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A generalization of the Morse lemma to vector-valued functions is proved by a
blowing-up argument. This is combined with a theorem from algebraic geometry on
the number of real solutions of a system of homogeneous ecquations of even degree
to yield a new bifurcation theorem. Bifurcation in a one- or multi-parameter
problem is guaranteed if the leading term is of even degree (it is often two) and
satisfies a regularity condition. Applications are given to nonlincar eigenvaluc
problems and to the Hopf bifurcation.

INTRODUCTION

This paper presents new bifurcation theorems which combine a
generalization of the Morse lemma to vector-valued functions with a theorem
in algebraic geometry on the number of real solutions of a system of
homogencous equations of even degree. The results are applied to specific
bifurcation problems having a multiple eigenvalue or several parameters.

* Research partially supported by National Science Foundation Grant MCS 79-03100.
¥ Research partially supported by National Science Foundation Grant MCS 81-07086, and
ARO Cantract DAAG-29-79-C-0086.
# Rescarch partially supported by National Science Foundation Grant MCS 79-02524,

404
0022-0396/83 $3.00 '

sU



) _ 405

BIFURCATION PROBLEMS

To facilitate a comparison with other results, we shall state a special case
of our results. (The following special hypotheses are by no means necessary.)
Let L be an elliptic self-adjoint operator on a suitable Banach space Y of
functions, with another suitable Banach space of functions .X = domain
LcY. Suppose R: X~ Y is a smooth map with R(0) =0 and DR(0)=0.
Let A, be an eigenvalue of L of multiplicity n and consider the bifurcation
problem

Jx,2)=Lx+ (A —2)x+ R(x)=0, : (1)

where x € X and A € R. Perhaps the best known result concerning (1) is the
theorem of Krasnoselski (see Nirenberg [31]). This theorem states (assuming
the domain and boundary conditions are such that L-' exists and is
compact, and L~'R is compact) that if # is odd, then (0, 0) is a bifurcation
point. In other words, there are solutions near (0,0) € X X R other than the
trivial solutions (0, 1). The proof uses the Leray-Schauder degree. For n = |
other proofs are available, such as use of the implicit function theorem
(Crandall and Rabinowitz [7]) or the Morse lemma (Nirenberg |31] and
Berger [4]). For general n, there are also results due to McLeod and
Sattinger [28] and Alexander [3| that provide sufficient conditions for (0, 0)
to be a bifurcation point.

Let X, denote the kernel of L —A,/, and let X, be spanned by an
orthonormal basis u,,..., u,. Write x € X, as x =3 x,u, with x;ER. Let
D*R(0) be the second derivative of R at 0 and write

(D*RO)(uy, uy), u)) = CJ*

so that for each i, CJ* is symmetric in j, k. Now make the following
regularity hypothesis:

(R) For each nonzero (x,2) € X, X R satisfying

Ax, + ;2;‘: Clxyx, =0, i=1ly,n Q)
the (n + 1) X n matrix
[; it + 281, | G)

where x, denoles the | X n column vector of x;'s and 5% is the n X n identity,
has (maximal) rank n.

Our result applied to (1) states that under assumption (R), (0,0) is a
bifurcation point. In fact, there exists an odd number /, 1 <1271, of
nontrivial solutions to (2), and each solution is a direction of bifurcation for
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the original problem (1). For n= 1, condition (R) holds automatically, so
(0, 0) is a bifurcation point with one bifurcation direction.

The regularity assumption is used in two ways. First, by means of the
implicit function theorem and a blowing-up argument, solutions of (1) near
(0,0) are put in one to one correspondence with solutions of (2). Second,
algebraic geometry is used to prove that (2) has nontrivial solutions. The
crucial point is to obtain real solutions. Bezout’s theorem deals with complex
solutions, so modifications must be made in order to draw real conclusions.

The importance of condition (R) as a criterion for bifurcation is that, at
least in principle, it can be checked hy certain algebraic conditions on the
coefficients C#* in (3); see Section 2.8, Remark 4. The work of McLeod and
Sattinger, applied to (1), shows that under assumption (R), solutions of (1)
near (0, 0) arc in one-to-one correspondence with solutions of (2), so that
bifurcation occurs if (2) has nontrivial solutions. Our result says in addition
that (2) must have nontrivial solutions. The work of Alexander applied to (1)
reduces to Krasnoselski’s theorem. Our result, by contrast, sometimes
guarantees bifurcation for (1) when n is even. A simple example is n =2,
Ci'=C3}*=1, and the other C{* = 0. The work of McLeod and Sattinger is
discussed in 3.2, that of Alexander in 2.8, Remark 3.

Our original motivation in studying the blowing-up procedure for finite-
dimensional problems was (0 extend the procedure to non-Fredholm maps.
Such extensions, along with an application to the structure of the sct of
metrics on S§" with a given scalar curvature, are planned for future
publications.

The content of the paper is as follows: Section 1 studies the structure of
the zero set of a C' map g: R" - R™ salisfying g(0) =0, Dg(0)=0, and a
regularity condition on B(x, y) = D*g(0)(x, y), namely, that at each nonzero
solution of Q(x)=(1/k!)B(x,x)=0, the lincar map yi— B(x, y) is
surjective. The zero sets of g and of O are related by a homeomorphism ¢
with certain differentiability properties. There is a similar result if g(0)=0,
Dg(0)=0,.., D*~'g(0) =0, and D*g(0) satisfics a regularity condition. Our
proof involves blowing up the singularity. The proof is such that ¢ is
cquivariant relative to any given orthogonal group action on R" and R™ for
which g is equivariant. This compatibility with respect to group action is
important in many problems and is used in our discussion of the Hopf bifur-
cation. A comparison of our theorem with the closely related results of
Magnus |21, 22, 23|, Szulkin |37], and Kuo |18] is given. We also relate the
theorem to the theory of contact equivalence.

Using the Liapunov-Schmidt procedure, the results of Section | are used
in Section 2 to study the set of solutions of a bifurcation problem

LXXRPSY

near (0, 0) under the assumptions that (0, 1) is a solution for all A near O and



D, f(0,0) is Fredholm of index zero. The structure of the solution set is
reduced to a study of the solution of a system of homogeneous algebraic
equations. Assuming these homogeneous equations are of even degree and
salisfy a regularity condition, algebraic geometry is used to show that there
are always nontrivial solutions. In case p=1 (one parameter) it is shown
that there is. an odd number of nontrivial solution branches.

In Section 3 applications are made to a nonlinear eigenvalue problem and
to the Hopf bifurcation. For the nonlinear eigenvalue problem we give a
bifurcation criterion that is related to the work of McLeod and Sattinger. For
the Hopf bifurcation we follow Crandall and Rabinowitz |8] and show that
the methods here are applicable to the standard Hopf situation. Our
approach gives a more geometric perspective to their approach and, like a
recent method of Golubitsky and Langford |12], explicitly uses the natural
SO(2) symmetry in the problem. A point to notice is that the condition of
regularity of the second derivative on its zero set applies to both of these
apparently diverse bifurcation problems.

Section 4 discusses the genericity of the hypotheses we make. From. the
results presented, it is reasonable to expect our hypotheses to be applicable
to most one-parameter bifurcation problems. They also hold in certain
several-parameter problems such as the Hopf bifurcation.

Although the paper has some of the spirit of generic bifurcation theory
(Chow et al. |5,6] and Golubitsky and Schaeffer |13]), no attempt at an
unfolding theory is made in the context developed here.
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1. BLowiNnG-Up IN FINITE DIMENSIONS

This section shows that the zcro set of a finite-dimensional mapping near a
singular point is determined by the first nonzero term in its Taylor series,
provided that term salisfies a certain regularity assumption. There are many
theorems of this type available in the literature, and a comparison will be
made¢ below. Our primary motivations are to establish a context suitable for
the following section and for an infinite-dimensional version, which will be
the subject of another publication.

We begin with some notation. Suppose X and Y are Banach spaces and B:
XX+ XX (ktimes)— Y is a continuous symmetric k-multilinear mapping,

where & > 2 is an integer. The k-form associated to B is the map Q: X+ Y

defined by

o(x)= 7:—! B(x, x,..., x).
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The derivative of Q at x is the linear map

DO(x)u= B(x, x,..., x, u)

_1
k— 1)
from X to Y.

