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BIFURCATION AND LINEARIZATION STABILITY IN THE TRACTION PROBLEM

Jerrold E. Marsden

Department of Mathematics, University of California,
Berkeley, California 94720, U.S.A.

In this lecture 1 will provide some insight into the recent work
of Chillingworth, Marsden and Wan [1982] on the traction problem
in elasto-statics. This work extends earlier results of
Signorini and Stoppelli on the same problem. After briefly
describing the principal features of the approach, I shall
explain how they are related to lineariration stability and to
other bifurcation problems in mechanics by means of a series of
remarks.

Let B C R? be the refcrence configuration and ¢:8 — ®3
a configuration. Let F = D be the associated deformation
gradient and W({(F) a materially frame indifferent stored energy
function; that is, W depends on F only through the point
values of the Cauchy-Green tensor C = FTF, where PT is the
transpose of F. Let & = (B,T) denote a (dead) load, where
B:B —> R3 is the body force and T:3B — R3 is the surface

traction. If P = %g denotes the first Piola-Kirchhoff stress,

the elasto-static equations are

pIVP +B =0 in 8

(E)
PN=T on 9B,

where N is the unit outward normal to 9B and P is
evaluated on the (unknown) configuration ¢. Letting

<t,4> = I B¢ dv + I 1-¢ da,
B 3B
we recall that under the assumption of sufficient regularity, ¢
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15 a solution of (E) £f and only Lf ¢ 1s a critical point of
the function

By using a varfant of the Liapunov-Schmidt procedure one
_shows that there is a function fyg :50(3) — R whose critical
' points are in one to vne correspondence with solutions of (E)
near SO(3). By using Liusternick-Schnirelmann category one
concludes that () has at least four solutions, one of which is
a {local) minimum of the energy.

v‘,‘(c») = I W(F) av - <2,¢>
8

1f ($,R) solves (E) then the divergence theorem shows

k. B FotAl force Is ZREO: 2 = § Al tdA = 0. By Some computation shows that fll has the form
B o8B
using a suitable rotation we can also assume that £ is »
vquilibrated relative to the reference configuration: £3p1Q) = - A<, 1d> + 5 <Q10'0920>+ h.o.t.
£ x x = B(X) x X dv(X) + T(X) x X dA(X) = O.
B 38

{h.o.t. means ‘higher order terms'), where uQ" satisfies the

0
Let 50(3) = {Q|Q 1is a linear map of R} to R3 equations of linear elasticity with loads QR.O {projected to

0Te = 1dentlty = Id and det Q@ = 1} denote the rotation group

ot the equilibrated loads)}. The term <Q£0.Id> on SO(3) will
in R°, Observe that from material frame indifference,

have degeneracies if 9.0 has some ‘symmetries'. Let SQ

VQQ Q4) = V(@) for Q € 50(3) denote the set of critical points of the function

< 5
Wa wake thres Assmptivas: 0 — Q£0.1d>. We classify the loads according to the

topology of S!'O as shown in the accompanying table. The
- =(H1) the reference configuration s atreus-free; that (s i
] 1t Ls, irs 3 .
P =0uwhen & = 1d critical points of f)\f. can be studied by a further Liapunov

Schmidt reduction to S, ; after removing a factor of A, one

(12 the reference o 2 X in ot 31Tt 0 . ~
) ¢ reference configuratiton in strongly elliptic obtains a function F:S, > R,
0

and in fact, for purposes of stability calculations, assume the

stronger condition }(Q) = -<pL,14”> - & <Q%.,u_, =+ h.o.t.
2 0 QR.O
(H3) the classieal elastieity tensor
32w whose critical points are in one to cne correspondence with
c =4 3C3Clc = 1d solutions of (E). A study of f leads to the results on the

number of solutions shown in the accompanying table.

cle,e) = nlel? Type of ﬂ.o Sz Number of Solutions = n
0
for somc n >0 and all symaciric matrices c. '
0 4 points 4

For i. =0, any ¢ =0 € 50(3) 1s a solution of (E). These 1 2 points U pup} i€ n <6
are the trivial solutions. Let R‘O be given and look at loads
‘M for % near %3 and ) small. The kernel of the equations 2 1 point U rp? 1< n <14
of linear elaéticir.y, i.e. equations (E) linearifzed at ¢ = Q@ and 3 ue! U pp! 4<€<n €8
with X = 0 is TgSO(3) the tangent space to 50(3) at B
Q € s0(3). In fact, it follows from (H)) that SO(J) is a non- 1 4 s0(3) = pa? 4<n <40
degenerate critical manifold for V5 and so every point of S0(3) 1z

is a possible bifurcation point.
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The numb. , f solutions is sharp (examples show that the maximum
Cai De achieved) and assumes that the Betti form, defined by
21Q) = <:Qlo,quo>' has non-degenerate critical points.

