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The Initial Value Problem
and the Dynamics of Gravitational Fields’)

J. E. Marsden (Berkeley)

This lecture will survey some of the recent advances that have been made in the dyna-
mics of general relativity and other classical relativistic field theories. In addition, we
shall indicate a few open problems that appear to be of basic interest.

1. Existence and Uniqueness Theorems for Geometrodynamies

The basic existence and uniqueness theorem states that Cauchy data on a spacelike
hypersurface determines uniquely (up to spacetime diffeomorphisms) a piece of
spacetime (filled with whatever matter or other fields arc under consideration)
containing the hypersurface. Moreover, it makes sense to look at the maximal devel-
opment of such Cauchy data, just as it makes sense to look at maximal integral
curves of ordinary differential equations.

The rigorous theory developing results of this type begins with Choquet-Bruhat
[1948], [1952]. The subject as it existed up until about 1972 is adequately presented
in Hawking and Ellis [1973]. Some of the key developments since then are as follows,
in more or less chronological order:

(a) Fischer and Marsden [1972a] show how to write the evolution equations as a
first-order symmetric hyperbolic system.

(b) Miiller-zum-Hagen and Seifert [1977] study the characteristic initial value
problem.

(¢) Hughes, Kato and Marsden [1977] prove a conjecture of Hawking and Ellis,
showing that the equations are well posed, with the metric in HS, s > 2.5,
(See also Fischer and Marsden [1979a].)

(d) For asymptotically flat spacetimes, Choquet-Bruhat and Christodoulou [1980]
and Christodoulou [1980] prove well-posedness in the weighted Sobolev spaces
of Nirenberg-Walker and Cantor (“SNWC spaces’; see Cantor [1979]). The
crucial point here is to allow Hilbert spaces (cf. McOwen [1979]).

(e) Christodoulou and O'Murchadha [1980] solve the boost problem in SNWC
spaces; i.e. they show that the piece of spacetime generated by the initial data
is large enough at spatial infinity to include boosts. The methods may allow also
for capturing a piece of 2.

') Research partially supported by the National Science Foundation.
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Some open problems for 1.

(i)

(i)

(iif)

(fauge Problem: Current existence theory is based on the harmonic gauge of
Choquet-Bruhat. Is there a direct proof valid in any gauge?

Global Problem: Find a gauge (such as the constant mean curvature gauge,
i.e. #-gauge) in which global existence holds. Recent work of Christodoulon,
Eardley and Moncrief on Yang-Mills fields and Maxwell Klein-Gordon fields
gives one hope that the gravitational problem may be solvable. (See Segal [1979],
Moncrief [1980a, b, ¢] and Eardley and Moncrief [1980]). For globally hyper-
bolic spacetimes with a compact Cauchy surface (cosmological case) global
existence in a constant mean curvature gauge implies that the evolution in that
gauge captures the entire spacetime; see below and Marsden and Tipler [1980].
TFor non-compact Cauchy surfaces, this need not be true: see Eardley and Smarr
[1979).

Boundaries and Gravitational Shocks. Try to lower s even below 2.5 in the Cauchy
problem to allow for jump discontinuities in the second derivatives of the metric
(s = 2.5 is the crucial value, below which jumps are allowed), This would allow
gravitational shocks. The solutions are presumably non-unique if s < 2.5 and
the physically correct ones are picked out by some kind of entropy condition, as
one does in gas dynamics. Can recent advances in geometric optics and Fourier
integral operators (Guillemin and Sternberg [1977]) be used in the study of
gravitational waves and shocks?

2. Hamiltonian Struectures

The

.

Hamiltonian formalism in general relativity goes back to Choquet-Bruhat,

Dirac, Bergmann and Arnowitt-Deser and Misner. This formalism (referred to com-
monly as the ADM formalism) is found in, for example, Misner, Thorne and Wheeler
[1973].

