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COADJOINT ORBITS, VORTICES, AND CLEBSCH VARIABLES FOR

INCOMPRESSIBLE FLUIDS

Jerrold MARSDEN* and Alan WEINSTEIN*

Department of Mathematics, University of California, Berkeley, California 94720, USA

This paper is a study of incompressible fluids, especially their Clebsch variables and vortices, using symplectic geometry .and
the Lie-Poisson structure on the dual of a Lie algebra. Following ideas of Arnold and others it is shown that Euler’s eqqatlons
are Lie-Poisson equations associated to the group of volume-preserving diffeomorphisms. The dual of the Lie algebra 18 seen
to be the space of vorticities, and Kelvin’s circulation theorem is interpreted as preservation of coadjoint orbits. In this conte?(t,
Clebsch variables can be understood as momentum maps. The motion of N point vortices is shown t0 be identifiable with
the dynamics on a special coadjoint orbit, and the standard canonical variables for them are a special kind of Clebsch variab}es.
Point vortices with cores, vortex patches, and vortex filaments can be understood in a similar way. This leads to an explanation
of the geometry behind the Hald-Beale-Majda convergence theorems for vorticity algorithms. Symplectic structures on the
coadjoint orbits of a vortex patch and filament are computed and shown to be closely related to those commonly used for

the KdV and the Schrodinger equations respectively.

1. Introduction

The purpose of this paper is to use the methods
of symmetry and reduction to study incompressible
fluids, especially their Clebsch variables and vorti-
ces. The original techniques introduced in Marsden
and Weinstein [41] were used in a study of the
Hamiltonian structure of plasmas in Marsden and
Weinstein [42]. Compressible flow, magneto-
hydrodynamics, and elasticity require the use of
semidirect products, which will be the subject of
another publication (Marsden, Ratiu and Wein-
stein [40]).

Symmetry and Hamiltonian systems are related
in the following way to the topic “order in chaos”
of this conference:

1) Order. Physical systems often exhibit “order”
simultaneous with symmetries. For example,
soliton-like behavior is frequently linked with sym-
metry and complete integrability.

2) Chaos. When the symmetry of a system is
broken, Hamiltonian structures can be uvseful in
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detecting chaos by the method of Melnikov (see
Holmes and Marsden [28-30]).

Hamiltonian systems written in “non-canonical”
variables can be elegantly understood in terms of
reduction of the standard canonical variables, su.ch
as the Lagrangian configuration map and its conJL}' ’
gate momentum in fluid mechanics. When this 18
done, one obtains a Poisson manifold which is a
union of symplectic leaves. An orbit beginning on
a leaf stays on it, so these leaves appear as “con-
straint manifolds”. In fluid mechanics these are the
“Lin constraint” manifolds and are exactly the
coadjoint orbits for the configuration manifold,
which is a group. . :

‘Constraints’ are of three types. First of all ther.e
are the type above, which correspond to symplectic
leaves in a larger phase space and indicate that a
reduction has taken place. Second, there are con-
straints which are imposed on a model for pur-
poses of idealization or simplification, such as
incompressibility, rigidity, or the passage frf)m
electrofluid dynamics to magnetohydrodynamics.
We expect that this second kind can be understood
in the context of the first kind using an enlargejd
Poisson manifold and the framework of Weinstein |
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[59]. Finally, there are constraints like div E = p,
which are, from the four-dimensional point of
view, some of the Euler-Lagrange equations of the
theory. The latter can also be understood in terms
of zero sets of momentum maps and reduction, as
in Marsden and Weinstein [42].

Clebsch, or canonical, variables for a system can
be understood in terms of Poisson maps from
symplectic to Poisson manifolds. For many sys-
tems these maps are, or are constructed from,
momentum maps for symmetry groups. We note
that Holm and Kuperschmidt [27] have taken the
opposite approach, using Clebsch representations
to derive the non-canonical Poisson structures.

In addition to the topics above, this paper
contains discussions of point vortices, vortex
patches, and vortex filaments. These objects form
coadjoint orbits whose symplectic structures are
related respectively to those for particles on R!, the
- KdV equation, and the Schrddinger equation.
Canonical variables for these systems are particu-
lar instances of Clebsch variables.

Space does not permit the inclusion of extensive
background material. Readers should consult our
earlier papers and lectures listed in the bibli-
ography, along with Arnold [6] (especially appen-
dices 2 and 5) and Abraham and Marsden [1]
(especially chapter 4).

2. Poisson manifolds, momentum maps, and
reduction

A Poisson manifold is a manifold P together with
a Lie algebra structure { , } on the space C*(P) of
smooth real valued functions on P such that {f, g}
is a derivation in each argument.

If G is a Lie group and @ is its Lie algebra, the
dual space ®* carries a natural Poisson structure
defined as follows. For ue®* and F:6G*-R,
define 8F/oue® by

DF(u)-v = <v,5—F>,
ou

where DF is the derivative of F, ve®*, and LD

is the pairing between ®* and &. For
F,GeC™(6*),define

OF 6G
mavm=—(u[55])

where [ , ] is the standard (left) Lie bracket on 6.
The bracket { , } _ is the one induced on G* by
identifying C*(®*) with the /eft invariant func-
tions on T*G. We denote this structure by G* .
The corresponding bracket with the + sign is
associated to right invariant functions and is de-
noted ®* . In finite dimensions the formula for the
bracket on ®* in terms of a basis e; and dual basis
e, with u =2 e’ is

. OF 0G
{F,G} (n)= izcga‘aﬁjﬂk,
where ¢} are the structure constants for the Lie
algebra, defined by [e, ¢] = Z, cte,.

This formula for the bracket on G* is due to Lie
[34], pp. 235 and 294. It was rediscovered by
Berezin [9] and is closely related to results obtained
by Arnold, Kirillov, Kostant, and Souriau around
the same time.

If P is a Poisson manifold, the Hamiltonian
system on P corresponding to a function H: P —R
is the vector field X, on P such that real-valued
functions on P evolve by F = {F, H}. Since Pois-
son structures define maps of covectors to vectors,
Xy is just the image of dH.

Every Poisson manifold is a union of symplectic
manifolds, its “symplectic leaves”. Trajectories of
Xy starting in a particular leaf necessarily stay
there. Thus, these leaves may be viewed as con-
straint surfaces. For G* or G*, the symplectic
leaves are coadjoint orbits. More is known about
the structure of Poisson manifolds, extending some
of Lie’s work [34] on function groups. Namely,
Weinstein [59] shows that, at least on a linearized
level, a Poisson manifold is near each point the
product of a symplectic space and the dual of a Lie
algebra. This helps to explain why Lie-Poisson
brackets on ®* are so fundamental.
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Let P be a Poisson manifold and G a Lie group.
Assume that G acts on P by a left (resp. right)
action by Poisson maps, i.e. maps ¢ :P— P such
that {Fop,Goop} = {F, G}o¢ for all F, GeC*(P).
By a Hamiltonian map for this action we mean a
Lie algebra homomorphism (resp. anti-
homomorphism) J: % —C=(P) such that Xj, =&,
for each £e®, where &, denotes the associated
infinitesimal generator of the action. Define
J:P-G* by (J(x),&)=J(E)(x). We call J the

momentum map.