I.1. DEFNITION. We say that Q is regular at a point x if DQ(x) is
surjective. We say that Q is regular on its zero set if it is regular at each
nonzero x € Q~'(0).

Notice that if Q~'(0) = {0}, Q is automatically regular on its zero set. We
also observe that if $7~' is the unit sphere in R" and Q: R" — R™ is regular
on its zero set, then Q~'(0)N S"~! is a real analytic manifold of dimension
n—m—1, and Q~'(0) is the cone on @~ '(0)N S"~".

1.2, Examples

ExampLE 1. Let f: M- R be a C? real-valued function on a manifold M
and have a critical point at x,EM. The quadratic form Q(v)=
3D (xo)(v, v) is regular at all v+ 0 if and only if x, is a nondegenerate
critical point.

ExAMPLE 2. Figure 1 shows the zero set of a quadratic map (i.e., k = 2)
0: R? - R? that is regular on its zero set. Here Q = (Q,, Q,), where each of
Q, and Q, has index one. Q7'(0)=Q;"'(0)N Q; '(0) is the intersection of
two cones through the origin that meet transversally away from the origin.

FIGuRE 1
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Here is a case that will be useful in Example 3.1. Letting the variables in
R’ be denoted (z,, z,, A), consider
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Q\(z,,2;,) =az] + 2bz,2, + bz} + 22,4,
Q:(2y, 23, A) = bz + 2bz, 2, + az} + 22,4,

where a#0 and b+#0 and let Q=(Q,,Q,) Let a=(a—b)a— 5b). By
explicitly solving the equation Q = 0, one can check that Q~'(0) consists of
two, three, or four lines according to whether a is negative, ‘zero, or positive.
Then Q is regular on its zero set for a # 0. For no values of a and b is Q
regular at every nonzero point, sincz DQ fails to be surjective along the line
z,=2z,,A=(b—a)z,.

ExampLe 3. Let Q:R?*x R?*—R? be quadratic and write Q((x, y),
(4, 1)) = (Q((x, »), (L)), Qs((x. »), (A, 1))). Suppose Q((0,0), (A, ))=0
for all (A,#) and the 2 X 2 matrix 3(Q,, @,)/d(x, ¥)((0,0), (A, ) has a
nonzero determinant for each (4,4#)# (0,0). Then Q is regular at each
nonzero point. This may be proved by explicitly writing out the matrices
involved. This example is relevant for Hopf bifurcation; see Example 3.3.

The main result on blowing up in finite dimensions is as follows:

1.3. TUEOREM. Let k and | be integers, 2 < k < I. Suppose g: R" - R™ js
of class C' and g(0)=0, Dg(0) =0,.., D*~'g(0)=0. Let Q be the k-form
associated to D*g(0) and assume that Q is regular on its zero set. Then

(1) There are neighborhoods U,, U,, containing 0 € R* and a C'
diffeomorphism ¢: U, - U,, which is C' away from 0, such that
(a) #Q'(O)NU) =g '(0)NU,, and
(b) ¢(0)=0 and DJ(0) = identity.
(2) Ir Q is regular at each nonzero point, then ¢ can be chosen so that,
in addition,

(c) &(¢(x))=Q(x) for all xE U,.

Remark 1. Conclusion (a) implies that g and Q have homeomorphic
zero sets. According to (b) this homeomorphism is induced by a C'
diffeomorphism of the ambient space that is close to the identity map near 0.

Remark 2. From (b) notice that if Q(v) =0, where v # 0, then the line
[(t)=tv in Q~'(0) is mapped by ¢ into the C* curve ¢(/(r)) in the zero set of
g, which is also tangent to v at 1 =0. We thus speak of each v € Q~'(0),
v # 0 as a direction of bifurcation. In the language of linearization stability,
the direction v is also called integrable; see Fischer and Marsden [11]. The
existence of a curve x(f) in g~'(0) tangent to v at t=0 may be proved
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directly by writing x(f) = tv + f*u(t) and solving for u(f) by the implicit
function theorem.

Remark 3. For m=1, k=2, and Q regular on its zero sel, this theorem
follows from the Morse lemma.

*

Remark 4. If one does not demand (c), then one can arrange things so
U, = U, and ¢ preserves the norm.

Proof. By Taylor’s theorem we can write
§(x) = Q(x) + h(x)(x,..., x),
where h(x) is k-multilinear from R” X -.- X " to R™, is C'"* in x, is C in

x away from zero, and satisfies #(0) = 0. Now “blow up” g by defining g:
S"'XR-R" as

glx.r)= g(r'f) = O(x) + h(rx)(x,..., x).

Thus g is C'~* on S"~!' X R and is C' away from r=0.

Let ¥ be a neighborhood of @~'(0)NS"~! in $"~' such that DQ(x) is
surjective for all x€V. Let E=|(x,rny)EVXRXR|yE
[Ker DQ(x)]!}. Thus E is a vector bundle over ¥ X R with fibre at (x,r)
equal to [Ker DQ(x)|*. Define G: E + R™ by

G(x.r,y) = Q(x + v} — §(x, 7).

The diffeomorphism ¢ will be constructed using an implicit solution y(x, r)
of the equation G(x, r, v) = 0. We note that G(x,0,0) =0 for all x € V, and

—z% (x,0,0) = DQO(x) | Ker DQ(x)"

is an isomorphism for all x€ V. _

From the implicit function theorem and compactness of V, it follows that
there is an €>0 and a C'~* map y defined on ¥ X (—¢,€), w(x,r)€
Ker DQ(x), such that G(x,r, y(x,r)) =0, y(x,0)=0 for all x€ V, and ¥
is C' away from r=0.

Using a standard partition of unity argument, we can find a neighborhood
Wof Q"' (0)NS"-!, WcV, and a map y: $" ' X (—¢, £) = R” such that x
agrees with ¥ on W X (—¢, €) and x(x,0)=0 for all x€ §"~".
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~ From Q(x + x(x, r))=g(x,r), x€EW, |r| <t we have the identity
r*Q(x + x(x, r)) = g(rx), or, equivalently,

809 =0 (x+belx (i Il ()

valid for x in R” with x/|lx|| € W and 0 < ||x|| < e.
Define the map a from the ¢-ball B,(0) to R” by

a(x)=x+||x||x(ﬁ.uxu). x#0, "

=0, x=0.

Clearly, a is C' away from O and continuous at 0. We claim that a is C' at 0
and Da(0) = identity. To show this it suffices to show that lim, _, Da(x) =
identity. Using Jjx{| = (x, x)"/?, we compute that, for x#0 and v € R",
Da(xp = v + (xflxl oxC/llxll lxl) + @x/ox)x/lxl, <) -

(v = C/llxll v)x/lxID) + ¢x, v)@x/0r)(xfix, I x])). Fix v with [Jofl = 1 and
let x— 0. Since y(x/]|x]|, 0) =0 identically we can use compactness of S"~'
to conclude that Da(x)v —+ v as x -+ 0 uniformly in x and v.

Thus, after shrinking ¢ if necessary, a is a C' diffeomorphism of B (0) to
a(B (0)). We claim that for & small enough, a(g~'(0)N B (0))=0"'(0)N
a(B,(0)). In fact the identity (4) shows that for x/|| x| € W, a(x)€ @~'(0) if
and-only if x€ g~'(0). Thus all we nced show is that for x/||x|| € W and
|x|| sufficiently small, a(x) &€ @~"(0). For x/||x|| € W, Q(x/llx||) is bounded
away from0. Since x(x/|lx|,r)—=0 as r—0 uniformly in x/||x|, for
xfixll€ W and | x| sufficiently small Q(x/lix|| + x(e/ll x|l | x]])) # 0. It
follows that a(x) € Q~'(0) for x/||x|| € W and | x|| sufficiently small.

Let ¢ =a~'. Conclusion 1 of the theorem is immediate, and conclusion 2
holds if in our initial construction of y we take ¥'=S""'! and then let

xr=vy. &
We now make a few remarks on the proof of Theorem 1.3 and extensions

of the theorem. Following this we shall compare the result with others in the
literature.