This formalism can be exhibited as follows (Fischer-Marsden [1976, 1979]). Let a
slicing of spacetime (V, Wg) be given, based on a 3-manifold M. This slicing determines
a curve g(4) of Riemannian metrics on M and a curve of symmetric tensor densities

a()

(the conjugate momentum). Let the slicing have a lapse function N and a shift

vector field X. Einstein’s vacuum equations Iiin (Wg) = 0 (the Einstein tensor formed
from “g) are then equivalent to the evolution equations in adjoint form

é {q X 0 1
Z (L) =Topsgx*(=); I=
Py (T) W) (N) (—1 o)

together with the constraints

D(g,w) =0

where ®(g, w) = (#(g, 7), F(g, 7)) is the super energy-momentum.
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The choice of slicing is a gauge choice, and one may wish to determine it along with
the dynamies. In particular, the constant mean curvature gauge is especially inter-
esting, as we have already noted. As was indicated in Professor Wheeler’s lecture and
in Qadir and Wheeler [1980], this gnuge has the property that its spacelike hyper-
surfaces tend to avoid singularities. If one can show that the mean curvature x runs
from —co to co and M is compact (closed universes) then the foliation fills out the
whole Cauchy development and in fact this development is a “Wheeler universe”
(see Tipler and Marsden [1980]).

Some other developments of interest in the Hamiltonian formalism are:

(a)

(b)

{c)

(d)

(e)

The Hamiltonian and symplectic structures are investigated directly from the
four dimensional point of view in Kijowski and Szezyrba [1976], and Kijowski
and Tulezyjew [1979].

There has been development of the idea that the constraint @ = 0 is the same as
the vanishing of the Noether current generated by the gauge group of relativity
i. e. all diffeomorphisms of V (equalling the identity at infinity for open uni-
verses); for relativity, see Fischer and Marsden [1972b], for gauge theories, see
Cordero and Teitelboim [1976], Monerief [1977] and Arms [1978].

The Poincaré group at infinity or the BMS group have Noether currents of
interest as well, (although we do not set them zero) such as the ADM energy-
momentum tensor or the BMS energy-momentum tensor: see Regge-Teitelboim
[1974] and Ashtekar and Streuble [1980].

How z-slicings fit together with the BMS group and gravitational radiation has
been investigated by Stumbles [1980]. (For related information on x-slicings,
see Choquet-Bruhat, Fischer and Marsden [1979], Eardley and Smarr [1979],
Marsden and Tipler [1980] and Treibergs [1980] and references therein).

Teitelboim [1977] and Pilati [1978] have investigated the geometrodynaimics
of supergravity. Bao [1981] has put it onto the adjoint form above.

Some open problems for 2.

(i)

(if)

(iii)

Find sufficient conditions on a relativistic field theory with a given gauge group
to ensure that the constraints in o Dirac analysis will be the zero level of the cor-
responding Noether current. (This is true for all the examples mentioned above).

How is the classical Noether constraint “color charge = 0” for Yang-Mills
fields on Minkowski space related to quark confinement? (See Arms, Marsden
and Moncrief [1980] for some discussion).

Is it true that the long time dynamies for a typical relativistic field theory is
chaotie? Is the Kolmogorov-Arnold-Moser theory relevant? (Recently, Barrow
has embarked on a very enlightening investigation of Misner’s mixmaster model
from the point of view of chaotic dynamical systems).
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3. Spaces of Solutions and Linearization Stability

Let V be a fixed four manifold and let & be the set of all globally hyperbolic Lorentz
metrics g = g that satisfy the vacuun Einstein equations Ein (g) = 0 on F (plus
some additional technical smoothness conditions). Let g, € & be a given solution. We
ask: what is the structure of & in the neighborhood of g,?

There are two basic reasons why this question is asked. First of all, it is relevant
to the problem of finding solutions to the Einstein equations in the form of a per-
turbation series:

A2
g(d) = ¢ +- by —i——é-h,2 R

where 1 is & small parameter. If g(i) is to solve Ein (g(Z)) = 0 identically in 2 then
clearly k; must satisfy the linearized Einstein equations:

DEin{(g)-h =0

where I Ein (g) is the derivative of the mapping g~ Kin (g). For such a perturbation
series to be possible, is it sufficient that %, satisfy the linearized Einstein equations,
i.e. is &, necessarily a direction of linearized stability? We shall see that in general
the answer is no, unless drastic additional conditions hold. The second reason why the
structure of & is of interest is in the problem of quantization of the Einstein equations,
Whether one quantizes by means of direct phase space techniques (due to Dirac,
Segal, Souriau and Kostant in various forms) or by Feynman path integrals, there
will be difficulties near places where the space of classical solutions is such that the
lincarized theory is not a good approximation to the nonlinear theory,

The dynamical formulation mentioned in § 2 is crucial 1o the analysis of this
problem. Indeed, the essence of the problem reduces to the study of structure of the
space of solutions of the constraint equations ®(g, =) = 0.

