = L |(%,,.),
i(u) = —(Q4, 1 + u) (so that Dh(0) = —(QF), and u* = uy).

Since (Tu*, > = {c(Vig), Vug) by the divergence theorem, the formula
(27Y gives the formula (27).

Now we are ready to link this resuit up with S,, (sce equation (16)) and hence
with the type classification. Recall that Ag = k({,) € sym is the astatic load of I,.

2.9 Proposition, The set Sy, C SO(3) is a non-degenerate critical manifold for
Q= —ilo, Q"I).c The index in the direction (ToSx)* is the -index of QAg-—
tr (QAg) 1.

Proof, See (I]. Lemma 5.6. @

2.10 Corollary. For A small and!l near o, all critical peints of f{Q) lie in an neighbor-
hood of S,,.

Proof. Since DAQ)- WQ = —IKWQIo, I) 4+ O(A%) + O(A |l — 1, ]) it follows
that Q can be a critical point for f only if —(WQl,, I> = (Ql,, W) vanishes
upto O(3%, At — L)) forall W skew, ie. Qly€ Sym (cquivalently Q€ S,)
upto O3 Aiil—1L). W

Because of Proposition 2.9, we are led to carry out a second Liapunov-
Schmidt reduction. This proceeds as follows. Let N(S, ) be a normal bundle
neighborhood of S, in SO(3) with fiber at Q orthogonal to TyS,,. Since the
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normal bundle is a non-degenerate direction for the second derivative of % Q)

for 2small and |{—1;| small, we can solve uniquely for critical points of 7]1' $((1)]
restricted to fibers of the normal bundle to produce a smooth mapping on Say
Q@ n(Q)€ (ToSa,)t such that n(Q) is the critical point of —:1- J restricted to
the fiber of N(S,,) through Q€ S,,. Note that n = O(2) but (I, n) = O(A3),

2.11 Proposition. Critical points of f are in one-to-one correspondence with critical
points of

f:84,~R,
defined by
- 1
AO) = Tf (Q.n(Q)), (29)
and we hate

0 = (=4, Q1> — 3 (i), Vu> + OB + 0AU ~ k). (30

This proposition agrees with Theorem 7.3 of {I); the present derivation,
however, seems more satisfactory., The proof of 2.11 follows from the usual
Liapunov-Schmidt process.

We summarize what we have obtained as follows.

2.12 Theorem. For 2 >0 small and I near by, the solutions of the problem ®(¢) = il
are in one-lo-one correspondence with critical points of f on Sy, where f is given
by (29) and (30). The index of the solution corresponding to a critical point ar Q
is given by index (QA, — tr (QAp) /) + index(f? Q).

We remark that the critical points of the Betti form on S, are intimately and
simply related to the compatability conditions and series expansion methods of
Signorini. Sce MARSDEN & WaN [1983] for details.

In the following sections the leading terms in (30) will play the crucial role
in our bifurcation analysis. As in [I), suitable hypotheses of non-degeneracy on
the Betti form B(Q, Q): = B(Ql,, Q1,) (the second term in (30)) will guarantee that
the bifurcation diagrams obtained are structurally stable.

There are, however, cases of interest in which the Betti form is degenerate
and no bifurcation occurs. We conclude this section by studying such a case for
an jsotropic homogeneous material with a homogeneous load.

0
Let us call a load *homogeneous”™ if /, = (r ), where 1, = KN, Kéesym
[

is a constant matrix, and N is the outward unit normal on é8. The astatic load
is Ay = K(vol 8),
Consider an isotropic, homogeneous material with c(e) = A trace e + 2ue

B
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and with a homogeneous load I,. One verifies that ud = c~*K, a homogencous
solution, for Q€ S,,. Thus the Betti form B(Q, Q) is a constant on S, so
we have a degencrate case.

0
2.13 Theorem. Let I, = ( KN) be a homogeneous load, where K& sym. Then

Jor smail X the solutions are homogeneous deformations o4, X), parametrized in
a unique fashion by elements Q of Sy,.

In other words, for smal! 4, the solution set near SO(3) has the form
{#0(4, X)| Q€ 54} and is homeomorphic to S,,. Thus, in this case one expects
that “no™ bifurcation occurs in the solution set and so non-homogeneous solu-
tions do not exist. To prove 2.13, we prepare a lemma.

2.14 Lemma. The first Piola-Kirchhoff stress P maps sym to sym; i.e., F€&sym
implies P(F)€ sym.

Proof. This follows directly from the standard represemtation of P for isotropic
materials (see TRuesDeLL & Noiw [1965), p. 140). W

Proof of 2.13. As we have remarked, A, = k(l;) = K vol (@). Now Q€S,,
if and only if A(Q%)= QKvol(@B)esym. Let Q¢ Sa,- By the stability
assumption (H2), DP(I) is an isomorphism of sym to sym and so by 2.14 and the
inverse function theorem, there is a unique element E, o € sym -such that P(/ 4+
AE,0) = AQK for small 4. Let $o(4, X) = Q=Y (X + 1E, oX). Clearly, $o(4, X)
is homogeneous. By the Principle of Material Frame Indifference, P(QF) = QP(F)
and so P($o(AX)) = Q-'P(I + 1E,;p) = Q~Y(AQK) = K. Hence

-DIVP =0
and

P-N=JKN = iz,.