1.4. Remarks on Theorem 1.3

Remark 1. That the zero scts'are homcomorphic (by a homeomorphism
that is a C' diffeomorphism away from the origin) may be proved by various
alternative methods. One of these involves directly projecting £~ '(0) onto

@ '(0) ‘near S"~' X |0). Both sets are manifolds of dimension n —m that
intersect $"~' X (0} transversally along (Q~'(0)N S"~') X {0}. The idea is
skektched in Fig. 2. However, the proof we gave produces a diffeomorphism
of the ambient space, not merely of the zero sets.
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Remark 2. At the expense of losing a derivative away from 0, one can
construct the diffeomorphism as the time one map of a flow; see Magnus
|22). The same loss of a derivative occurs in Moser’s |29] proof of
Darboux’s theorem and the equivalence of volume elements, the technique of
which Magnus uses. (This last remark is due to R. Douady). Using the
Whitney properties of the remainder, the theorem is valid for k=1 and £ is
actually C' on $"~' X R. (See Tuan and Ang |41]).

Remark 3. The map ¢ constructed in the proof of Theorem 1.3 is in
general no better than C' at 0, even when g is algebraic. (For the Morse
lemma it is well known that ¢ can be chosen to be C'~2.) To show this, we

_ shall show that @ =¢ "' need not have a second derivative at 0. Let g(x)=

Q(x) + H(x), Q (resp. H) a homogencous polynomial map of degree two
(resp. three), and assume Q is regular at every nonzero x. Then g(x,r)=
Q(x) + rH(x). The map y: S"~' X R — R" is defined by

O(x + w) — (@(x) + rH(x)) =0 (6)
y € Ker DQ(x)". )

After expanding Q(x + ), (6) becomes.
DQ(x)y + Q(w) — rH(x) = 0.

Take the partial derivative with respect to r:
DQ(X) (x, r) + DQ(w(x, ')) e (x, r)— H(x)=0.
When r=0, ¢ =0, so since DQ(0) =0, we have
DQ(x) (x. 0) = H(x). @®
From (7), (dw/dr)(x, r) must belong to Ker DQ(x)*, so (8) implies

2. (x,0)= [DQEX) | Ker DQ(Y'| ™" HLx). ©)
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From (6) we compute

X
altx) = 1x + 1] x[ v (m.:uxn), >0,

_ Qv (x
, =201 (uxu .0)

=2|)x] [DQ (IT:TI)

by (9). Let R(x) denote this last expression.

Il @ has a second derivative at 0, then D?a(0)(x, x) = (d*/dr?)|,_, a(tx) =
R(x). Thus R(x) must be a homogeneous polynomial map of degree two.
Clearly, R(x) is homogeneous of degree two, but in general it is not a
polynomial.  For example, suppose n=m-+1 and H~'(0) consists of 3™
lines, which is possible by Bezout’s theorem. Then R-'(0) includes 3™
isolated lines (isolated as points in RP"~'), which is impossible for a degree
2 polynomial map.

2

rd

1=

Ker DQ (ﬁ)l " (ﬁ)

Remark 4. There is a generalization which allows the components of g
to have different k's. Specifically, suppose g: R" - R™, g = (g, ,..., g,,) and &
is of class C with derivatives up to order k,— 1 vanishing at zero, where
2k <1y, Let Q(x)=(1/k;!) D*g,(0)(x,..., x) and Q = Q5 0,) 1M Qis
regular on its zero set, then the conclusions of Theorem 1.3 hold with /=
min(l,,...,/,). The proof is essentially the same. This generalization is
suggested by Szulkin [37].

Remark 5. The hypotheses of Theorem 1.3 imply that the origin is an
isolated critical point in the zero set, i.e., there are no nearby points where
£(x) =0 and Dg(x) fails to be surjective. Problems in which the origin is not
an isolated critical point are also of interest; see, for instance, Shearer |36]
and Hale and Taboas [14]. Theorem 1.3 can be applied to some problems of
this type as follows: Assume that the set of critical points of g forms a
smooth manifold C. Then 1.3 may be applicable to g restricted to a
transverse subspace toC. Under these circumstances one obtains a
parametrized version of 1.3. This is the idea of Shearer |36]. The
parametrized Morsc lemma for-a real-valued function with a nondegenerate
critical manifold is also proved this way. For another example, see Ratiu
132, p. 263].

Problems with symmetry where the critical point is not fixed by the group
action often have the character just described. However, if the group action
leaves the critical point fixed, Remark 6 following shows that 1.3 may be
applicable in an invariant way. (The former case can be reduced to the latter
by use of a slice for the action.)
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Remark 6. Let I'be a compact Lie group acting orthogonally on " and
R™ and suppose in Theorem 1.3 that g is equivariant (or covariant), i.e.,
g(yx)=yg(x) for all x€E R” and y € I. Then ¢ can be chosen to commute
with the action I'. The key step in showing this is to show that y can be
chosen equivariant with respect to the actions of " on $"~' X R and R".
(The action on I' on $"~' X R is p(x,r)=(yx,r).) To construct y in an
equivariant manner, first choose V to be invariant under the action of I'. The
reader may check that y: V' X (—¢, €)= R" is then equivariant. (The proof
uses the fact that y(Ker DQ(x)*) = Ker DQ(yx)" and uniqueness of y(x, r).)
Extend y to §: S"~! X (—¢, £)+ R" as described in the proof, taking care
that the set W such that ¥ and y agree on W X (—¢, €) is invariant. Now
define w(x, r)= [, y~"¥(yx, r) dy, where dy is Haar mcasure on I,

The hypothesis of regularity is compatible with the presence of a
symmetry group whose action leaves the critical point (in our case 0 € ")
fixed. We shall see an explicit example for the Hopf bifurcation in
Example 3.3.

Remark 7. A number of problems can be put in a form suitable for the
application of 1.3 by means of a scaling transformation. For example, if
£(x,4,€) = x> — Ax — ¢ + higher order terms, then g(x,u,v)=x’—ulx—
v} + higher order terms has k=3 and 1.3 applies. The general method of
scaling using Newton diagrams is explained in, for example, Sattinger |35].
This trick will be used in Section 3 in our discussion of the relationship with
the work of McLeod and Sattinger [28].

Remark 8. As we have mentioned, one of our goals in a later
publication is to prove an infinite-dimensional version of Theorem 1.3.
However, using the Liapunov-Schmidt procedure one can derive a Banach
space result for Fredholm maps directly from Theorem 1.3. This is described
in the following paragraphs.

Let X and Y be Banach spaces and f: X =Y a C' map, /> 1, with
J(0)=0. The problem that will now be discussed is to describe the structure
of £7'(0) near OE X. If Df(0) is surjective and if the kerncl of Df(0),
denoted Ker Df(0), has a closed complement, then the implicit function
theorem implies that f~'(0) near O is a submanifold of X diffeomorphic to
an open subset of KerDf(0). I Df(0) is not surjective, the
Liapunov-Schmidt procedure, which will now be recalled, can often be used.
Assume Ker Df(0) = X, has a closed complement X,, so that X = X, @ X,;
and assume Im Df(0)=Y,, the image of Df(0), is closed with closed
complement Y,, so that Y=Y, @® Y,. Let P be the projection of Y to Y,.
For x € X, write x = x, + x;, X, € X, and x, € X,. By the implicit function
theorem, Pof(x,+ x,)=0 defines x,=u(x,). If g: X, =Y, is (locally)



)

del':ned by g(x;) = (/ — P) o f(x, + u(x,)), then f~(0) is the graph of u over

“0).

An equivalent procedure is as follows: Since f is transversal,to ¥,, M =

F~'(Y,)=(Po f)~"(0) is a manifold in a neighborhood of 0, tangent to X,.

- Then /'~ *(0) is the zero set of (1 — P) o frestricted to M. The map u is such
that its graph is M. The tangency of M to X, is equivalent to Du(0)= =0,
which can be checked by implicit dlﬂ'ercnuatlon

If Df(0) is Fredholm (i.e., the kernel is finite dimensional and the image
has finite-dimensional complement) then the Liapunov-Schmidt procedure
will enable us to obtain the following consequence of 1.3:
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1.5. CoROLLARY. Using the above notation, assume that Df(0) is
Fredholm and let 2k <1 For 1< j<k assume D'f(0) restricted to
X XXX, (J times) isO. Let B=(I—P)o D)X, X -+ XX, (k
times). Assume that Q (the k-form associated to B) is regular on Q~'(0).
Then there are neighborhoods V, and V, of 0 in X and a C' diffeomorphism
@: V, ~ V,, that is C' away from O such that

(@) Q@' 0)NV,)=/'0)NV,;
(b) ®(0)=0 and DO(0) = identity.