The numbers in this table come from RBezout's theorem
applied Lo an associated system of cubic polynomials on the

Jdouble covering: the n er of solutions b i
can be as many as (3s*l_y) /2, ranching from RP

For loads £ near type 1 loads 20 and A
solutions are arranged as follows.

near the two points of Sgo

small, the

and two, three or four near the set

] .
Hpl = gl These solutions on RP! can bifurcate according

Eo the astroid b%furcation, which is a symmetric marriage of four
cusps. The stabilities can be explicitly calculated.

We now make some remarks to put the above results in
perspective.

. The r?lc of the group S0(3) in this problem differs from

Ehdt considered by several other authors (see the lectures of

3:::effer and Dancer in these proceedings) in the following two

fa) the group S0(3) acts freely on the set of trivial

solutions

and (b) the group SO(3) acts
of loads) as well as

o space of ¢'s).
Despite the differences there is the common feature that
Lifurcation points can be described and classified by their

degree of Symmetry, which is closely linked with their degree
of deyeneracy.

on the parameter space (the space
on the configuration space (the

2. The techniques can be adapted to more degenerate situations.
For example, for the problem of the Rivlin cube discussed in
Schaeffer's lectures, one can show that for small normal loads
and any isotropic material, there are homogeneous solutions in
one to one correspondence with RP?,

?. As'its name implies, linearization stability refers to the
stability of solvability of nonlinear equations under the process
of linearization. 1In elasticity, if (u,,2,) 1is a solution of

the linearized problem (with 2  equilibrated) one asks if
there 1s a curve !

vlA) = Id + Xul + Azuz + h.o.t.,
L) = ul + A-’?.z + h.o.t,

satisfying the nonlinear equations. There is a well-known

There are two unique solutions
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obstruction to this at order X7, namely the Signorini Fﬁ?
compatibility conditions:

Jil x u, =0,

Even if the Betti form is degenerate, this can be shown to be

the only obstruction. To obtain an accompanying parturbation
scheme one needs a non-trivial refinement of the classical
schemes proposed by Signorini and Truesdell and Noll.

4. There is an interesting parallel between the results Juoted
in the preceding remark and some recent results in classical
relativistic field theory. The space of solutions of the Yang-
Mills or Einstein Yang-Mills eguations on a spatially compact
spacetime has a quadratic singularity at each point with symmetry;
that is at each solution with an isotropy group of dimension

2 1 relative to the action of the appropriate gauge group. As
one continually breaks symmetry by descending through the lattice
of subgroups, one arrives at the generic solutions with at most
discrete symmetries, at which point the solution set is a smooth
manifold. When one attempts to write solutions in a perturbation
series, there is a constraint at second order called the Taub
conditions which is analogous to the Signorini conditions.

Again it is somewhat remarkable that this is the only obstruction.
tiowever, despite this close analogy, the technical details
apparently have little to do with one another. For details,
references and related bifurcation properties of momentum maps
(Noether guantities) in mechanics, see Arms, Marsden and

Moncrief [ 1981]).

5. Connections between symmetry and bifurcation are also pre-
valent in dynamics as well as in statics. We mention one example
for illustration. The Lagrange top, i.e. the heavy top with two
equal moments of inertial is an integrable system because of its
symmetry. If this symmetry is broken by slightly altering the
moments of inertia, there is a bifurcation from a homoclinic
orbit to aperiodic solutions by the introduction of Smale
horseshoes. See Holmes and Marsden { 1982] for details.

All of these examples suggest that there must be a deep

unified connection between symmetry and bifurcation which surfaces
in different ways for different types of problems.
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