Consequently, ¢, satisfies the traction problem. Observe that the ¢g's are distinct
for small A, W
For example, if K = diag(7.7,T) then S, is o point together with RP?,
so the solutions in this case are in one-to-one correspondence with this set, The
" solution near the identity is easily checked to be a multiple of the identity.
A similar theorem holds in the incompressible case, provided that ¢ is replaced
by €;.1, the volume-preserving deformations. Even with the constraint J = 1,
the solutions are still homogeneous. For ¢ = TN, we again may conclude that
the solutions near the identity are in one-to-one correspondence with the set
{1}V RP2, (Sce Part III for additional details.) As is noted by BALL & SCHAEFFER
[1982], the only homogencous solution for small tractions near the identity is the
trivial one. Therefore the traction problem for Rivlin's cube with small tractions
admits a further set of homogencous solutions in one-to-one correspondence with
RP?, (This set is invariant under conjugation by elements of S0O(3), a fact consistent
with the results of ADELEKE [1980).)
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§ 3. Analysis of Loads of Type2

For loads of type 2, we can assume that k(ly) = diag (g, a, @), where a==0.
See [I}, § 6. In this case, S, = SO3)N sym = {1} VRP2, Asis well known,
RP? has the double covering o | $?: S? — RP2, defined by X~ 2XXT — |,
where §? = {X€R? || X]] = 1}. For Y€ S,, k(Yl,) = aY (see equation (8)),
and one denotes by u} the solution in #,,, 10 the linearized problem L(_u%) =
‘Ylo € £,. Recall from (30) that we seek to study the critical points of f(Y) =

-, YTy — ';; (c(Vu}), Vuld + O(A| 1 = Lo} + O(A%)  for  YeS,, =

SO(3) N sym. For small 1> 0, it is natural to study the function A(Y) = ¥Y)
~ 2

+ B(Y), where V)= YD, and B(¥)= (c(Vu), Vuly, Y€ SOG)

N sym. As before, we call 8,, the Berti form (see (14) and (15)). We can regard it
as a quadratic form on sym.
Fix a region & with unit volume. Let us first study the case in which I, has

B, 0
the form I, = (:) = ( N)' Clearly, k(l,) is the identity and 4, is of type 2.
o

3.1 Proposition. Given any positive-definite quadratic form B on sym, there exists
a homogeneous hyperelastic material with a stable (i.e., positive-definite) elasticity
tensor ¢, such that B = B, the Betti form on sym. :

Proof. Define a symmetric elasticity tensor ¢: sym — sym by (Y, ¢-1Y) = B(Y).
Set W(F)== §(D,c¢(D)), wherc D =4 (FTF — 1). Clearly, W(F) is a stored
energy function with ¢ as its elasticity tensor.

It is easy to verify that #${X) = (¢-'Y) X; that is
e e —DIV(Tuy) = 0,

(Vul)N = YN.

Thus B (Y) = ((Vau}), Vud) = (e(e™'Y), ' V) = (Y, e V> = B(Y). W

3.2 Corollary. Given any quadratic form B on sym, there exists a hyperelastic
material with a stable elasticity tensor such that B + ¢ = B, on RP?, for some
constant c.

Proof. Choose ¢ large, so that B 4 % trace (YY) is positive-definite on sym.

By the previous proposition, 8 +§u’aee (YY) = B, on sym for some Betti

form B,. On RP? = sym N SO(3)\ {1}, this becomes B+ ¢ = 5. R
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The above corollary implies that in /, By, can in principle be any quadratic
form B. Let us first carry out a local study of the critical points of 4. Given any
Yo&RP?, we can write Yo = Qdiag(l, —1, —1) Q for some Q¢ SO(3).
Thus the linear map Y+» QYQT leaves RP? invariant, leaves the form of 4
invariant. and sends diag(l, —1, —1) to ¥,. Therefore, without loss of gcxlerality.
we take diag(l. —1, —1) as a typical point ncar which to study A =1+ B,,.
Let us use a local chart

¢:RP2\ RP! = R?,

where

¢"(x..v)=0( = , y , : ).
W12+ 2 1 F by L xR

where p: S? — RP? js the double covering defined carlier and where we identify
RP! = o(S%), and S' = {(x, »,00€S? |x* + y* =1}.
Set

, where

- - H2XXT - r21) + BQXXT—r21)  &x )
s, ) = gy = ’ ),. = =3

rs )’X 4+ x*4y* and X' = (x,, 1). Thus, §s a polynomial of degree < 4.

3.3 Lemma. Giren any polynomial &(x, y) of degree < 4, there exists a gquadratic
Jorm B on sym such that &x,y) = BQRXXT — r31).