Progf. The derivatives of g can be computed by implicit differentiation to
be Dg(0)=0.,..., D**'g(0) =0, and D*g(0)= (I — P) D*/(0)| X, X --- X X,,
so that 1.3 can be applied to g. If g: U, - U, is the C' diffeomorphism given
by 1.3, then we can choose V,=U, X X,, V,=U, X X, and ¢(x,,x,)—
(¢(x.) u(d(x,)) + x,)- Propcrues (a) and (b) of ¢ are inherited by @ since u
is C! and Du(0)=0. 1

1.6. Remarks

Remark 1. In 1.5 note that we do not assert that f(P(x)) = Q(x), even if
Q is regular on all nonzero vectors.

Remark 2. The reduced map g may satisfy the hypotheses of
Theorem 1.3 although the hypotheses of 1.5 do not hold. Corollary 1.5 just
gives a convenient way of sometimes checking that g satisfies the hypotheses
of 1.3.

Remark 3. Suppose X and Y come equipped with (not necessarily
complete) inner products { , ) and suppose there is a compact Lie group I”
acting orthogonally on X and on Y, ie., in such a way as to preserve the
inner products (e.g., (yx,, yx;) = (x,,x,)). Suppose, furthermore, that f is

equivariant, i.e. f(yx)=yf(x) for all x € X, and that X, = Ker Df(0) and .

Y, =Im Df(0) have closed orthogonal complements. Then Po f(x) and
hence u(x,) are equivariant. Thus, since (I — P)o f(x) is equivariant, so is
£(x). (The remark that the reduced mapping g is equivariant is standard and
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elementary; see Sattinger |35).) By 1.4, Remark 6, ¢ can be chosen to be
equivariant. Consequently, @: X — X constructed above will be equivariant
as well.

Next we discuss the rclauonshlp between Theorem 1.3 and other
approaches in the literature.

First, we recall some of the history of Theorem 1.3. Magnus |21] gave a
result related to Theorem 1.3 but which differs in its technical conclusions
and has a complicated proof. He gave a simpler proof in |22, 23|; see 1.4,
Remark 2. Szulkin {37] has proved a generalization to maps that are pertur-
bations of homogeneous (not necessarily polynomial) maps. He also allows-
the different g, to begin with homogeneous terms of different degrees; see 1.4,
Remark 3. An earlier version ‘of the work of the present authors was
presented in Marsden |24).

Second, we discuss the relationship with the work of Kuo [I18). A
polynomial map z: R" —+ R™ of degree r, with z(0) =0, is called variety-
sufficient (abbreviated to v-sufficient) if, for any two C" maps [ and g:
R" < R™ which both have r-jet z, the germs of f~'(0) and g~'(0) are
homeomorphic. If v,,..., v, are vectors in R" define k, = distance of v to
span {v;| j#i} and defne d,,..v,)=minlh, ., h,}. If fiR"<R"™,
J(0)=0, d>0, w>0 define H,(f;w)={xER"||f(x)|<w|x|!). Kuo
shows that if there is a neighborhood U of 0 in R", £ > 0, w > 0 such that

d(Vz,,....Vz,) > ¢|x|""!

in H(z; w)NU (where z=(z,,...,2,)), then z is v-sufficient. It can be
shown that if z is homogeneous of degree r and if it is regular on its zero set,
then the preceeding inequality holds for suitable ¢ and w. This shows at least
the part of Theorem 1.3 which asserts the existence of an homeomorphism
between the zero sets of g and Q. Note that Theorem 1.3 asserts in addition
that the homeomorphism is actually induced by a diffeomorphism of the
ambient space whose derivative is the identity at zero. The proof of 1.3
provides another proof of a special case of Kuo’s result and also gives
additional information about the differentiability of the homeomorphism.

Third, we relate Theorem 1.3 to the theory of contact equivalence, which
has been used in bifurcation theory in recent years. See, for example,
Golubitsky and Schacffer [13]. Let / and g be two germs of C*® mappings
(R",0) - (R™,0). They are called comtact equivalent if there exists a C®
diffeomorphism germ n: (R",0)~ (R",0) and a C® germ y: (R" x R™,
(0,0)) - (R™, 0) such that for each fixed x € R", the germ y— w(x, y) is a
diffeomorphism germ and f(x) = w(x, g ¢ 3(x)).

Let &£, be the ring of germs of C® functions at 0 in R”", . #, the maximal
ideal in &, of functions vanishing at the origin, and &, and .#, the
corresponding ring and ideal on R™. Let f'=(/,,..,, f,,) and I(f) = ideal in
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&, generated by /..., f,,. (So I(f)=[*(#,)&,.) It is proved in Mather |26
that contact equivalence of f arid g is equivalent to the existence of a
diffeomorphism germ ¢: (R", 0) -+ (R", 0) such that ¢*(I(g))=I(). (If S
and g were analytic this would mean that the germs at O of the varieties
J'(0) and g~'(0) would be isomorphic in the sense of the theory of analytic
varieties.) ‘

The germ fis called k-determining relative to contact equivalence if every
g, whose k-jet is equal to the k-jet of £, is contact equivalent to /. In Mather
|27} S k-determining relative to contact equivalence is shown to imply the
inclusion

of of

ML
" lox, " ax,

+ D" 223,

where each term is an &,-submodule of 7 =&, @ --- @ &, (m times).

Now suppose / is a homogencous polynomial map R” - R™ of degree .
By the preceding inclusion, if f is k-determining relative to contact
equivalence, then f is regular on its zero set. Magnus [22] remarks that
Theorem 1.3 can be thought of as a rough converse to this statement. That
there is no true converse can be scen as follows.

In Section4 it will be shown that, in a precise sense, for any (n, m, k),
almost every kth degree homogeneous polynomial mapping (R”, 0) - (R™, 0)
is regular on its zero set. In contrast, a counting argument, shows that for
most (n, m, k) no kth degrec homogeneous polynomial map R” - R™ can be
k-determining relative to contact equivalence. In fact, if H, denotes the space
of jth degrec homogeneous polynomials functions on R" and if f were such a
map, then from the preceeding inclusion the inequality dim[ %' )" N
[Hey oI < dimn 0%,y f0,) O {H, ™ + Gm{ION™ O [H |
would follow. But dim(|.#%*'|" N [H, ,|™) = m(}!}), dim.#Z{3fféx, ...,
Wox O [Hy, |"<n'(n+ 1) and dim[I(f)|" OV |H,, ,|" <nm®. For
most (1, m, k) the inequality nm’ + {n*(n+ 1) > m({ %) does not hold. For
instance, Example 3.1 has n replaced by n+4 1, m=n, and k=2 and the
preceeding inequality fails when the n of Example 3.1 is >5.

2. APPLICATIONS TO BIFURCATION THEORY

This section will discuss the following situation: Let X and Y be Banach
spaces and f:XXR? Y a C' map, I>3. (R® is thought of as the
parameter space.) A classical example is when p=1, X Y and f has the
form

S, A)=Lx - Ax + F(x, 1),
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where L is a bounded linear operator from X to Y and || F(x, 1)), = O(|x|)})
for || x]ly and 1 small,

2.1. DEFINITION, Suppose 4 — (x,(1),1) is a p-dimensional manifold of
solutions to f(x,4) =0 (i.e., f(x4(1), 1) =0), then (x,,4,) = (x,(1,), 4,) is
called a bjfurcation point if every ncighborhood of (x,,4,) in X xR’
contains a solution (x, 1) with x # x,(1).

The criterion for bifurcation we shall give combines our work on blowing
up in the previous section with results from algebraic geometry. First we
reduce the question of whether (x,, 1,) is a bifurcation point to the question
of whether a set of algebraic equations Q(x, 1) = 0 has solutions with x # 0.
Then algebraic geometry is used to establish the existence of nontrivial
solutions.

We make the following hypotheses on the C! map f: X X R? = Y.

(H1) x,:R?— X is a C' map defined in a neighborhood A of 1, € R”
such that f(x,(1),4) =0 for all 1 € 4.