As we shall see, the answer to these questions is this: & has a conical or quadratic
singularity at g, if and only if there is a nontrivial Killing field for g, that belongs to
the gauge group generating @ = 0 (thus, the flat metric on 7% X R has such Killing
fields, but the Minkowski metric has none.) When & has such a singularity, we speak
of a bifurcation in the space of solutions.

(a) Brill and Deser [1973] considered perturbationsof the flat metric on 7% x R and
discovered the first example of trouble in perturbation theory. They found, by
going to a second order perturbation analysis, that they had to readjust the first
order perturbations in order to avoid inconsistencies at second order. This was
the first hint of a conical structure for & ncar solutions with symmetry.

{b) Fischer and Marsden [1973] found general sufficient conditions for & to be a
manifold in terms of the Cauchy data for vacuum spacetimes.

(¢) Choquet-Bruhat and Deser [1973] proved a version of the theorem that & is a
manifold near Minkowski space, which was lster improved by Choquet-Bruhat,
Fischer and Marsden [1979].
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(d) Moncrief [1975a] showed that the sufficient conditions derived by Fischer and
Marsden for the compact case where equivalent to the requirement that (V, go)
have no Killing fields. This then led to the link between symmetries and bi-
furcations.

{e) Moncrief [1975b] discovered the general splitting of gravitational perturbations
generalizing Deser’s [1967] decomposition. The further generalization to momen-
‘tum maps (general Noether currents) was found by Arms, Fischer and Marsden
[1975]. This then applies to other examples such as gauge theory and also gives
York’s decomposition (York [1974]) as special cases.

(f) D’Eath [1976] obtained the basic linearization stability results for Robertson-
Walker universes.

(g) Moncriet [1976] discovered the spacetime significance of the second order condi-
tions that arise when one has a Killing field and identified them with conserved
quantities of Taub [1970]). Arms and Marsden [ 1979] showed that the second order
conditions for compact spacelike hypersurfaces are nontrivial conditions,

{h) The description of the conical singularity in & near a spacetime with symmetries
is due to Fischer, Marsden and Moncrief [1980] for one Killing field and to Arms,
Fischer, Marsden and Moncrief (1981} in the general case.

(i) Moncrief [1977], Coll [1975] and Arms [1977, 1979} obtained the basic results for
pure gauge theories and electromagnetism and gauge theories coupled to gravity.

{(j) An abstract theory valid for arbitrary momentum maps was developed by Arms,
Marsden and Moncrief [1980].

{k) Moncrief [1978] investigated the quantum analogues of linearization stabilities.
Using 72 X IR, he shows that, unless such conditions are imposed, the correspond-
ence principle is violated.

For vacuum gravity, let us.state one of the main results in the cosmological case:
suppose gy has a compuct spacelike hypersurface M < V. (Actually we require the
existence of at least onc of constant mean curvature for technical reasons). Let S,
he the Lie group of isometries of g, and let % be its dimension.

Theorem.

1. £ =0, then & is a smooth manifold in a neighborhood of ¢, with tangent space at
go given by the solutions of the linearized Einstein equations.

2. 1{ k > 0 then & is not # smooth manifold at ¢, A solution &, of the linearized equa-
tions is tangent to a curve in & if and only if &, is such that Taub conserved quanti-
ties vanish; i.e. for every Killing field X for g,, '

J X - [D® Ein (g0) - (kyy 1)} - Z dpayy = 0
M

where Z is the unit normal to the hypersurface M and “.” denotes contraction
with respect to the metric g,.
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All explicitly known solutions possess symmetries, so while 1, is “generic”, 2. is
what occurs in examples. This theorem gives a complete answer to the perturbation
question: a perturbation series is possible if and only if all the Taub quantities vanish.