Proof. Consider the linear map of the set of quadratic forms B on sym to the set
of polynomials § in x,y of degree < 4 given by &(x,y) = B2XXT — r21).
Let

R L 2
Y=2XX"-r3 = 2y ¥y —x=1 2
- 2y L l=x =y

By symmetry considerations, it suffices to observe that 1, x, x?, xy, x3, x2y, x*,
x3y, x3y? are the images of B, B, ..., B,,,: defined respectively as follows:

B(Y)= (y-'-:'%L 2 By =122,
w2 () e
B(Y)= (%'3)z Buf¥) = (’.’"__"%) (%)
B (=22, Bup(¥) = (1’2—*)’

Bu(V)= (%2’”) (”;—’) n

" 3.5 Proposition. X is aﬂ.\'e"n':i;z'l:g"eb.ra‘icms;r';z)' c;odimcn;sion g lin I-.I.'
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Given any function g defined near a point X, jg(X) denotes the 4 order
Taylor polynomial of g at X, Consider a function % in the form I:(x. = _6(_.:.‘_,_\_)
for some polynomial ¢ of degree < 4.

3.4 Lemma. (a) j* k(0) can be any polynomial %(x, y) of degree < 4,
() If j0(0) = ¢, a constans, then i = ¢ identically.

Proof. (2) Define §= F4r'n) (0). Thus /%< ' — 1)) (0) = j“%E — r'p) (0) = O,
which implies j 4(0) = 5.

4
() § = er* = jOp4G — &) (0)) = 0. Thus & = ‘;—"- —e N

Combining Corollary 3.2 and Lemma 3.3, we obtain a description of the possi-
ble singularitics of & on RP2,

3.1 Proposition. (a) The 4" order Taylor expansion of k at any poimt Y in RP?
can be arbitrary. q

(6) If SH(Y) = ¢, aconstant, then W(Y)=c identically. As usual, KY) =
TV 4 (o(Tul, Tud.

Next, we consider global aspects of the function £ on RP2. Denote by H=
thlh=T+ B} the space of polynomials of degree < 2 on sym. which vanish
at the origin. Define X = {h€ # | Y) on RP? has a degenerate critical point}.
Thus ke H \ L if and only if h is 2 Morse function. Clearly, the bifurcation
set Z'is a closed set invariant under the actions Q - (¥) = HQYQ-1), Q& S0(3),
and A-Ai(Y) = AK(Y), icR.

Proof. Consider the polynomial map ¥: HxR3xR — R xR? given by
(X, gy (XX — 1, Dx2),  where  Z(X, ) = h(o(X)) + p(X"X — 1)
stands for the Lagrangian function with multiplier 4. Since p | $% is a local diffeo-
morphism onto RP2, by varying fink= 7+ B and X, one sees that the map ¥
has {0} as a regular value. Thus ¥-*({0}) is an algebraic manifold with the same

dimension as A. The critical point szt £ of the projection r: ¥-1({0)) — H,

alh, X, ) =h, is {(h X.p)€ P-'(0}) [det Dy, ¥ = 0}, and w(I) =5,
Therefore, by the Seidenberg-Tarski theorem and Sard's theorem, our proposi-
tion follows.

Next, we want to estimate the number of critical points for # =17+ 8 not
in X,
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3.6 Example. Let @ CR3 be aregion with unit volume. Set = (:) atype2

load where N is the outward unit normal vector along 23. Consider a hyperelastic
material with clastic tensor

. e 0 O
. 1
cey=e —leag (e11, €23, €33) = (€) -3 0 e 0
0 0 e
We shall show that
() B (N =0u) + ) + () +<(¥, V)
and
® h = B, is a Morse function on RP? with I3 critical points.

Proof. (x) For Y¢€sym, we have
6y(X}=('NHX
and so
B(Y)=(Y,c'Y) =(Y, Y + diag V> (since 'Y = Y + diag Y)
=<V D+ () + 022 + (a0

(8) We use the method of Lagrange muitipliers to find the critical points of
B =B, on RP? (or of Bog on 5%, Set

L=l =P 2P (P = =2+ (@ —x = i 4 3]
+ulx + 4+ 22— 1),
Then the conditions. for a eritical point are
Fe=4xPx — 32 =23 + 2ux = 0,
¥, =43y —x} =23 + 2up =0,
&, = 4237 — x* — )+ 2uz = 0,
X4y 42 —1=0.

It is easy to see this system has the following solutions:

1 -
W@y@.

where X,5,2=0,1, or —1 except (%, 5, %) = (0,0, 0); consequently, B, on
RP? has exactly 13 critical points. (Further computations show that B, is a

xr2)=

- . 1 .
Morse function, having 4 critical points ¢(x, 5,2), X, ¥, 2=+ e of index 2.}

¥
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3.7 Proposition. The number c(}-r') of critical points for a Morse function of the form
h=T4 B onRP? (ic., #4 %) is between 3 and 13.