(H2) D, f(x,,4,): X =Y is Fredholm with kernel X, and range V,,
where X=X, ® X, and Y=Y, ® Y, (D, /f is the partial derivative of f with
respect to the X variable).

(H3) D, f(x,,4,) has index zero; i.e., dim X, =dim ¥, =,

(H4) (I — P) DYf(x,. A0) | (X, X R®)? = 0,..., (I — P) D*~'f(x,, Ao)i
(X, X R?)*~' =0, where k is an integer, 2 <k </, and P is the projection
onto Y,. (If k =2, condition (H4) is vacuous.)

(H5) Let B=(I—P)D%f(x0,4,)] (X, X R*)* and let Q be the
corresponding k-form. Assume Q is regular on its zero set.

(H6) k is even.

2.2. THEOREM. Under hypotheses (H1)-(H6), (x,,4,) is a bifurcation
point.

Before giving the proof we shall make some remarks.

2.3. Remarks

Remark 1. The solutions (u,v)€ X, X R” of Q(u,v)=0 give the
directions of bifurcation. See 1.3, Remark 2.

Remark 2. Problems involving bifurcation at simple cigenvalues are
covered by the case dim X, =dim Y, = 1, p=1. The standard hypotheses,
such as described in Crandall and Rabinowitz [7] or Nirenberg |31] imply
these with k= 2. '



R

Remark 3. The case dimX,=dimY,=2, p=1, is in Szulkin |37, p.
241).

Remark 4. Problems involving bifurcation at eigenvalues of multiplicity
n are covered by the case dim X, = dim Y, = n. Theorem 2.2 then includes
the results_obtained by McLeod and Sattinger |28]. They have various
conditions on partial derivatives which, after rescaling, can all be combined
into a single statement of regularity of the second derivative on its zero set.
This is detailed in Section 3.
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Remark 5. Notice that there are no restrictions on the multiplicity
dim X, =dim ¥, or the number p of parameters. However, the hypotheses
can only be satisfied for certain triples (n, p, k); see Section 4.

Remark 6. If p=1, then there are an odd number (<k"—1) of
nontrivial solution branches bifurcating from (x,, 4,). (See 2.7.)

Remark 7. Conditions (H4) and (HS5) can be replaced by other
hypotheses; see 1.5, Remark 2.

Remark 8. Both Dancer and Magnus have pointed out to us that
Theorem 2.2 (under similar but not the same hypotheses) can be proved
using degree theory. (Sce Dancer |9] and Magnus |19]).

To prove Theorem 2.2 we first use the Liapunov-Schmidt procedure to
define u(x,, 1) implicitly by

Pf(x, + u(x,,1),1)=0.
We then define
X\ XRPY,
by
glx,, A)=(I —P)f(x, + u(x,,A),2)

and seek the zeros of g. The zeros of f are the set {(x, + u(x,,2),1)|
8(x,,A) =0} so the results for f can be read off those for g.

Implicit differentiation of the preceeding two equations shows that the x,
derivatives of g at (x,, 4,) vanish up to order X — 1, and that

D“g(x,,, A)=({-P) D‘:f(xu’ )| (X, x R?),

Therefore, it suffices to prove a bifurcation theorem for the map g. We
can assume without loss of generality that X, =Y, =R" and x,(1)=0.
Theorem 2.2 therefore follows from the next result.

2.4, THEOREM. Let 2< k < I. Suppose g: R X R? » R" is of class C',

)
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£(0)=0,.,D* 'g(0)=0 and g(0,A)=0 identically. Let Q be the k-form
associated to D*g(0) and assume Q is regular on Q~"(0). If k is even, then
(0, 0) is a bifurcation point. More precisely,

Q7'(0)= ({0} x R?)LC,

where C is the cone from (0,0) to a nonempty (p — 1)-dimensional analytic
submanifold of S"'°~' that does not intersect {0} X R®. There are
neighborhoods U, and U, of (0,0) in R"*? and a C' diffeomorphism
¢: U, - U, with §(0,0)= (0, 0), DJ(0, 0) = identity, that is C' away from
(0,0); and (1}$(Q~'(0)NU,) = g=' ()N Uy, (2) 8 (10} X RPYN U, is the
identity, and (3) ¢ | (CN U, \|0, 0} is a C' diffeomorphism onto the manifold
M = g='(0)N U,\({0} X R?). (See Fig. 3.)

Theorem 2.4 follows from 1.3 provided it can be shown that Q '(0)
contains such a nontrivial cone C. (The assertion that the ¢ supplied by 1.3
is the identity on {0} X R” follows from an examination of the proofs.) The
next theorem, of interest in itself, will study Q~'(0) in order to complete the
proof of 2.4 and hence of 2.2.

2.5. THEOREM. If Q: R" X P -+ R" is a k-form regular on Q" '(0), k is
even, and Q||0) X R° =0, then Q~'(0) contains a p-dimensional cone
which intersects {0} X R? only at (0, 0).

The fact that Q~'(0) is the cone on a (p — 1)-dimensional submanifold
follows from the regularity of Q on Q~"'(0). The heart of the matter concerns
the existence of a nontrivial connected component. This is established in the
following development.

Let PX(R"*?, R") (resp. PX(C"*?, C")) denote the space of homogeneous
polynomial maps of degree k from R"*? to R" (resp. C"*” to C"). Let R*=

R" ( M IR" /Ic

24

RP R

FIGURE 3



)

{0€P®"*,R")|Q is regular on O~'(0)cR"*?} and let R =
{0 € PHC"?,C")|Q is regular on @~'(0)cC"*’}). PYR™*’,R") is
naturally regarded as a subset of PX(C"*?, C").
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2.6. LeMMA. RENPYR"*P,R") is a nonempty Zariski open subset of
PHR®*?, R7),

Proof. In CP"*P~' x PX(C"*?,C") consider the algebraic subset V=
{(Iz), 0)| O(z) =0 and rank DQ(z) < n}. Let n denote the projection of
CP*2=" % PX(C"*?,C") onto the second factor. By the main theorem of
climination theory (see Mumford [30]), (V) is an algebraic ‘subset of
P*(C"*?,C"). Observe that n(V) is the complement of RE. The set R{ will
now be shown to be nonempty by explicit construction. For example, let the
nX (n+ p) matrix (a;) be chosen so that all nXn minors have rank n.
Define 0,(2, s 24 ) = 2020 ayzj and define 0=(0,,. Q,) Then @ is in
RX. The lemma now follows from the fact that P*(R"*?, R") is Zariski
dense in PX(C"*?, C") (or one observes that the above example provides an
element of REN PH(R"*?, R") if all the a,, are real). I

We now show that Q~'(0) # {0} X R?. For any homogeneous polynomial
map h:R"? R let V, denote the variety defined by h in the real
projective space RP"*#-! and let V¢ denote the varicty defined by /i in
CpP+?-1, Suppose that in fact 0~'(0)= {0} X R”. Then V,, is the linear
space RPP-'<SRP"**"'. The complementary linear  space
RP" < RP"*P~! intersects V, transversally in one point. Choose, by 2.6,
Q0 € REN PX(R"*?, R") so close to Q that RP" intersects Vj; transversally
at one point. By Bezout’s theorem (sec Mumford [30]) a generic n-
dimensional lincar space W in CP"**~! meets V'§ in k" points and hence an
even number of points. The space W can be assumed defined by linear
cquations with real coefTicients and can be taken so close to RP" that W
also intersects Vg transversally at one point. Since both @ and the equations
defining W are real, complex conjugation must preserve Vg O W. Henee the
nonreal points of V‘én W occur in conjugalc pairs so the number of points
of VM W must be even. This contradiction completes the proof. 1

The following result has a similar proof.

2.7. Tueorem. Let 2 <k <l Suppose g:R**' -+ R" is of class C' and
g(0)=0, Dg(0)=0,.,D*"'g(0)=0. Let @ be the kform associated lo
D*g(0) and assume Q is regular on Q~'(0) and k is even. Then Q7'(0)
consists of an even number (<k") of lines through 0. There is a neighborhood
Uof 0 in R"*" such that g~"(0)N U consists of the same number of c'
curves through 0, each tangent to a different one of the lines in Q~ (0).
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Note that 2.7 implies: if in addition g(0,4)=0, (0,4) ER" X R, then
(0, 0) is a bifurcation point with an odd number <k" — 1 of lines bifurcating
from {0} X R. Of course the same thing will be true about the original map
from which g came by the Liapunov-Schmidt procedure.