Proposition 2.1. Let J :P—>6* be a momentum
map for a left action of G on P. Then

J.: P—-®* is a Poisson map.

Likewise, if J is the momentum map for a right
action, then

Jr:P—®* is a Poisson map.

Proof. By definition of the Lie-Poisson bracket,

oF 6G
{F’ G}+(H) = <J(x), [Sﬁ’_gﬁ}>

([ 6F oG
=’<[szz’3ﬂ)m

Since J is a Lie algebra homomorphism,

Do B o

The proof will be complete if we can show that

d(f(fsf)) =d(FoJ),
op

where 0F/dp is regarded as a constant element of
® evaluated at u = J(x). Indeed, we have

d(FoJ) v, =dF(u)-dJ(x) v,

= <dJ(x)-vx,g—E>

for v,.e TxP. Also,

~[OF oF
o158 el (050
oF
= <dJ(x) : vx,3;>,

since F/Su is regarded as a constant element of
6. B

Note that Ad*-equivariant momentum maps in
the usual sense for actions on symplectic manifolds
are momentum maps in the present sense. In what
follows, most of the momentum maps we consider
are standard ones from symplectic geometry (see
Abraham and Marsden [1], sec. 4.2).

A consequence of the formula d(J(5F /o)) =
d(F -J) proved above is the following fact about
collective Hamiltonians. (cf. Marle [35] and Guil-
lemin and Sternberg [23]):

Corollary 2.2. Let FeC*(6*). Then

X (x)= <(55_5>P(x)’

where 8F /[y is evaluated at u = J(x). (This holds
for momentum maps associated with either left or
right actions).

The distinction between left and right in 2.1 may
be clarified by the following remarks. Let G be a
Lie group and T*G be its cotangent bundle. Con-
sider the map 4:T*G—G* given by

(Aap), &) = (o TLy" &),

ie. left translate covectors to the identity;
®* = (T,G)*. This map is a Poisson map of T*G
to ®* because it is the momentum map associated
with right translations of G on T*G. (Abraham
and Marsden [1], p. 302). Thus, T*G/G (quotient
by the left action) yields ®* with the Lie—Poisson
structure (including the minus sign).

There is a converse to 2.1. Namely, if J :P-»G*
is a Poisson map, then J is a momentum map for
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an action (of the simply connected covering group)
of G. See Fong and Meyer [22] for the symplectic
case. Thus, when the range space is the dual of a
Lie algebra one loses no generality in the search for
Poisson maps by looking among momentum maps.
If P is a Poisson manifold and G acts on P by
Poisson maps, then P/G is a Poisson manifold.
(Assume for present purposes that P/G has no
singularities.) Indeed, we may identify functions on
P/G with G-invariant functions on P, so that the
bracket on P is inherited by P/G. We call P/G
the reduced Poisson manifold. For example, T*G
reduced by the left action of G is just G*.

Example 2.4. (The rigid body). Here we take
G =80(3) so that ®, its Lie algebra, is identifiable
with R* and the Lie bracket with the cross product.
A point me®* represents the angular momentum
in “body coordinates”. (See Abraham and Mar-
sden [1] or Arnold [6] for the explanation of this
terminology.) The Hamiltonian H is the kinetic
energy of the body, a positive definite quadratic
function of m. By choosing an appropriate ortho-
normal basis of R’ (and corresponding ortho-
normal dual basis of R**) we can assume that H is
diagonal:
1/m? m3 m3

where 1, I, I, are positive constants, the moments
of inertia. Let us work out the Lie-Poisson equa-
tions F = {F, H}_ in this case. Clearly dF/0m is
just the vector in R* with components (0F/dm,,
0F [0m,, 0F [0m;). Thus

oF OH
{F,H} (m)= — <m,5;1- X 5,;>’

the triple product. If we choose F(m)=my,, the
equation F = {F, H}_ reads

m, m, My,

1 0 0
m = — = My,
my m, hy LI

L L, I

The equations for #1, and #1, are obtained by cyclic
permutation. These are the famous Euler equa-
tions for a force-free rigid body. It is trivial to
check that (d/dt)(mi+mi+md)=0; ie. |m|?*is
constant in time. The spheres |m | = constant are
exactly the coadjoint orbits for SO(3). Thus s0(3)*
is the union of these symplectic manifolds (plus the
origin). Their preservation by the Euler equations
corresponds to the conservation of angular mo-
mentum.

The heavy top requires the semi-direct product
E(3)=S0(3) x R* see Vinogradov and Ku-
pershmidt [54] p. 236, Guillemin and Sternberg
[23], and Marsden, Ratiu, and Weinstein [40].

The reduction of Poisson manifolds is related to
reduction of symplectic manifolds with symmetry.
Let J be a momentum map for the G-action on P,
and assume that P is symplectic. Suppose that
O < G* is a coadjoint orbit in ®* and that J is
transversal to @. Then J~'(0)/G (assuming it is
without singularities) is the reduced symplectic
manifold[41].

Proposition 2.3. The symplectic leaves of P/G are
J(0)/G. |

This follows readily from the definitions and
the fact that T(J ~'(0)) splits into TG *x)+
kerdJ/(x), whose summands are symplectic
orthogonal complements of each other.

3. Symplectic variables and gauge groups

We begin with a Poisson manifold P as the basic
space of physical variables for a theory. Suppose
that H:P—R is a given energy function, so that
the trajectories of X, describe the dynamics of the
system.

Definition 3.1. By symplectic variables (or *“Clebsch
variables”) we mean a symplectic manifold R and
a Poisson map ¥ :R—P.

Recall that if P = G*, then y will be a momen-
tum map. If coordinates in R are found which
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bring the symplectic form into canonical form,
they are called canonical variables. In many exam-
ples R is a cotangent bundle. One can always
in principle use Darboux’ theorem to find the
canonical variables.

If welet H, = H oy, then Xy, projects to Xy, and
so integral curves for H, project to those for X
Thus, by introducing possibly redundant informa-
tion, one can write the equations in the new R
variables in symplectic Hamiltonian form, and
using canonical variables, in canonical form.

Example 3.2. For the rigid body, P = ®* where
G = SO(3), as in example 2.4. Now SO(3) has the
same Lic algebra as SU(2), which acts sym-
plectically on C?. The induced momentum map
iy :C*— P defines Cayley-Klein parameters as spe-
cial symplectic variables. A related construction
for general Lie groups can be found in Weinstein
[59].