Proof, (x) for RP3, the Betti numbers over Z, are b, =1, b, =1, by =1,
By the Morse inequality, we have mo + m, + m, = b3 + 8, + b3 = 3, where
m, is the number of critical points of index 7. Now c(f) = m, + my, + my, sO
LOY-E) _
B) Set L =I2XXT— 1)+ BQXX"— 1) +u(X"X = 1) with XT=
(x, 3. 2). .
The equations for critical points are:
.‘!,=7,+B,+2px=0.
Z,=l+ B+ 2uy =0,
$,=1,+B,+2/Az==0,
Xty i =0,

Consider the homogeneous system (31) in x, y, 2, » over the complex field C:
I3+ B + 2v*x =0,
P+8+2y=0, 31
1+ B! + 2z =0,

where /¥ + BY is obtained by replacing each constant term A in /, + B, by
A(x* + y* 423, etc. Clearly, = = {i | the system (31} has degenerate ray solu-
tions or a solution in the form (x, y, z, 0)} is an algebraic set. The previous ex-
ample 3.6 shows that xx is proper (i.e. = % H), Thus by introducing a perturba-
tion, if it is necessary, onc may assume that the system (31) has only simple ray
solutions and that they are not in the form (x, , =, 0). By Bezout's theorem, the
system (31) has exactly 27 ray solutions. Now each critical point (= x, =y, =2, u)

-gives rise to two ray solutions (£x, 4y, £3,), = V';) of the system (31). Since

(0,0,0, 1) is always a solution of the system (31), 2c(5) + 1527 or c(l;) kN |
Our main result on global bifurcation from RP? is as follows.

3.8 Thearem. Lez I, be a load of type 2. Assume that the Betti Jorm B (Y) is a
"—1

Morse function on RP2. Then for > 0, and "}.—oll small, the number of critical

points of f on RP? is between 3 and 13, Therefore, our traction problem has be-

tween 4 and 14 equilibrium solutions,

2y -
Proof, The function (— T) J/ is a small perturbation of the Morse function B,
with 3 £ c(8,) < 13 by Proposition3.7. B
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We note that as 4 and I are varied, the solutions vary smoothly. In particular,
as 20 the solutions tend to the critical points of the Betti form on S,

By Proposition 3.1 (a) doublecusps can occur as singularities of the Betti form
By Eg.,supposcthat B, = x* + kx’y* 4+ y* (with k < —2). Then this double
cusp accounts for 9 critical points. Since its gradient has vector field index -3,
'RP’ must _luwe 4 other critical points, so that the total number of eritical poiats
is the maximum permitted. Thus the existence of (a certain type of) double cusp

at g;xpoim in RP? imposcs strong_restrictions over what happens elsewhere
on .

§ 4. Analysis of Loads of Type 3; Parallel Loads

As in §3 we can, without loss of generality, take k(lo) = diag (0, 0, —¢)
where ¢ == 0. In this case, S, is 2 union of two circles: Sa. = C\/ C*, where

x-y’ 0
C=ily < 0)].\"+}"=l
0 o] 1
and
u ¢! 0
C*=flt —u| 0|2+ =]
0 0)-1 ’

From Section 2, we have
- i
Q) =-, 0™ -7(¢(V“5). Vud) + O(A[ i1 — 1) + O(23).

We now reg:rd the Betti form B(Y) = ((Vu), Vul) as defined on the ligear
a 0 ’ o - o o
spantl ¢ d] 0 ]iof the union CV C*. Therefore we can write
00 I e
X2 + ayxp + ay)? + aux + »
B(O)"—‘ll 1%y -+ ay N asy+as, Q€C,

atu® + aluv + a3 + afu + afv + a?, Q€ cC*.

For small 4 >0, one needs to examine the function
- 2 '
kQ) = 5. Q™)) + B(Q)

’a,x’ +oaxytasp tax+agytas on C
alx? +afxy +afy* +alx +aly + a8 on C°.

[N
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At this point, it is useful to recognize that the bifurcation problem for type 3 loads
from the circle C or the circle C* is formally the same as that for type I loads
analyzed in [I, §8). _

For a local study of the critical points of 4 on C (or C*), we may assume that

(;) = (:)) (or (:) = (;)) is a critical point of i or equivalently
&2 +x5=0 (or3] + & =0). Thus, in terms of polar angles § and y on
the two circles,

1
(%) + ag + ag) + (—a, + &y —%) 02 —%0’+-3—(a, -0y +ﬁs‘-) 04

+ higher order terms in @,
. bd l a’
el oD+ (~ar+af =)= Fv+ gt —af +F) o

+ higher order terms in y.

In other words, folds and cusps can be the singularities of i

For a global study of hor f, we may assume &y = 0 and af = 0. This can
be achieved by rotations in the (x, ) plane and the (u,v) plane separately.
Carrying out the same analysis as that for type 1 loads in {[), we obtain the bifur-
cation set:

20, — ot = af +ad
or

207 — &) = (DY + @i
Alternatively, 4.4* =0, where

d = 20 — o) — 6] = o] — 1080‘3"‘3(“1 — )

and”
4* = [2a} - a3) — ad? — af?) — 108a2$3(x! — o).