2.8. Remarks

Remark 1. It is instructive to consider the special case n= 1, p=1 for
2.7, i.e., bifuration at simple eigenvalues. Then Q is a real-valued k-form in

. two variables x and y and can be factored Q(x, y)=ay" [1f-7 (x=4,»).

Regularity on the zero set implies r = | or 0 and the A, are distinct. Since Q
is real the complex 1, occur in conjugate pairs so this leaves an even number
of real linear factors. In the special case of k = 2 this shows the existence of
one nontrivial solution branch. This latter fact also follows from the fact that
(0, 0) is a nondegenerate critical point of index 1 for g: R?-» R.

Remark 2. In Theorem 2.4 we considered g: R” X R” - R” rather than
g:R"XR? - R™ for the following reasons: If m < n, then (assuming
regularity of Q), (0, 0) is trivially a bifurcation point since @~ '(0)\{(0,0)} is
a manifold of dimension n—m + p, so @~ '(0) must contain morc than
{Q} X R2. If m > n, then the regularity condition is impossible to satisfy.

Remark 3. Alexander |3] has studied maps f: R" X R” - R" such that
S(0,2) =0 and (8f/ox)(0, 1) is invertible for 0 < ]]A|| < &. He has obtained a
condition on the map A+ (9f/dx)(0, 2) from a deleted neighborhood of 0 in
:” to GL(n) that guarantees that (0,0) is a bifurcation point. Such a map
determines an clement of n,_,(GL(n)).. which stabilizes for large n to an
element y € m,_,(GL). The homotopy groups of GL are given by

pmod 8 i 2 3 4 56 7 8
x, (GL) Zj22 222 0 Z 0 0 0 Z.

Alexander’s result states that if p=1 or 2mod 8 and y # 0, then (0,0) is a
bifurcation point; if p=4k and y is not divisible by a certain number b,.
then (0, 0) is a bifurcation point; in all other cases (0, 0) is not necessarily a
bifurcation point.

It is interesting to note that the hypotheses of Theorem 2.4 may be
satisficd when Alexander’s condition is not. For example, let g(x,,x;.4) =
(c,A+x7 4, x,A+x2+--+) and assume g(0,0,4)=0. Bifurcation is
guaranteed by Theorem 2.4, However, the map

og A 0
1o—28 =
TR M [0 i ] ¥
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determines the zero element of my(GL) (since det[3 2] is positive for all
A #0; or see Alexander |3, Result (2)]). Thus bifurcation is not guaranteed
by Alexander’s result. ‘ :

The map h(x,, x;,4)= (x,A + x}, x,4 — x}) is a standard example of a
problem with no bifurcation at (0, 0) (see Nirenberg |31, p. 82]). The reader
can verify that the hypotheses of Theorem 2.4 as well as Alexander’s
hypotheses fail, as they must.

Remark 4. In principle the condition that Q be regular on its zero set
can be checked without identifying the zero set. Thus Theorems 2.2 and 2.4
give verifiable conditions that guarantee bifurcation.

Observe that Q fails to be regular on its zero set if and only if there is an
x € R"*? such that (a) x # 0, (b) @Q(x) =0, and (c) each n X n submatrix of
DQ(x) has determinant 0. Let Q(x,,..., x,,,,) = (¥, a;;x"...., 3, a,,,x'), where
I=(iyss iy ,) is a multi-index with i, + --- +i,, ,=deg Q. According to
the Tarski-Seidenberg theorem (Seidenberg [34]), there is a finite collection
of systems {y,} of polynomial equations and inequalities in the variables a,,,
with rational coeflicients, such that there is an x € R"*” satisfying (a)-(c)
for given (a,,,..., a,,) if and only if (a,,,.., a,,) satisfies at least one of the
systems y,,. The systems y_ are, at least in theory, effectively constructible.

The first example in Section 3 will give, in this spirit, a sufficient condition
for bifurcation at a multiple eigenvalue for a common nonlinear ecigenvalue
problem.

Remark 5. Theorem 2.4 can be generalized to allow g as in 1.4,
Remark 4, with at least one &, even. Then bifurcation is proved by essentially
the same argument. '

Remark 6. E. N. Dancer points out that the estimate (<k") on the
number of lines can also be proved using complex degree theory, cf. Dancer
{10].

3. EXAMPLES

3.1. ExampLE. Consider the following equation for a scalar function
u(x):
S, A)=du—-(A+2,)gu)=0 in Q

with boundary conditions
u=0 on 09,

where 2 is a bounded region in RY with smooth boundary, 4 is the
Laplacian, u belongs to a suitable Banach space (say H3*?, so that f: H3*? X
R H*), 2ER, A, is an eigenvalue of 4, g(0)=0, and g’(0)=1. In
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Nirenberg [31] the problem of when (0, 0) is a bifurcation point is studied
(see also Berger [4]). It is shown that if A, has multiplicity one, then (0, 0) is
a bifurcation point. By the Liapunov-Schmidt procedure the problem is
reduced to studying the zeros of a real-valued function of two variables to
which the Morse lemma can be applied.

If the multiplicity is n > 1 the Liapunov-Schmidt procedure leads to n
functions each of # + 1 variables, so the Morse lemma is not applicable.
Instead conditions can be given so that Theorem 2.2 with k=2 and p=1is
applicable. Thus (0, 0) will be guaranteed to be a bifurcation point.

Let Ker(D,f(0,0))= Ker(d —A,I) be spanned by the L? orthonormal’
functions  u,,.,u,. The second derivative is given by
Df(0,0)((u, 1), (v,p)) = —A 8" (0) uv — up — vA. Let u=z,u, + - + z,u,.
The quadratic map that must, according to Section 2, be considered is Q =
(Q1(244000s 2y A)yeees @2 300es 2,15 A)), Where

—Q(z) s zn’1)=108"(0)In wlzuy + oo+ z,u, | + 24z,

Here is a specific case: consider
du—(A—-10)gu)=0

on 2=|0,n] x |0, 7] in R? with u=0 on 9. Assume g(0)=0, g’(0) = |
and g"(0)+ 0. Then u =0, A = 0 is a bifurcation point with ! = 3 branches of
nontrivial solutions.

Indeed, we take n =2, u, = sin 3x sin y, u, = sin x sin 3y. (Normalizing u,
and u, is-not necessary here.) Let a=ful=[ul=14¢ and b=July,=
fuul= $3. Then Q, and Q, have the form of 1.2, Example 2, the result of
which gives /=3 as stated.

Explicit calculations like the above specific case are not always easy to
carry out. Thus we’seek a computable condition for regularity of Q on its
zero set, since this implies, by 2.2, bifurcation.

Let M(z,,..,z,) be the nXn symmetric matrix whose (ij) entry is
YmJouwuu,)z,. Then (z,,.,2,,A)EQ"'(0) if and only if either
(24, 2,) is an eigenvector of 1,g"(0) M(z,,...,2,) corresponding to the
eigenvalue —21 or (z,,..., z,) = (0,..., 0). At (0,0....,0,4), A 0, Q is always
regular. At any other (z,,..,2,,4)€ @ '(0), Q is regular if —21 is not an
cigenvalue of 1,g"(0) M(z,,..., z,). It follows that a sufficient condition for
regularity is that the matrix 1, g”(0) M(z,,..., z,) not have eigenvalues 1 and
20. (If A=0 this is taken to mean the dimension of the corresponding
eigenspace is one.) In principal this condition can be tested using resultants
as follows: First one obviously needs 1, g”(0) # 0. Next let

det(M(z,,0,2,) ~ XD = X"+ A, X" 4 ... +A,,..-
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Observe that 4, is an homogeneous polynomial in the variables z,,..., z, of
degree i. The condition that twice an eigenvalue is not an eigenvalue becomes
the condition that the polynomials
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X" +A|Xn—‘ + . +A" .
PRI DX QT - AT e 4 4,

do not have a common root. This condition is equivalent to the nonvanishing
of the resultant

I A, Ay .. A,

@"-1) 2" '=1)4, Apoy
@-1ny @"'-1, o Apoy

(2":-1) @@=, - 4,

This resultant is a homogencous polynomial in z,,..., z, of degree n(n — 1).
Thus a sufficient condition for regularity is that this form be positive or
negative definite. To illustrate: Let n=2, a=f,u], b=[, u,uj, c=J, ulu,,
and d = f, u. Then the form in question is the quadratic form

=2((a +¢)z, + (b +d) 2,)’ +9{(az, + bz,)(cz, + dz;) — (bz, + c2,)’}
=Az} +2Bz,2, + Cz}

and the sufficient condition for bifurcation is simply that AC — B > 0.