Definition 3.3. Let y:R—P be symplectic vari-
ables for a Poisson manifold P. The associated
gauge  transformations are the  symplectic
diffeomorphisms ¢ : R —R such that o = .

Let K be a Lie group of gauge transformations
such that K acts on R from the left (resp. right) and
is transitive on each fiber ¥ ~'(p) and has a mo-
mentum map Jy: R —&* where R is the Lie algebra
of K. By 2.1, Ji is a Poisson map from R to &%
(resp. ®*). We call K a gauge group; Jy is the
corresponding conserved quantity.

Example 3.4. In electromagnetism, R = T*U
where 9 is the space of vector potentials 4, and P
is the Poisson space of E’s and B’s with div B =0
and with bracket

oF G oG oF
{F,G}= J<5—E curlEE —5—E-cur1§§>dx

3

(see Born and Infeld [10] and Marsden and Wein-
stein[42, §4].) Here we choose K to be the standard

group of gauge transformations 4 A +V¢. The
symplectic leaves in P are the sets where div E =g
is given. (These leaves are obtained from R by
reduction, as shown in the preceding reference. It
is also explained there how to couple electro-
magnetism with other continuum theories such as
fluids and plasmas.) Here the momentum map is
given by J(4, Y) = —div ¥ where Y = —E is the
variable conjugate to 4, and Y(4 Y )=
(—Y, curl 4).

Example 3.5. A gauge group for Cayley—Klei‘n
parameters is U(1), and C? reduced by U(1) 18
0(2)* & 50(3)*.

The reduction result mentioned in the preceding
examples holds in general.

Proposition 3.6. Reduced spaces for Jx: R-8* are
symplectic leaves in P.

Proof. Let 0 < ]* be a coadjoint orbit. Let
Yo Jg(O)—P be  restricted to J7'(©). By K-
equivariance, ¥, induces a Poisson map:

¥, Jg (O)K—P.
Since K acts transitively on fibers, ¥, is one-to-
one. Since J ~'(0)/K is symplectic, it embeds via ¥

as a symplectic leaf. B

The following diagrams summarize the situ-

ation:
R ’ R
/X /\
K* P P |*
reduced — symplectic ~ symplectic reduced
spaces leaves leaves spaces

A left action of K A right action of K

Notice that if H: P—R is our given Hamiltonian
and H, = Hoy, then Jyisa conserved quantity for
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H,, since H, is invariant under gauge trans-
formations. If J, is constant on y -fibers (for exam-
ple this holds if K is abelian) then it induces a map
J: P—K* which gives constants of the motion for
H. However these give no new information on
conserved quantities in view of the preceding prop-
osition and conservation of symplectic leaves in P.
(For example, the conservation laws of Levich [33]
are of this type and are explained in section 5
below).

In some cases, such as incompressible fluid
mechanics, P itself is a Lie—Poisson space * and
¥ is a momentum mapping associated to a left
action. Then the above diagram becomes

R
/ x
®* R

The situation is now symmetric, and G is also a
gauge group for R regarded as symplectic variables
for the Lie-Poisson space ®* . We say that we have
a dual pair (see Weinstein [59]). A simple example
of a dual pair is obtained by considering the left
and right actions of a group G on T*G:

T*G
®* ®*

For applications of this idea to semi-direct prod-
ucts, see Marsden, Ratiu and Weinstein [40].

4. Ideal fluid flow as a Lie-Poisson system

The configuration space for ideal (incom-
pressible, homogeneous) fluid flow on a region Q
(a region in R" or a compact Riemannian manifold
with boundary) is 2,,, the group of volume-
- preserving diffeomorphisms of Q to itself. The

phase space is T*%,, (where dual spaces are
understood in the sense of L? pairings). As we shall
detail below, the kinetic energy of a fluid is right
invariant on 7*% _, and so induces, by reduction,
a Hamiltonian system on the Poisson manifold &%,
where Z,,,, the space of divergence-free fector fields
on @ parallel to 0Q, is the Lie algebra of 2, and
the + Lie-Poisson structure (+ because of right
invariance) is used. The Lie bracket on &', (the left
Lie algebra of 9,,) is the negative of the standard
commutator bracket of vector fields*.

The picture above, but using Z,, and T2,
rather than the dual spaces was known to Arnold
[4]; its functional analytic details were established
by Ebin and Marsden [21]. The use of 2%, in this
problem has also been emphasized by Morrison
[48]. (For compressible flow, see Morrison and
Greene [49] and Marsden, Ratiu and Weinstein
[401.)

We arrive naturally at the space Z'¥%, starting
only with these two assumptions:

1) the phase space is T*2,;

2) the Hamiltonian is right invariant.
Assumption 1 is taken for granted: the defor-
mation and its conjugate momentum describe the
state of a fluid (or generally a continuum) in
material coordinates. This has been accepted as
basic since the time of Euler and Lagrange. As-
sumption 2 is simply a fact, following from the
change of variables theorem (see below or one of
the aforementioned references for details).

Now Z'¥, consists of the linear functionals on
Z .. These we identify with the one-forms o« mod-
ulo exact one-forms. Note that exact one-forms are
L%-orthogonal to the divergence-free vector fields:

J df-vdx =0
Q
if divv =0, where dx is the volume-form on €.

One can represent an element [a] of 2%, by the

* Arnold [6] uses the left Lie algebra of vector fields so has
conventions on brackets of vector fields that is opposite from
the standard convention.
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two-form do and the integrals I'y, ..., I'; of a over
a basis y,, ...,y of the first homology of Q; ie.
elements w of 2%, consist of the vorticity da and
circulations around non-contractible loops:
o =(do, I'y,...,T). For simplicity of exposition
we shall assume that Q is simply connected so we
may ignore the I';s. As in the abstract theory, for

F 2%, —R, we define 0F/dw X,y by

DF(w):[o]= J<§g, a> dx,

Q

where ( , ) denotes vector—covector pairing and ¢
stands for any representative of its class [¢]. The +
Lie—Poisson bracket we use is

OF 6G
{F,G}{w) = j<w, [5—0—)—, %:D dx

Q

This bracket was explicitly written down in Kuz-
netsov and Mikhailov [32], Morrison [48] and
Olver [64]. It was implicitly known to Arnold [5].
Its connection with Lie-Poisson structures and
reduction is due to the present authors. ‘

Now the Hamiltonian function for incom-
pressible flow is the kinetic energy. This is defined
on T, by

HWV,)= J%{ V.V, dx,
Q
where V,, a vector field over n €2, is the material
velocity of the fluid (i.e. ¥,(X) is the velocity at
1n(X) of the particle with material point X eQ2). By
the change of variables theorem, H is right invar-
iant on T%,, (see Ebin and Marsden [21] for
details). In terms of the Eulerian velocity variable,

H@)=3; J HU ”2 dx. (Hguerian)

Also, H induces a right-invariant function on
T*9,,, given at the identity, i.e. on 2%, by

H(w) = % j<A —1(1), CL)> dx, (Hvorticity)

(Hmaterial)

where { , ) is the metric pairing of two-forms and
A is the Laplace-DeRham operator, A = dé +od.
(At the identity, o is identified with dv b where
ved,,, v* meaning the corresponding one-form);
note that [ {4 'w,@)ydx=[{4"" do®, dv*)dx
= [ (64 dv*, vy, 0"y dx = [ (", p*ydx  since
Sv* =0 (e dive =0).