One could phrase our results on loads of type 3 in terms of generic bifurcations
with corresponding bifurcation diagrams. However, in keeping up with the
other results on bifurcation in this Part II, we shall be content with the following
version.

4.1 Theorem. Let k(lo) = diag (0, 0, —c), ¢ = 0, and suppose that B(Q) is a
=1,
Morse function on C\J C* (ie,, 4-4* 5 0). Then, for small ——-" T ol and

small X > 0, the number of equilibrium solutions of our traction problem is between
4 and 8.

The next example shows that the upper bound 8 is indeed sharp.
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4.2 Example. Let the reference configuration & be the unit ball in R? with the
load l, = (Bo, vo) Where v, = diag(x, x, —¢,) N, ¢, %0, and where B, =
(—1,0,0). Consider a homogencous hyperelastic material with the elasticity
tensor ofe) = e — + dinge.

. 4c,:
Direct computations show that 1,€ ¥, and k(J,) + diag (0, 0, — ;1)

Thus I, is a load of type 3. We claim that

s =t
8z . 8 p
3@ +50) + 5, where ¥ = s

0 Ol 1 .

(=) B(Y)= v ol 0
! s—z(Zu’ + n‘)+—8-c’. where Y={v —u| O0})e C*,
15 3
0 o I—I
and
f)) B has 4 critical points on C and 4 critical points on C*.
Proof. To cach .
a 5|0
Y=|c dl 0
0 0 | w
set
ax—cy+by ex| O
cy(X) = ex dc| 0 ], where XT(x,y,2)T¢ ®.

0 0 |—c,w

There exists exactly one displacement field 1y (which is linear 4 quadratic) .
such that ¢(Vuy) = ¢y, It is easy to establish that .

~DIV ((Vety)) = YBo
and
o(Vuy)-N = Yr,,
where

5 Ty + Tuh) () = x() = - Her(0) = 4(X) + dig ex(X)

Hax—cy+by) ex| O
= cx 2dx| 0
0 0 |-2¢c,w

’
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Consequently,
B(Y) = (ce(Vuy), Vuy) = ((Tuy), ey

8=
= -l-s-[a‘ + G =) +d*+ ) -i-g_.;:ciw’.
This proves («) and (f) follows from it. I

4.3 Remarks. (1) It is not hard to see that the Betti form is a constant for 2 homo-
geneous material (isotropic or not) with a “hemogencous™ load of type 3 (ie.,
By, =0, v, = KN for some K¢€sym). Sec Theorem 2.13.

(2) A special class of loading of type 3 is given by the non-trivial parallel
systems in which the load vectors are a scalar multiple of a fixed vector. For such
loads, the Betti form has to be a constant by symmetry. A study of our traction
problem in this degencrate case will be given immediately after the next remark.

(3) Combining remarks (1) and (2), one realizes that to get a non-trivial ex-
ample for homogeneous material with a loading of type 3, one must take a non-
homogeneous and non-parallel system of loadings of type 3 (like the onc in
Example 4.2).

We now examine a special class of loads of type 3, which occur very frequently
in the literature.

4.4 Definition. A load ! is called a parafle! system of loads if (X} = f{X) a, where
S:@ R, 0= acR A parallel system ! is said to be non-trivial if

f= XXV + [f(X)XdA % 0.

4.5 Proposition. Let Iy be a equilibrated load, parallel to a€R3, a+0. Then
the load 1, is non-trivial if and only if it is of type 3.

Proof. Suppose I, is of type 3. Then k(l,) = (g,f)) 5= 0 and so /, must be non-
trivial. On the other hand, suppose the equilibrated load {, is non-trivial. Then
the symmetry of k{l,) = (a,ﬁ) implies that f; = —ca; for some non-zero
number c. Therefore, k(Jy) = (—cag) = —ca ® a. The matrix —c(a ® a)
has cigenvalues 0, 0, —ci|a||?, with eigenvectors p, ¢, a in which p and q are
orthogonal to a. Hence the equilibrated load J, is of type 3. B

For a non-trivial parallel load [,, there exists a built-in symmetry in our
traction problem with = [,. Without loss of generality, let us take the equi-
librated load #, parallel to the s-axis. Clearly, the isotropy group of Iy, namely

x ~p|0
{QesS0(3) |Qly =t} ={ly x| 0])(x*+3*=1;, is the circle group
0 o]l

S'. By the material frame indifference of the stored energy function W, and
by the identity g~ = I, for g€ S, the potential function V(¢) = [ W(F)dV
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— Mg, ¢) is S'-invariant (i.e. V(gé) = V() for g€ §'). The action g (Q, ¢)
= (Qg~',4), for g€ SO(3), makes the map g equivariant (sece § 2). Hence the
function V, = Ve p is also S'-invariant under this action.

4.6 Proposition. (a) The function f(Q) = V,(Q, dg) on SO(3) is S-invarians
under the action g- Q = Qg=' for gc S'.
(b) Sa, consists of two S*-orbits C and C*. _ -
() If an S'-invarians normal bundle is used in the construction of f, then f
also becomes S'-invariant on C\J C*.