Finally, it should be recalled that when the regularity can be verified, not
only is (0, 0) guaranteed to be a bifurcation point but the number of curves
bifurcating off from the trivial one is an odd number [, where / < 2" — 1. To
actually compute / and the directions of the bifurcating curves would require
a morc detailed study of Q, as we did in the specific casec above. In that
specific case, b=c, a=d, and

AC={2a® —5ab + 116%}2,  B?=}{13b* — 5a* + 8ab}?

With a 4% and b= %} one finds AC > B? so the test using resultants is
effective in this case. More generally one can check that if A\;=—Q2r+1)'—
(2s + 1), r#s, then 2, is an eigenvalue of 4 of multiplicity two and
AC > B2, Thus bifurcation is assured in this case by Theorem 2.2.

3.2. ExampLe. Example 3.1 falls into the class of honlinear eigenvalue
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problems studied by McLeod and Sattinger |28]. Theorems 2.4 and 2.7 can
be applied quite easily to these problems, as follows:

After application of the Liapunov-Schmidt procedure, their nonlinear
eigenvalue problems yield equations of the form

h(x, ) = ALx + Q(x) + R(x, A).

Here i: R" X R - R", L is linear, Q is homogeneous of degree k > 2, and R
satisfies R(0,0)=0, DR(0,0)=0, (9’R/ox 22)(0,0) =0, (I*R/dx*)(0, 0)=
0,..., (3*R/ax*)(0,0) = 0. McLeod and Sattinger assume (1) L is invertible,
(2)27'(0)=0, and (3)each solution of Lx 1 Q(x)=0 is regular, (i.c., if
Lx 1+ Q(x) =0, then y1— Ly 3 DQ(x)(y) is surjective). They conclude that
each zero of Lx + Q(x) =0 gives rise to a one parameter bifurcating branch
of solutions. This result can be derived from 1.3 by first rescaling by setting
A=¢*"" (when k is even) or A= +&*"" (when k is odd). Then the new
function g(x, €)= h(x,e*~"') (or h(x,~c*"')) consists of a homogeneous
polynomial of degree & plus higher order terms. Assumptions (1)-(3) imply
that this homogeneous polynomial is regular on its zero sct. Note that 2.4
guarantees bifurcation when k is even, i.c., 2.4 guarantees that the equation
Lx £ Q(x) =0 has nontrivial solutions.

3.3. Hopf Bifurcation

We will now show how the finite-dimensional Hopf bifurcation theorem
can be derived from Theorem 2.4. The fact that the hypotheses of this
theorem are satisfied follows easily from the treatment of Crandall and
Rabinowitz |8] of Hopf bifurcation. Their approach will now briefly be
recalled. -

Consider the differential equation

%+f(,u.u)=0, (*)

where /€ C}(IR X R",R"). and f{(, 0')=0 for all 4 € R. Equation (*) has
the family of equilibrium solutions {(u, 0}|# € R}.
Let Ly = (9f/ou)(0, 0) and assume

(1) i are algebraically simple eigenvalues of L, and +ki & spectrum
of L, for k=0, 2, 3,....

Let a be the eigenvector of L, with eigenvalue i. Standard arguments show
that there exist C? functions f(¢) and x() defined by (&ffdu)(u, 0) x(u) =
Bu) x(u), #(0) =i and x(0) = a. We assume the Hopf condition’

(2) Ref'(0)#0,

i.e., the eigenvalues cross the imaginary axis transversally.
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The problem is to find periodic solutions of () with period near 2n. This
will be done by finding 2z-periodic solutions of
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du
-‘;;-+(l+P)f(ﬂ.u)=0

that have p close to O and letting 7= (1 +p)r. Let F(p,p,u)= (dufdr) +
(1 + p)f(u, u). F can be regarded as a C* mapping from R? X C},(R, R") to
C?.(R, R"), where C3, (R, R") denotes the space of C* 2z-periodic functions
from R to R" with the C* sup norm topology. The problem now becomes to
describe F~'(0) near (0,0, 0), which will be done using Theorems 2.2 and
2.4. Thus all small-amplitude periodic solutions of (*) with period near 2x
will be found.

Clearly, Ker(DF(0,0,0))=R*@Ker((d/dr)+L,). Here Ker((d/dr)+L,)
is two dimensional and is spanned by ¢, = Re(e~'"a) and ¢, = lm(e *q).
Moreover, ¢; = ¢, and ¢; = —g,. Therefore L g, = —¢, and Ly¢, =

Now Ker(—(d/dr) + Lg) is also two dimensional. A basis y,, w, cnn be
found with yi=v,, wi=-vy,, and (4,,¥,)=90,, where (g h)=
f2" g(1) h(r) dr. Then Im(DF(0, 0, 0)) = Im((d/dt) + L,) = | g € C}.(R, R")|
(& w)=0,i=0,1).

Let L, = (9*F/du du)(0, 0). Then the following computations may easily
be carried out:

(L,4o> o) = Re f(0), (L8, wo)=1m f'(0),
(Lifos ¥y) =—Im f'(0), (L1$y1> v\)=Re f'(0).

Also, D?F(0,0,0)((p, u, u), (p, st, u)) = 2pLou + 2uL ,u + (3*F/3u*)(0, 0, 0)
(i, u). Let P be orthogonal projection onto Im(DF(0, 0, 0)). Write vectors in
Ker(DF(0,0,0)) as (p, s, xo9, + x,¢,) and use the basis y,, v, for Ker(P).
In these coordinates the quadratic map associated to (I — P) D*F(0,0,0)}
Ker(DF(0, 0, 0)) X Ker(DF(0,0,0)) is

e R I P et T
+Q(xo:x|)'

where § is a quadratic map R? to R2 Using Re #/(0)# 0 one computes
@Q/a(xe, %)), #,0,0) is an isomorphism if (p,u)+ (0,0) and
@Q/(p, 1)) (p 1ty X4, x,) is an isomorphism if (x,,x,)# (0,0). Hence
DQ(p, u, x4, x,) is surjective for all (p, 4, x4, x,) # (0, 0, 0, 0). (See also 1.2,
Example 3.)

Application of Theorem 2.2 now yields the existence of a two-dimensional
surface bifurcating from (0,0, 0) in R? X C} (R, R").

)
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It is well known that there is a unique family of nontrivial closed orbits
bifurcating from (0,0, 0), i.e., there are no other periodic orbits (with nearby
periods) near (0,0, 0). (See, for instance Crandall and Rabinowitz |8]). We
now give a simple proof of this assertion using some of the remarks on
cquivariance in Section 1.

The group SO(2) (proper rotations of the plane) acts on C3_(R, R") by
To(u(r)) = u(t +8) and is a group of isometries for the L? inner product.
Clearly, F is equivariant with respect to T, i.e.,

ToF(p,u, u)= Flp, u, Tyu).

From 1.6, Remark 3, the bifurcating mapping (/ — P) o F(p, u, xo9, + x,4,)
is equivariant. Hence so is §. But the action of SO(2) on the space spanned
by ¢o, 4, and y,, v, is by rotation. Since there are no maps: R? - R? of
even degree equivariant with respect to rotation through =, it follows that
@ = 0. Therefore @~'(0) = pu plane U x, x, plane. From 1.6, Remark 3, there
is an equivariant diffeomorphism @: R? X C} (R, R")— R? x C} (R, R")
defined ncar O taking Q~'(0) to F~'(0). By Theorem 2.4, we have
@(R? X {0)) = identity. Hence @(x,x, plane)= nontrivial solutions of
F~'(0). Consider the line ¢ ®(1g,) (t>0). Any (p, s, 1) in F~'(0) with
u#0 and (p, 4, u) sufficiently close to (0,0,0) is @(0,0, x, ¢, + x,4,) for
some x,, x,. Let T, be a rotation which transforms x,¢, + x, ¢, to tg,. Then
by equivariance, T,(p, s, u) = ®(t¢,). Hence the uniqueness assertion
follows. ’

We note that while the preceeding methods give the structure of the set of
periodic solutions near 27, they do not give detailed information on the
phasc portraits near the periodic solutions without more work. For this
center manifold theory can be used (see Ruelle and Takens |33), Marsden
and McCracken [25] and Hassard eral. [15]). This theory also proves a
stronger uniqueness theorem under stronger hypotheses: there are no other
nearby periodic orbits of any period in if (1), +i are the only eigenvalues on
the imaginary axis.