There are three equivalent ways of representing
the following Euler equations for perfect incom-
pressible flow:

o o Vo= v
o TUYeE YR

dive =0, B

v parallel to 90,

in which the density is p = 1*.

First, one views (E) directly on Z via reduction
from the corresponding right-invariant system OT
T3, This is the perspective developed by Arnold
[4], and expositions are available in several places
(Arnold [6], Marsden [36], and Abraham and
Marsden [1}).

Second, one views (E) directly on 7% OF
T*%,, as an evolution equation for th¢
configuration n €%, of the fluid and its conjugate
velocity or momentum. As Arnold showed, the
equations (E) are equivalent to the geodesic equd-
tions on T, (or T*%,,) for the right-invariant
(weak) Riemannian metric on 79, whose value at
the identity is the L* inner product :

{o,w) = J(v(x), w(x)) dx.

Q

It was shown in Ebin and Marsden [21] that the
spray of this metric (that is the vector field on a
suitable Sobolev completion of 7%, Whose inte-

* For ideal but, inhomogeneous flow on TP, together with
the existence theory, see Marsden [37]. The system is not rig}%t -
invariant, but rather vields a Lie-Poisson system on the semi-
direct product %', x Functions; see Marsden, Ratiu and Wein-
stein [40] and Henyey [26].
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gral curves give solutions on 7%,) is C*, so the
Picard method for ordinary differential equations
suffices to prove existence and uniqueness of solu-
tions for-short time.

Third, we can view (E) in terms of the vorticity.

To do, let us temporarily use traditional fluid
mechanics notation and write w =V x v, rather
than @ =dv'. Taking the curl of (E) gives the
vorticity form of the equations:
PD_‘? — o Vo =0, V)
where Do /Dt = dw /0t + v * Vo is the material de-
rivative (see, for instance, Chorin and Marsden [18,
p. 32]). Here v is determined by w through the
equations

o=V xuy,

dive.=0, v H 0.
If we regard w as a two-form again, then
v'=68) and Y =4 o,

where i is a 2-form, the ‘stream function’,  is the
codifferential, and A4 =ddé+46d s ~ the
Laplace-DeRham operator. (The solution for v in
terms of @ is to be supplemented by specified
circulations if © contains non-contractible loops.)

Theorem 4.1. The vorticity equations (V) are
equivalent to the Lie-Poisson equations
F={F H} on 2% where H is given by (H,ouci,).

This theorem follows directly from the general
facts about reduction already mentioned, but we
shall verify it by hand. If we let

then by definition

DH(w)-{a]:J(v,a)dx,

where o' is a 1-form on @ and [o] is its equivalence
class in Z7%,, identified with the 2-form do. Thus,

DH(w)'[J]sz} “lw,do ) dx =J<v,a>dx.

Since 6 and d are adjoints, we get v" =4 ~"'w. In
other words, dH/dw is nothing other than the
corresponding velocity field of the vorticity. Thus,

o [(of£ ]
i[5 e

Now the Lie algebra bracket [6F/éw,v] is the
negative of the usual Lie bracket and so is given by
L,6F /6w, where L, is Lie differentiation. Integrat-
ing by parts, we get

(F.H) = — Km?@ dx.

where, as above, the pairing between %, and 4,
is understood in terms of representatives of the
classes of two forms. Thus, by definition of §F/éw,

{F,H}= —DF(0)" Lo

Therefore, the equations F = {F, H} are, by the
chain rule, equivalent to the Lie form of the
vorticity equation

% Lw=0, (LV)
ot

where L, is Lie differentiation of two-forms. Equa-
tion (LV) just says that o is Lie transported by the
flow. Now (LV) is equivalent to the form (V) using
some simple vector identitiest. This completes the
verification of theorem 4.1. (Notice that the use of
differential forms enables us to replace Q = R’ (or

Lo =dio+i,do =diw. If &*=@xwo), then ()=
(@ xv)° so di,w =curl(d xv) = —d - Vo + v - Vb
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R?) by any Riemannian manifold and reveals the
geometric interpretation of the vorticity equa-

tion.) B

The equation (LV) enables us to check directly
some other general facts about Lie-Poisson equa-
tions. Let us verify that solution curves to (LV)
remain on coadjoint orbits in Z¥,.

The (right) coadjoint action of Z,, on 27, Is
readily checked to be the pull-back action
(1, w)—n*o. Thus, the coadjoint orbit through
WEX o 18

(Ow = {7] *w |7] E@vol}a

but the solution to (LV) for given initial condition
w(0) is simply

w(t)=n)*o(0),

where 5 (1) is the flow of v(r). Hence it is clear that
the vorticity stays on 0, This transport of vortic-
ity by the flow is nothing other than Kelvins
circulation theorem. Thus, the preservation of co-
adjoint orbits, right invariance on T*9 .y, and Kel-
vin’s circulation theorem are all equivalent.

We know from the general theory that ¢, is a
symplectic manifold. Let us compute its symplectic
structure. Tangent vectors to @, at o are given by
elements Lo, where ue® .

Theorem 4.2. The symplectic structure Q,, on T,0,
is given by

Qw(Lulw: Luzw) = J‘w(ul’ uZ) dx.

Proof. We use the general Kirillov-Kostant-
Souriau formula Q,(e(). M) = ps [ 11
for the symplectic structure on coadjoint orbits (see
Abraham and Marsden [1], p. 303. Here there is a
+ sign since we are dealing with a right invariant
system). In our case this reads

Qw(Lu‘w9 Lu26L)) = <(D, - [uls u2]>

313

(Recall that our convention is to always use the left
Lie bracket. For @ or 9, this is the negative of
the usual Lie bracket; see Abraham and Marsden
(1, Ex. 4.1G]). Let @ =da. Then the preceding
equation gives

QL 0 L,o)=— Joc < [uy, up] dx,

according to our definition of the pairing. Now
write [uy, u)] = L, u, and integrate by parts to get

Q (L, o, L,0)= J'(Luloc)u2 dx
= J(iux do +di, )1 dx.