Proof. (a) Since $q, = ¢o for g='€ 87, we get

f(g- Q) = V(Qz}, dgp1) = V(Q27%, $) = V(Q, $0) =R0).
(b) Straightforward computations imply that Sy, = CV C®, where

100 i 00
C=s5'-{0 1 0] and C°=5'.{0 -1 0} m
00 I , 0 0 -l

From Section 2, we know that the set of equilibrium solutions for our trac-
tion problem is in one-to-one correspondence with the critical points of f By (b),
{c) of the proposition above f must be a constant on € and on C*. Thus every
point in CV C* is a critical point of /i Therefore we obtain:

4.7 Theorem. Let by be an equilibrated non-trivial parallel load. Then, for A >0
small, there exist exactly two circles of equilibrium solutions to our traction problem.
One of them is (neutrally) stable.

The theorem above is a global, geometric version of a theorem of STOPPELLI
(¢f. Theorem I, p. 58 in GrioLi [1962]).

§ 5. Analysis of Loads of Type 4

For loads of type 4, k(lp) =0, Sy, =SO0(3), and f= —q, Q71> —
i
?«(Vu"o), Vud + 0|41 — L) + O(4?). Thus one needs to consider the

function KQ) = L(Q) + B(Q), where L(¥) =%<:, Y™ and B(Y)=

{e{Vus}), Tul), the Betti form on M. We start our investigation by considering
linear and quadratic forms on M. It seems plausible that any quadratic form B
on M, can be the Betti form for some hyperclastic material (¢f. Corollary 3.2 in
§3). We do not prove this, but we do construct cnough Betti forms to obtain
sharp bounds on the number of solutions,

The standard double covering ¢ |S°: S — SO(3) is defined in terms of
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a quadratic form ¢ on R*. This is described as follows: Let

H = {X = x4 + Ix; + jx1 + kx,}, the quaternions,
and

H = {XeH|[X)? =3+ x} + x3 4+ x3 = 1}, the unit quaternions.
Identify 3, with S* in R* and {ix, + jx, + kxy [ x;, X3, x; €R} with R?, in
an obvious way, To each X¢ B, define
Q(X):R’—»l!:’ by g~ XgX

(X =x,— ix, — jx; — kx, is the conjugate of X).

Then o(X) is well defined and o(X)€ SO(3) for X¢ H,. Indeed,

Xo + %y + Jx3 + kxy e
Qrx—xi=xi  2Ax% = %) Axoxz + X1X3)
2o +x%Y) F—x+x3-—x 22Anan-—xv) |,
Axxy ~ X)) Avoxy + 0%} =X — X+ xS
For a local study of critical points, we use a local chart ¢: SO(3)\ RP? —+R?
(where RP? = o(5?) = SO(3) N sym\ {1}) so that ¢~}(x, »,2) =
e (”'At”—*k-) where r= Y1+ +)2 +25. For Yo€S0(3), the

linearmap Y= Y, Y leaves SO(3), the form of B invariant, and sends the identity
to Y,. Without loss of generality, we can assume that ¢-*(0) = diag(l, 1, 1)
is a typical point of SO(3).

Let
- - 3 s <+, ks
hix, y,2) = K=, 3, 2)) = Pl + ""*'i""f k) :t B@“ . o ”‘”‘ )
_ fx 0.9
FE

Hence £ is a polynomial of degree < 4 depending on L and 8. Conversely, we
have

5.1 Lemma. Given any polynomial &(x, y, =) of degree < 4, there exists a quadratic
form B on My such that

&x, y, 2) = Blo(l + ix + jy + k2)).

Proof. We have dim (8| B is a quadratic form on M,} =45, and dim{£|§ is
a polynomial in x, y, z of degree < 4} = 35. Now B lies in the kernel of the linear
map B> £ defined via §(x,» 2) = B(o() + ix + jy +k2)) if and only if
B|S50(3) = 0. Thus it suffices to prove that dim {8 |8 is quadratic, and
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B| $O(3) = 0} = 10(= 45 — 35). In fact, a basis of the kemel can be given
explicitly as follows:

Yoxx(<n, Y xali<s),
T ¢
‘Exlzl_‘lezb ‘anzx—lzlf:- ‘zxfl_lzxgh and 'zxgl."zx§h
where B=(x). W

5.2 Lemma, (a) The 4" order Taylor expansion j“(0) of H(x, y,2) at O can be
any polynomial 5(x, y, 2} of _degree =4
&) If f9K0) = c, then T = ¢ identically.

The proof of this lemma is basically the same as that of Lemma 3.4 and so we
omit the proof.
Using these two lemmas, we obtain the next proposition, which provides a

description of the singularities of % on SO(3).

5.3 Proposition.-(a) If the Betti form can be any qundmnc Jorm on M, for loads

of type &, then the & order Taylor expansion of h at any given point X in SO(3)
is arbitrary.
(b) If J9K(X) = ¢, a constant, then h(X) == ¢ identically on SO(3).