We have not investigated if the methods of the present paper can be
applicd to more degenerate Hopf bifurcations such as bifurcation at multiple
complex cigenvalues and to cases where assumption (2) fails. (See Takens
[38], Kielhoffer [17], Golubitsky and Langford [12].)

4. GENERICITY OF REGULARITY CONDITIONS

This section will make precise and answer to some extent the questibn:
How general or how restrictive are the regularity conditions of Theorems 1.3,
2.2, 24, 25, and 2.7?
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4.1. LemMa. Let M, N and P be finite-dimensional manifolds and let F:
MXN=P be C°. Let Ac P be a closed submanifold and assume F is
everywhere transverse to A. Then there is a dense subset A < M such that if
A€ 7, then F|{a)X N is transverse to A everywhere on N. If N is
compact, then &/ is open.
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Proof. This follows from standard transversality theory. See, for instance
Abraham and Robbin [1].

Let L*R",R™) denote the symmetric k-multilinear maps R" X .-+ X
R" -+ R™. Given B € LX(R", R™) let Q,: R" > R™ be the associated k-form
defined by Q,(x)=(1/k!) B(x,.,x). Let #={BELYR",R™)|Q, is
regular on @ '(0)}. (If m > n, then B € ¥ if and only if Q,(x)=0 implies
x=0)

4.2. THEOREM. @ is open and dense in LA(RR", R™).

Proof. BE @ if and only if Qy|S"' is transverse to 0 € R™. Define F:
LY®", R™) X §"~' > R™ by F(B,x)=Qy(x). Il CE L{R",R™) and v €
T,.877', then DF(8, x)(C, v) = Qu(x) + (1/(k — 1)!) B(x,..., x,v). Now C—
Q.(x) is surjective so DF(B,x) is surjective. Lemma 4.1 completes the
proof. N

In fact the complement of # is contained in a proper algebraic subvariety
of LXR", R™). The proof of this fact is virtually identical with the proof of
Lemma 2.6.

Now let LX(R"*#, R™) denote {B € LY R"*?, R™)|if v,,..., v, € {0} X R?,
then B(v,y.,0,)=0}. Let @={(BEL¥R"*?,R")|Q, is regular on
Q~'(0)}. Because of Theorems 2.2 and 2.4, it is reasonable to ask about the
“size” of @ as a subset of LXR"*», ™).

Let L*M", Hom(R% R™)) denote {7 € L¥R", Hom(R",R™))|if 1€
R? — {0}, then T(4,..,1) € Hom(R",R™) has rank m}. Observe that
LYR?, Hom(R",R™)) is open in L{R?, Hom(R",R™)) since TE
LY®R?, Hom(IR", R™)) if and only if Q,(S”~') does not intersect the closed
subset of Hom(R", R™) consisting of maps of rank <m, which will be
denoted by Smgc Hom(R", R™).

4 3. TurokeMm. The set @ is
(a) open in LY®R"**,R™), and
(b) dense in LXR"**,8™) ifand only f p<n—m+ L.

We shall prove this along with additional information in Lemmas 4.4
and 4.5.

4.4, LemMA. The set @ is
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(a) open in L5@R"*°, R™),
(b) empty if and only if L}~ (R?, Hom(R", R™)) is empty, and

” 'f:?)ﬂ dense(.’ if and only if L*'(R®, Hom(R",R™)) is dense in
*-4(R?, Hom(R", R™)).

Proof. Since BE @ if and only if Q, | $"**~" is transverse to 0 € R™, it
follows that @ is open.

Identifying R® with {0} X R® cR"*? and R" with R" X {0} cR"*?,
define 7: LXR**2, R™) - L~ Y(R?, Hom(R", R™)) by (B)d, A ,)=
BysAy_ys-)JR" X {0} The map = is surjective linear. Therefore

a~ 'L~ '(R?, Hom(R", k™)) is open and is densc if and only if
Lk '(ER" Hom(R", R™)) is dense.

If & ={BeLkR"*", R™)|Q, is regular on Q, '(0)\({0) x R?)}, then
@ =n~'L*'(R?, Hom(R", R™"))N.«/. To complete the proof it remains
only to show & is always dense in L¥(R"*?, ?™), This can be done, as in
4.2, by defining F: LR+, R™) X ($"*7~"\({0} X R#)) - ™ by F(B, v) =
Q,(v) and showing DF(B, v) is surjective everywhere. |

4.5. LemmA. (a) L*R?, Hom(R",R™)) is dense in L*(1t*, Hom(R",
R™)) ifand only f p<n—m+ 1.

_ (b) There exist p, k, n, m with p>n—m+1 such that
L¥®?, Hom(R", R™)) % @.

Progf. Using 4.1 one shows that there is an open dense set .9 c
LYR?, Hom(R", R™)) such that 7€ .2 implies 0,18 is transverse to
Sing. (Sing is a stratified sct, not a manifold, but 4.1 still applies.) If p <
n—m + 1, then since codim(Sing) = n — m + 1, .9 = L¥(R?, Hom(i?", ™)),

Now suppose p > n —m + 1. Choose L in the top-dimensional stratum of
Sing and choose 1 arbitrarily in $?~'. It is then easy to construct T€
L¥(®R*, Hom(R", R™)) such that Q,(A) = L and Q, is transverse to Sing at 1.
Hence for T’ near T, we have Q,.(S*~')N Sing # @.

An example where p > n — m + 1 and L*(1??, Hom(R", R™)) is not empty
istk=1,p=n=m=2,and T(x,y)=|_3 2] 1

Let us specialize o the case m = n considered in Section 2. C is open and
dense in L¥R"*',R") by 4.3, so when p=1 the assumptions of
Theorem 2.2 should typically hold. When p > I, C is not dense in
Li(R"*?,R"), so the assumptions of Theorem 2.2 will not typically hold.
chcrthelegs there are triples (n, p, k) with p > 2 for which C is nonempty
open in LXR"*?,R"). For these triples (n, p,k) the assumptions of
Theorem 2.2 should hold for a nonnegligible collection of problems. In fact,
the Hopf bifurcation example has n= p=k = 2.

For k = 2 there is the following result: Write n = (2a + 1) 2°, where a and
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b are integers, and set b =c + 4d, where ¢ and d are integers and 0 < ¢ < 3.
Let p(n) =2 + 8d.

4.6. ProrosiTioN. Cc L} R"*?,R") is nonempty if and only if
p<p(n),

Proof. According to 4.4, L}(R"*?, R") is nonempty if and only if there
exists a linear map T: R’ — Hom(R", R") such that T2 is an isomorphism
for every 4 0. By Clifford algebra constructions one can produce such
maps for all p <p(n) (see Husemoller |16, Chap. 11]). On the other hand,
the existence of such a 7: R? » Hom(R”", R") implies that there exist p — 1
linearly independent tangent vector fields on S"~'. (Let e,,..., ¢, be a basis
for R?, We can assume Te, = identity, for if it does not, we consider 11—
(Te,)~" TA. Define tangent vector fields v, on $"~!'= {x € R"||jx||= 1} by
v,(x) (Te;)x — {(Te,)x, x)x. To show that the v, are linearly independent it
suffices to show that for x 0, 3'7-,' ¢,(Te,)x is not a multiple of x unless all
c;=0. But Y77} c(Te)x +c,x=T( !, c,e)x #0 unless Y7_, c,e,=0,
i.e, all ¢;=0.) Adams [2] has shown that there do not exist p(n) linearly
independent tangent vector fields on S"~', so we are done. Ml
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