The second term vanishes since div u, = 0. Thus we
get

0,(L, . Lo) = J(iulm ‘uy dx = fw( ) dx

as claimed. B

5. Clebsch variables for ideal flow

According to our general scheme in section 3,
symplectic variables for ideal flow are provided by
momentum maps J:R—-Z¥, To find such vari-
ables it suffices to seek symplectic manifolds on
which 2., acts and compute their momentum
maps. Since &%, carries the + Lie-Poisson struc-
ture, we should seek a left action. The classical
Clebsch variables, and more, can be readily found
by such an approach.

Consider the action of 2., on the space & of
real valued functions on Q by (3, A}~ #A = 4210~ L
This induces in the usual way a symplectic left
action on T*F = F x F*. Identify F* with &
via the L? pairing using the given volume element.

Proposition 5.1. The momentum map of the above
action is given by J:(4, p)— o =di Adu
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Proof. Let ueZ,,. The corresponding infinites-
imal generator on & is — L,A. Thus, using the
formula

(& J (@) = (o Eola))

for the momentum map of a lifted action (Abra-
ham and Marsden [1, p. 283]) we get

(TG ) = f b (= LoA) d
= j(Luu)ft dx

=fidu°udx.

Thus the one form representing J(4, u) is 4 du. The
corresponding two-form is d(4 du)=di Adu.
Thus J(A, w)=di Adu. B

It follows directly that if the Euler equations are
expressed in terms of A and u they will be in
canonical Hamiltonian form, a result already
known to Clebsch [19]. We call the canonical
variables A, u Clebsch variables.

The gauge group of Clebsch variables consists of
all ‘canonical transformations % of R2 Indeed,
‘these are the transformations of the (A, 1) variables
that leave o invariant. Now we get a dual pair as
one can readily check:

F x F*
J = Clebsch map / \
Z7a(8)

The momentum map j for the action of & on
F X F*is given by (4, u)— (4 x u) du where we
identify o*, the dual of the Lie algebra s of &, with
densities on R?, as in Marsden and Weinstein [42].
_ The example above is a member of a family of
dual pairs. If (P, wy,) is a symplectic manifold

and (P, ) is @ volume manifold, i.e. a manifold
carrying a volume element w,,, let .# be the space
of maps from P, to P,,,. Then the groups G, and
Gyn Of volume-preserving and symplectic
diffeomorphisms of P, and P, respectively act
en .# by compositions. Their momentum maps are
Jool) = n*wy,,, e ®, regarded as two-forms on
P,y as before and J,,(n) = n.w,,€ ¥, regarded
as densities on P,,. Then
) wvol € sym S}’m
is a dual pair.

Notice that in the case of fluids j is a constant
of the motion for the induced Hamiltonian system
on F x #* since & is, by construction, an invar-
iance group. For example, if we compose j with

evaluation against an element ¢ of s, we get the
constant of the motion

vol

J¢(Lu)[(/t X p)e dx]= fdﬂ, p)dx.

Q

These invariants were found by Levich [33]. From
the general theory, we know that these give no

‘more information than the invariance of coadjoint

orbits. In particular, even though one can find
infinitely many such invariants in involution, they
can never suffice to prove complete integrability.
One might call these invariants “kinematic”, since
their conservation depends only on the Poisson
structure and not on the specific Hamiltonian
which generates the dynamics. Similar remarks
apply to Ebin [63].

Note that if @ = d4 A dy, then the velocity field
v* is such that v*A du is closed; if it is exact, we
can write

v®=du + 4 d,

which is the classical Clebsch representation for the
velocity field. This expression is interpreted in
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terms of canonical variables in Marsden, Ratiu and
Weinstein [40].

Notice next that if @ = dA A dy, and we are in
R?, say, then the helicity is given by

de!
x:fjumamj o* A (G A dp)
R3

R2

— | dv*AAdp (integration by parts)

R3

I

—J(d,{/\du)/\idu———O.

R3

However, in a flow with linked vortex lines, the
helicity does not vanish (see Moffatt [46] for a
discussion), so the Clebsch representation leaves out
many interesting coadjoint orbits.

Remark. Invariance of the helicity follows at once
from preservation of  coadjoint  orbits:
dw 0t + Lyw = 0 (cf. Moffatt [46], p. 41).

It has likewise been noted by Bretherton [12]
that the variational principle of Seliger and
Whitham [52], which is closely related to the
Clebsch representation, does not permit knotted
vortex lines.

Helicity can be reincorporated if, in the general
(Pym, P.y) dual pair, one replaces R* by the
two-sphere S? and imposes certain boundary con-
ditions on R’ to allow compactification to S*. The
helicity is then a multiple of the topological Hopf
invariant; see Kuznetsov and Mikhailov [32].

6. Two-dimensional flow

The “vorticity-bracket”

o [(o[5 )

introduced in section 4 has a particularly simple
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formulation in two dimensions. A volume (i.e.
area) element in two dimensions in also a sym-
plectic structure, so that each divergence-free vec-
tor field v may be thought of as a Hamiltonian
vector field X; the Hamiltonian function ¥ coin-
cides with the stream function for v discussed in
section 4. Assuming that the manifold £ on which
the fluid flows is connected, the function Y is
determined by v up to a constant, so we may
identify the Lie algebra ', with C*(Q)/constants.
The dual space %%, is then identified with gener-
alized functions o on @ with fo© du =0, and the
reader may check that this correspondence is con-
sistent with the previous identification of 27 with
the vorticities.

Now the Lie algebra bracket [v1, V) in &%, is the
negative of the Lie bracket of vector fields
o] = —Lyva=— wa lez = Xy v} gAbraham
and Marsden [1], p. 194). Thus the Lie algebra
bracket corresponds to the Poisson bracket
{1, ¥} of stream functions, (with the stanc'ia.rd
sign conventions), so we may write the vorticity
bracket in the form

OF 6G
{F,G}w)= Jw {%, %} du,

Q

where o, 6F /6w, and 3G [Sw are all thought of as
functions on @, and the bracket inside the integral
is the “ordinary” two-dimensional  Poisson
bracket* on the symplectic manifold Q.

In the remainder of this section, we will exhibit
two different kinds of Clebsch variables for the
vorticity bracket variables on the individual coad-
joint orbits.