Recall that here h(O) =L(Q)+ B8(Q)= —(1 QT =(c(Vul),Vul).

Now let us consider the global aspects:

Denote by A= {h ]h L + B} the space of polynomials of degree < 2
in M,, vanishing at the origin. Define £ = {f€ H|#(Y) = L(Y) + B(Y) on
SO(3) has a degenerate critical point). Replacing the double covering S — RP?
in the proof of Proposition 3.5 by the double covering S - SO(3) here, we
obtain a proof of the following:

5.4 Proposition, The set L is a semi-algebraic set of codimension = 1 in H.

Now we want to estimate the aumber of critical points for h=L+ B not
in L,

5.5 Example, Consider a hyperelastic material with clasticity tensor c(e) =
e+ udiage where —1 < u, which occupies the unit ball in R Let {,=
(Bo, vo), with By =(—1,—=1,=1), and #, = (x?, »%,2%). Since k(I;) =
this load is of type 4. We claim that

4; 1
(1) TheBettiform B,(Y) = l—;' =204+ rh+ A + (2 + m) (Y, Y>].

and . .
(2) I-r(l’)= B, (Y) is a Morse function on SO(3), with 40 critical points.
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To prove (1), let ¥ = (y,), and consider

JuX=yu¥—ynz  yuX+yuay YuX + yias
cr(X) = Yax 4+ yiay =P12X  V123¥ — Y323 Ysay + yaz
YaX + y1az Y2y + ¥2s2 =YX = ¥a3) -+ yaaz

It is casy to see that there exists exactly one displacement field uy (which is
quadratic) such that ¢(Vuy) = cy.
Since

: .
?(Vu, + VH;) =ey = c"(c(Vuy))

Y X = Yy — yuz

T+4 Yux + yuy X + pias
- =137+ Y33y = 's3a® ,
YuxX <+ yy — t+a Yy + YT ’
—Ji3X — Jy3) + Pyaz
YuX + y1aZ Y2y + Yia2 Lt = Yool 7 s

T+u
a simple computation shows that |
—DIV (¢ Vuy) = ¥B,,
)

vﬂy) . N = on.
Thus

- - 781.(}').? <C(Yulb)¢ yul’) = (c(v“v)v Cy)

B S P
e R R +r) <% D).

To prove assertion (2), we use the method of Lagrange to find the critical points
of By, on SO(3) or equivalently of By, 00 on 3.
Sect

L=l + - R g -

+<.rs+d-xf—»é)=1-(z+ﬁ)a]+x(xs+ﬁ+x§+ae—n.
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Thus

2;
L, = -3l—51x,[3x,’—2x}]+21x,=0, i=0,1,273,

Jel

,2 =1
It is casy to see that this system has the solutions

1

X0y X3y X3, X: S e —
( ] 13 2 )) V}: + ?l + ?: + ?,
where X,=0,1 or —1, i=0,1,2,3, except (X, X,,X;,%;)=(0,0,0,0).
Consequently, B, on SO(3) has exactly 40 critical points. Further straightforward
computations show By, is a Morse function, having 8 points (6(xo+ Ix, + fx; + kx;),
x, = +¥) ofindex 3. Indeed, replacing A by u?, we see from Bezout's theorem that
our system L, =0,i=0,...,3, hasexactly 81 solutions in x;, u# including multi-
plicity. Since our system has 81 solutions, the multiplicities have to be 1, so each
ray solution is simple.

(7‘0- ;h }b }!)r

5.6 Proposition. The number (k) of eritical points for a Morse function of the form
h=L + Bon SOQ3) (ic., hgX) is between 4 and 40.

The proof of this proposition is basically the same as that of Proposition 3.7.
Thus we omit the proof.
Our main result on the global problem is the following:

8.7 Theorem. Let Iy be a load of type 4. Suppose the Betti form B, (Y) is a Morse

=1
Junction restricted o SO(3). Then, for A > 0 and w
evitical points f on SO(3) is berween 4 and 40. Therefore, our traction problem has
between 4 and 40 equilibrium solutions.” T T o

small, the number of

Proof. The function (- -i-) f'is a small perturbation of the Morse function B,
where 4 < (B,) < 40 by Proposition 5.6. [l
Finally, in this section, we analyze our problem for a non-zero parallel system

I, of type 4 (i.e. k(lo) = 0) and ! = I,. Withoutloss of generality, we can assume
that I, is parallel to the z-axis. Thus the isotropy group of !, namely

x =y |0
{QeSOQ) | Qly =1} is y x|0]{x3 4y =1} =88,
- 0 01

the circle group.

k(Kl)) = Kk{l)) =0.
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Clearly, the function V(¢) is S'-invariant, i.e. V() = V{(g¢) for all geS'.