The first Clebsch representation, introduced by
Morrison [47, 48] is to write » as 2 bracket
w = {g, A}. Then if we consider the pair (4, ) to

* As Morrison [48] has also noted, this the same as the
Poisson bracket for the Poisson—Viasov equation in one space
dimension, as well as for the guiding center plasma beam
equation. It is shown in Weinstein [60] that the same brack‘et
can also be used for geostrophic fluid flow and plasma drift
waves.
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be canonical variables, the mapping (4, p)—w
turns out to be a Poisson mapping. This construc-
tion i8 a special case of one proposed in a general
Lie group context by Kazhdan, Kostant, and
Sternberg [31], who apply it to show the integra-
bility of the Calogero dynamical system. If ® is
any Lie algebra, then G acts on & by the adjoint
representation, and this action lifts to a symplectic
action on T*® =~ G x &*. The momentum map is
(&, py—adfu. If G carries an Ad-invariant metric,
we may identify &* with &, and the momentum
map of the lifted adjoint action is simply
(&, ny—[n, &]. (The ad-invariant metric for the
vorticity algebra is the L? inner product.)

We note that the Lagrangian description in
T*%,, is itself a “Clebsch representation”. Since
T*D = Do x X¥,, and elements of 2, can be
parametrized by their generating functions, this
representation also involves two functions of two
variables. The advantage of Morrison’s represent-
ation (4, u)— {, A} is that canonical variables are
readily available, and no generating functions are
necessary.

The second Clebsch representation is more com-
plicated to describe, but more “efficient” in that »
is represented by one function of two variables and
one function of one variable. It will be motivated
by a general construction for a Lie group G with
a bi-invariant metric, following ideas from group
theory (see Weinstein [59].) We seek a sym-
plectic invariant submanifold S of
T*G ~ TG~ G x . Such a submanifold must
necessarily be of the form S=G x K< G x 6. If
K isan open subset in a subspace K, of &, the
condition that S be symplectic is that for each
fekK, the form on Ki{ (L relative to the bi-
invariant metric) given by (&, 1) {6, [£,n]) be
nondegenerate. It is natural to take K| as a max-
imal commuting subalgebra of %,,, with K the
" regular elements in K,. The space K is then the
sum of the “root spaces”; i.e. the two-dimensional
_ invariant subspaces for the adjoint action of X on
&.

For two-dimensional flow we let G = 9 ; the L?
pairing is the bi-invariant metric. At this point we

can drop our motivating ideas from group theory
and concentrate on specific calculations in the
algebra 4, ; = C*(Q). For simplicity, we shall take
2 to be the (x, y) plane and K, to consist of the
functions which depend upen y alone. (The case
where £2 is the 2-sphere and K| consists of functions
of the latitude is also an instructive example to
work out.)

The orthogonal complement K consists of those
o for which [ @ (x, y) dx is identically zero in y and
can therefore be equally well expressed as those
for which the horizontal Fourier transform
@(k,, y) = [ e ™ w(x, y) dx vanishes along the line
x = 0. In the same representation, w belongs to X
if and only if @(k,, y) is the form §(k,)f(»).

Now if w, and w, belong to Xi- and f(y) belongs
to K,, we have

oo, @}) = = (o {f, 03}

0w,
f (6 () 52 () dx dy

ot

= J (K, y )k y) ik f(y) dx dy.

We can expect this to be nondegenerate when f'(y)
is nowhere vanishing, i.e. when the flow for which
f1s the stream function has no stationary points.
These, then, are the “regular elements” and define
the set K.

Now we can define our Clebsch representation
to be in the space @, x K = {(y,f)|y is an area-
preserving diffeomorphism of R? and fis a function
of y such that f'(y) > O}. The Clebsch represent-
ation is @ = foy; its image consists of those vortic-
ity functions @ such that whenever a < b, the set
W, ={(x,y)|la <o(x,y) < b} is a band of infinite
area stretching to infinity in both directions. The
Poisson structure on 2, x K can be calculated in
terms of that on T*Z,; although this structure is
symplectic, we do not know of any explicit con-
struction of canonical variables on it. (Implicit
constructions are guaranteed by the version of
Darboux’s theorem in Marsden [38], lec. 1.)
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7. Point vortices

We now consider point vortices in two dimen-
sions with 2 = R?. To do so, we need to allow delta
functions as possibilities for the vorticity. Given N
vortices in the xy plane with positions (x; y;) and
circulations I, the associated vorticity is

N

o=y I'd, ., dx Ady.

i==

For fixed I'}, . . ., I'y, the set of all such vorticities
forms a coadjoint orbit in ¥, The coadjoint
action is just the action that moves the points
(x;, y)) by the diffeomorphism # €D, If u;, u, €2
are divergence-free vector fields on R?, the sym-
plectic structure on the coadjoint orbit of w at w
is given from Theorem 4.2 by

Qm(Lu!wa Luzw) = J‘w(ulﬂ u2) dﬂ
N
= Y, Tidx A dy)n(x, 30, mxi, 7))
i=1

This may be identified with the symplectic struc-
ture*

on R applied to the pairs of vectors (u(x; ),
uy(x, y)). In fact, if we consider R*" with the
symplectic structure above, then 2, acts on it
symplectically and its momentum map is precisely

N
V:(X,-, yI)H(’O = z Flé(xiw)ﬁ') dx A dy
f==1

Notice that this is a diffeomorphism onto the
coadjoint orbit.

Thus, the variables (x,y) on R* are canonical
(or Clebsch) variables for the motion of N vortices.
This Poisson map ¥ clearly has only a trivial gauge

* This symplectic structure for point vortices is well known.
Its derivation from the Poisson structure for smooth vorticities
was also found by Morrison [47].
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group if the I'’s are distinct, otherwise the gauge
group is a finite group of permutations.

Our construction is a special case of the example
involving .4 = maps of P,y t0 Py considered in
section 5. Let P, be the set {1,..., N} with the ith
point having mass I',, and consider P, = R’, with
Oym=dx Ady. Thus 4 is R* with symplectic
structure X I';dx, A dy,. Now 9, acts on .4 on
the left with momentum map 7+ 7.0, This is just
the map V above.

We next consider the representation of the (kin-
etic energy) Hamiltonian for perfect fluids written
in the above canonical variables. From
H(w)=1{{4 'o, ) du (section 4) and the fact
that  A~'(3,,,dx Ady)= —(1/2n)log|(x —x;
y — || dx A dy, the Green’s functiont for 4, we
get

H((xl’ }’1)» R ] (xN> yN))

i
= *ZETiFjIOgl}(xi‘xjs}’i"yj)H .
0j

Of course the term with i = is infinite, corre-
sponding to the infinite self-energy of a point
vortex. If this term is removed we get the standard
Hamiltonian picture of vortex motion (cf. Chorin
and Marsden [18], p. 85). To summarize: the usual
Hamiltonian description of N vortices is just the
restriction of the standard Euler equation
Lie—Poisson Hamiltonian description to a particular
coadjoint orbit, with the (infinite) self-energy terms
ignored. We did this in R2, but the description also
works for bounded domains or curved surfaces (cf.
Hally [24]). The necessary renormalization in the
description of point vortices is related to difficulties
in taking the limit N—oo which are briefly dis-
cussed in the next section.

We conclude with some remarks on integrability
and chaotic motions of vortices. For the Euler
equations on R2 the Euclidean group E(2) acts on
9., by composition on the left, commutes with
right composition, and leaves the Hamilton'ian
invariant. The momentum map for the E(2) action,

tRecall that A4 is the Laplace-DeRham operator;
A(f dx A dy) = (= V) dx A dy.
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is the total linear and angular momentum. The
momentum map is right invariant, so it induces a
momentum map on Z¥,; c¢f. Marsden and Wein-
stein [41], p. 127, Thm. 2. The momentum map on
vortices is determined by the map of ¢(2) to
C*(&E) given by

6 r

Feiad yo(x,y)dxdy =J,

a r~

- | —xo(x, y)dxdy =J,
day

r

a
prind b 37+ yHolx, y)dx dy = J,

o

which satisfy the commutation relations

def
Jod)}=Q = Jw(x,y) dx dy,

(T o} =1,
{Jyy JB} = “Jx'

The vorticities which actually arise from mo-
mentum densities which vanish at infinity are those
for which Q = 0; on this space the momentum map
is Ad* equivariant.

On the full space of vorticities (i.e. all densities),
€2 is a Casimir function, and the corresponding
group which acts is the extension of E(2) (called
the oscillator group), whose algebra is generated
by (J.,J,, Jy, Q) satisfying the commutation re-
lations - above. These quantities comprise an
Ad*-equivariant momentum map for the oscillator
group.

On point vortices,

M=

Q=

i

i

N N
r, J,= Zrixb Jy= - Z Iy,
i=1 i

1 i=1

and
N

J9:~% r(x+yd.
/=1

i

For N =3 one can check that the motion is
(completely) integrable in the sense that the (non-
abeilan) reduced phase spaces are points. However
one can also see that the dynamics of 3 point
vortices is (completely) integrable by exhibiting 3
independent integrals in involution such as H, J,
and J3+ J;. (This is a special case of the replace-
ment of non-abelian by abelian complete integra-
bility, as discussed by Mischenko and Fomenko
[45].)

The general point of view presented here has the
advantage that it extends to related, and perhaps
more realistic, situations. For example, the motion
of three vortices with cores (defined in section 8) is
also completely integrable.

The motion of four vortices is generally believed
to be chaotic. There are many papers, (see the
references in Aref [2]) giving numerical evidence
for this belief. Using a perturbation argument of
Melnikov, Ziglin [62] outlines a proof of non-
integrability. The proof involves the introduction
of a fourth vortex (“the restricted four vortex
problem™) moving in the field of three vortices in
stable triangular relative equilibrium (for the E(2)
symmetry); cf. Palmore [51]. However, Ziglin’s
proof has some gaps involving exponentially small
terms, as noted in Holmes and Marsden [28]. As
shown in Synge [53], Aref and Pomphrey [3], and
Aref [2], there is a different configuration of three
vortices having a homoclinic orbit joining two
saddle points in its reduced phase space. (The
saddle points are configurations of three identical
vortices on a line.) The methods of Holmes and
Marsden [30] can now be applied—the result is
almost surely that a nearby four vortex model
(with I'y small) will be chaotic in the sense of
having Smale horseshoes in its dynamics. These
facts suggest, but certainly do not prove, that
two-dimensional Euler flow is not completely inte-
grable.

8. Vortex cores

In this section we outline a modification of point
vortices intended to model vortices with cores. This
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model has the advantage that it involves no renor-
malization, and its solutions converge as N — oo to
solutions of the Euler equations. Vortex cores have
been successfully used in numerical computations
by Chorin [14]; the analytical convergence proof is
due to Beale and Majda [8] with important earlier
work due to Hald. Our purpose is to indicate how
this model fits into the Lie-Poisson picture and
how, using it, one can gain geometric insight into
“why” the scheme converges. We hope that such
insight may inspire similar results in (geometrically
related) plasma problems, which also have a
Lie-Poisson description.

The motion of N vortex cores still forms a
finite-dimensional Hamiltonian system. The idea is
to cut off the logarithmic singularity in the Ham-
iltonian of the point vortex model. This cutoff is
gradually removed as the number N of blobs gets
large.

Let ¥ be a function on R? with integral 1 and let
Vxz) =0 " (z/d), for zeR* and 6 > 0. Let

Gyz) = fG(Z —z')s(z") dz’,

where G(z) = (—1/2n)log|z | is the Green’s func-
tion for A. Consider the modified Lie-Poisson
Hamiltonian system on 2%, obtained by replacing
A by 4;, the operator whose kernel function is G;.
Thus we consider

Hé:'%'\’fol - R)

Hyw)=3 J(Aglw, w)ydu

(See equation (Hgpay) in section 4).

We consider the following three systems:

1) H; on the coadjoint orbit with N points:
o =X TI0,,,dx Ady;

2) Hj on smooth vorticities; and

3) H on smooth vorticities.

Beale and Majda show that solutions of system
1, with initial conditions obtained by discretizing a
smooth vorticity field, converge as 6—0 and
N — o0, with 8 and N linked in a certain way, to the
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solutions of system 3 with the given initial condi-
tion. (It is a classical theorem of Wolibner [61] that
there are smooth global solutions of the Euler
equations in R*). This convergence includes par-
ticle paths as well as velocity fields. In other worfis,
the convergence holds in material coordinates; 1.€.
on T%,, or T*%,,. How & and N are linked
depends on the norms used and on Y. See Beale
and Majda [8] for details.

We introduce the intermediate system 2 in order
to make the following series of remarks:

a) With the cut off Hamiltonian Hj, the vortex
cores form a Hamiltonian system on R* and
coincide with the cores defined by Beale and
Majda.

b) For 6 fixed, and N large (depending on 9)
solutions of system 1 approximate solutions of
system 2. This result is similar to that of Braun and
Hepp [11]. (With a singular interaction it is easy to
see directly that one cannot get convergence, by
considering clouds of vortices passing through
each other with close encounters).

¢) For & small, trajectories of H; with smooth
initial conditions converge to those of H with the
same conditions as 6 —0. In fact, it follows as in
Ebin and Marsden [21] that H; and H genera'te
smooth vector fields on T*%,, (completed in suit-
able Sobolev topologies) that are C' close for o
small. Thus the convergence in this step merely
results from elementary facts about trajectories of
smooth vector fields on Banach manifolds.

d) Step c) does not involve N; § and N are linked
in step b).

The remarks above are not meant to replace the
analytic estimates needed for the actual con-
vergence proof. Rather, they are intended to show
the overall structure of the method and to give a
rather different argument for why it works.