The action g-(Q,¢) = (Qg~% ¢), g€ S0(3), makes the map equivariant,
Thus the function ¥, is S'-jnvariant under this action,

5.8 Proposition. (a) The function Q) = V(Q, bo) is S'-invariant under the action
£-0=0Qz" for ges'.

(b) There exist at least two invariant circles of critical points of f.
Proof. (a) Since, ¢, = ¢ for g-'€ S?,

f(g- Q) = V(@87 dgp1) = Vo (Q57%, $9) = ¥V, (Q, $g) = AQ).

{b) From (a), it suffices to say that f has a2 maximum and a minimum on
So(3). A
Remark. The action of $* on SO(3) via g- Q = Qg~! isfree, and the orbit space

0

SO(3)/S! is diffeomorphic to §2 via [Q]— Q | 0 . Thecircles of critical points

1
of f on SO(3) correspond to the critical points of an induced function f on
SO(3)/S? & $2. Oneexpects that an example with exactly two circles of solutions
for our problem does exist,

i
From the expression f(Q) = —?«(Vuo), Vug) + O(A%) given in §2

(here ug = ud, =iy, and {fy, Q71> =0), oncncedstocxamincthe S'-invariant
function {c(Vug), Vugd on SO(3). Notice that here L(Vuy) = Kl, since

5.9 Proposition. Let I, be a non-zero parallel system of type 4, parallel to the =-axis.
Then
(@) Q€ SO() is a critical point of ((Vug), Vug) if and only if
k(Qly, ug) = [e(Vug) Vuj dV € sym.

(b) The Hessian of (¢(Vug), Vug) is given by

i
3 H(WQ) = {e(Visipg), Visg) + (e(Vitwg), Vitwo)

or

5 QW) = (T ttqun), Tt + (T tkqm), Vitqu.

)
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Proof, For W ¢ skew,
((Vatying), Tugig) = (e(Vatg), Vuigd + Ae(Vutwo), Vuug) ¢
+ {{(Visipsg), Vo) + {(Vuwg), Yuwed) 12 + 0(1%).
Since <c(Veyg), Vo) = (WQl,, ug) = —(W, k(Ql,, ug)), Q is a critical

point if and only if k(Ql, ug)€ sym. That k(Ql,, ug) = J o(Vug) Vul dv
follows from the divergence theorem as usual. i

010
Le1 S* . Q beacircle of eritical points. Then | Q| —1 0 0 =0, and

000
the nullity of o is = 1. The Hessian J# is said to be non-degenerate if the nullity
of W is I.

$.10 Theorem, Let Iy be a non-zero parallel system of type 4 (parallel 1o the z-axis),
Suppose that S* - Q is a non-degenerate circle of critical points of ©(Vug), Yupyy
on SO(3). Then for small A > 0, the traction problem (¢}==1l, has a circle of
solutions $'¢ near S*. Q.

Proof. It suffices to observe that
1
@ = — o ((Tuig), Vuig> + O(1), for >0,

and to use elementary results in equivariant differential topology. - ]

5.11 Example. Consider a homogencous hyperelastic material with elastic tensor
o(¢) = e — L diage, and with reference configuration @ the unit ball in R®.

0 0
Let ly = (B,, v,) be the parailelloadwith By =| 0 Jon®,and £,={ ©
1 H

on é@. Clearly, k(lp) = 0. We claim that (1) the circles of critical points of
<e(Vug), Vug) on SO(3) in the orbit space SO/S* ~ S? correspond to the north

1 00 1 0 0
pole S0 1 0], the south pole S*-{ 0 —1 O], and theequator;(2)
001 0 0-1
100 I 0 0

the invariant circles S* {0 1 0], 8t.[ 0 —1 ©} are non-degenerate, with
’ 001 0 0~1
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Hessians of index 0. Therefore, for small 4 > 0, the traction problem has solu-
1oo 1 0 0 0 s —~t

tions S'¢ with¢near{ 0 1 O] [0 =1 O], and{[0 ¢ s |)l24s2=1}.
001 0 0-1 100

(There are at least two of the last form.)
Proof. (1) To cach Y = (y), set

0 0 yiy2
eX)={ 0 0 2], where h= —y;3x — y23¥ + y332.
Y32 yns A

Then there exists exactly one (indeed, quadratic) displacement field uy, such that
(Vuy) = ¢y. Clearly

—DIV «(Vu)y = YB,,
c(vul’) ‘N= on:

and
000
Vuy = ¢ i(c(Tuy)) = o(Vuy)+ |0 0 0
00 &
Note that if Q@ = (g,), then
000
e T [oVug)Vugdv= fchdV + fc|0-0 0] ay -
00 £

00 stgsaf=’dy
=fcgaV+ [0 0 g8y [2dV
0 0 fh’dV

Thus [ o(Vig) Vuh dVE€sym if and only if (a) gys = g3s =0, gy = &1
or (b) 255 = 0.
(2) Direct computations, using the formula

1
?-’? (QW) = {(Vuows), Vo) + e(Vugw), Vugw),

)
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give
| in 0 0-b
T.ﬂ'(OW):ﬁ(Za’+Zb’) where W=[0 0 a],
b—a O
1 0 0
and O=lor (0O-1 O} m
0 0-]
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