9. Vortex patches

A vortex patch is a vorticity distribution in the
plane which is the characteristic function of a
region with smooth boundary (times dx Ady to
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regard it as a two form). Early work on stationary
and steadily rotating patches was done by Kirchoff
and Kelvin. We refer to Aref [2] and Burbea [13]
for recent work and references. The Euclidean
group and the breaking of its symmetry are an
important part of this analysis. Numerical in-
vestigations of vortex patches have been made by
" Deem and Zabusky [20].

Here we are interested in the dynamics of vortex
patches as a Hamiltonian system. We shall first
show that the Lie-Poisson structure reduces to a
symplectic structure used in the KdV equation.

The set of vortex patches supported on a set of
fixed topological type and area forms a coadjoint
orbit in 2%, since any two such patches are related
by an area-preserving map. (This is proved as in
Moser [50]; see Ebin and Marsden [21] p. 126.) For
a vortex patch w, let ¢/, be its coadjoint orbit. Let
ved ., with stream function . Using our earlier
notation,

v* =80 dx A dy),
Ydx Ady =4 o,
w =do”.

A tangent vector to (0, is represented by L. Now
we use theorem 4.2 to compute the symplectic
structure:

Proposition 9.1. The symplectic structure Q, on
7,0, where o is a vortex path associated with the

oW

set M <= R?, is given by

‘ Qw(Lvlwﬂ L(,‘Qw) = f lpl dw%
oM

where ¥/, and y, are the stream functions for v, and
vy, and 0M is the boundary of M.

Proof. By theorem 4.2,

Q, (Lo, L, w)= Ja)(vl, vy) du.

M

But on M, o is the standard symplectic structure

on the plane, so w(v;,v,) = {y, ¥}, the Poisson
bracket.

Now {l//,, Yo} du = d(y, dy,), a simple identity,
so the result follows by Stokes’ theorem. BB

¢ If M is diffeomorphic to a disc then o is
determined by the boundary loop M. We observe
that the symplectic structure in 9.1 is the same as
that for the loop space in R?. (See Weinstein [56].)

In plasma physics, the analog of the vortex patch
is called the water bag modelf.

Let us briefly mention the evolution of the shape
of the patch. Consider a patch near the unit disc
whose shape is described in polar coordinates by

{0’ =1 =¢(0),

where [ ¢(6)d0 =0 (so that the area is always
n). In this representation the Poisson bracket-
corresponding to the symplectic structure in prop-
osition 9.1 is

2n
oF d 6G

{F,G}_f%@%de.

0

Using this bracket and truncating the Ham-

iltonian 3{4 ~', ) to third order in ¢, one finds
that the evolution equation for ¢ truncated at
second order is

= dt+ P + o,

where ¢, ¢, and ¢, are constants and # is the
Hilbert transform on the circle (convolution with
7Tk 4o (sgn k) e*). Tt appears that the dispersion
operator # is too weak to support travelling
solitary waves without shocks; cf. the com-
putations of Deem and Zabusky [20] and compare
with the Benjamin—-Ono equation, when the term
H'¢ is replaced by #¢ . (see Meiss and Pereira
[43]).

We suspect that a Hamiltonian treatment of free
boundary problems and surface waves for the

1 For the Poisson-Viasov equation, the analogue of 9.1 is

Q) S = f Vilizeut)
M
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Euler equations themselves (see Miles [44]) will
enable one to see how the Hamiltonian description
of the KdV equation fits in with that for the Euler
equations as described in this paper. What is
missing is a suitable framework for taking limits of
Hamiltonian systems. We hope that the ideas in
Weinstein [59] will be of help in this direction.

10. Vortex filaments

The volution of a vortex filament in space, in the
“self-induction approximation” is given by a mo-
tion at each point of the filament in the direction
of the binormal, with velocity equal to the curva-
ture (cf. Batchelor [7]). Hasimoto [25] showed that
this motion is equivalent to the (completely inte-
grable) nonlinear Schrodinger equation for the
quantity

(curvature) e'f omion,

which determines the filament up to a rigid motion.
It is our purpose in this section to describe the
Hamiltonian structure of the self-induction equa-
tion as deduced from that for the Euler equation;
it remains to be seen how Hasimoto’s trans-
formation should be interpreted in our framework.

We consider our Lie-Poisson manifold Y%, on
R and look at the set of vorticity distributions of
the following form. Let C be a curve in R® extend-
ing to infinity in both directions. (One can study
closed loops in a similar way.) Let d. be the
delta-function given by integration along C with
respect to arc length. Let . be the 2-form along
C defined by iy dx A dy A dz, where T is the unit
tangent vector to C. Then if I' is any constant,
T'od. is the vorticity corresponding to C with
strength I'. (The constancy of I' is equivalent to the
vorticity being a closed generalized 2-form.)

The set of all such vorticities with a fixed I’
forms a coadjoint orbit ¢ in Z¥, and so it carries
a symplectic structure Q. The tangent space to Or
at a curve C consists of all vector fields normal to
C, and for two such fields v and w one finds that
Q(v,w) =T [o(T xv)* o dsusing theorem 4.2. If

we think of the space perpendicular to T as a copy
of the complex numbers, then the operator
T x corresponds to multiplication by \/j, and
Q, is then equivalent to the symplectic structure
relative to which the Schrodinger equation (linear
or nonlinear) is Hamiltonian. (See Abraham and
Marsden [1], p. 461.)

The Hamiltonian for the self-induction equa-
tions now turns out to be simply the arc-length
functional on the curves C. Of course, this is only
formal, since the curves' C all have infinite arc
length, and so one must renormalize the Ham-
iltonian somehow, such as by considering filaments
asymptotic at infinity to a reference curve and then
taking the difference of the two arc-length
integrands. For closed loops the symplectic struc-
ture Q is given by the same formula as above. We
notice that in the coadjoint orbit corresponding to
I', the loops C can have arbitrary lengths; i.e: the
stretching of vortex filaments is allowed, although it
does not occur for the arc length Hamiltonian flow.

Our approach and our discussion in section 8
make it clear how to introduce vortex filaments
with cores (following ideas of Chorin [15], the
cutoff is uniform along the filament and is not
curvature dependent). Again one gets 2 Ham-
iltonian system, and the symplectic structure is still
that of the Schrodinger equation. Vortex filaments
(actually segments) with cores are useful in numer-
ical work (see, for instance Chorin [15]) and there
is a convergence theorem for them due to Beale
Majda [8]. The convergence is valid for time
periods for which smooth solutions for the Euler
equations exist, just as in related algorithms for the
three-dimensional Euler equations (cf. Ebin and
Marsden [21] and Chorin et al. [17]). The geometry
behind this convergence, which helps to explain
why it works, is similar to that for point vortices
with cores, discussed in section 8.
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