Let us give a brief abstract indication of why such second order conditions should
come in, Suppose X and Y are Banach spaces and F: X —7Y is a smooth map. Sup-
pose F(X,) = 0 and a(4) is a curve with x(0) = 2, and F(a:(?.)) = 0. Let hy = 2'(0)
g0 by the chain rule DF(x,) - £, = 0. Now suppose DF(x,) is not surjective and in
fact suppose there is a linear functional [ € Y* orthogonal to its range: U, DF(xy) -
= 0 for all € X, By differentinting F(x(2)) = 0 twice at 1 = 0, we get

D2F () « (hyy by) -+ DE(zg) - 2"(0) = 0.
Applying [gives
(L, D2E(y) - (hy, By)) = 0

which are necessary second order conditions that muost be satisfied by /.

Tt is by this general method that one arrives at the Taub conditions. The issue
of whether or not these conditions are sufficient is much deeper requiring extensive
analysis and bifurcation theory (for & = 1 the Morse lemma is used, while for & > 1
the Kuranishi deformation theory is needed see Kuranishi [1965], Atiyah, Hitchin and
Singer [1978] and § 4 below).

Some open problems for 3.

(i) Is the above phenomenon a peculiarity about vacuum gravity or is there an
abstract theorem applicable to a broad class of relativistic field theories? The
examples which have been and are being worked out suggest that the latter is the
case. Good examples are the Yang-Mills equations for gauge theory (Moncrief
[1977], Arms [1979]) the Einstein-Dirac equations (c¢f. Nelson and Teitelboim
[1978]), the Einstein-Euler equations (Bao and Marsden [1981]) and super-
gravity (Pilati [1978], Bao [1981]). In each of these examples there is a gauge
group playing the role of the diffeomorphism group of spacetime for vacuum
gravity. This gauge group acts on the fields; when it fixes a field, it is a symmetry
for that field. The relationship between symmetries of a field and singularities
in the space of solutions of the classical equations is then as it is for vacuum
gravity.

For this program to carry through, one first writes the four dimensional equa-
tions as Hamiltonian evolution equations plus constraint equations by means
of the 3 - 1 procedures of Dirac, The constraint equations then must

1. be the Nocther conscrved quaniitics for the gauwge group and 2. satisfy some
technical ellipticity conditions: (D®)Y* must be an elliptic operator. As is already
been mentioned, for 1, it may be necessary to shrink the gauge group somewhat,
especially for spacetimes that are not spatially compact. For example the iso-
metries of Minkowski space do not belong to the gauge group generating the
constraints but rather they generate the total energy-momentum vector of the
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spacetime ... that this vector is time-like is the now famous positive energy
problem ... see Brill and Deser [1978], Choquet/Bruhat, Fischer and Marsden
{1979], Deser and Teitelboim [1976] and Schoen and Yau (1979, 1980].

(ii) In the space of solutions, the kernel of the symplectic form coincides with the
infinitesimal gauge transformations (this follows from Moncrief’s decomposi-
tion). Therefore, one can construct the space of true degrees of freedom, the
quotient of & by the gauge group. Using Marsden-Weinstein [1974], onc proves
that this quotient is a smooth symplectic manifold near points where & is smooth.
This leaves open the question: what is &/(gauge group) like near points of sym-
metry, where & is singular?

(iii) How should one treat the Schwarzschild solution in the context of linearization
stability? Do singularities in the space of solutions affect spacetime singulari-
ties in the sense of Hawking and Penrose? Do they affect Cauchy horizons?

4, Bifurcations of Momentum Maps

The role of the constraint equations as the zero set of the Nocther conserved quantity
of the gauge group leads one to investigate zero sets of the conserved quantities asso-
ciated with symmetry groups rather generally. One goal is to begin answering ques-
tion (i) in the previous section. This topic is of interest not only in relativistic ficld
theories, but in classical mechanics too. For example the set of points in the phase
space for n particles in IR3 corresponding to zero total angular momentum is an inter-
esting and complicated sct, even for n = 2!

We shall present just a hint of the relationship between singularities and symme-
tries. The full story is a long one; one finally ends up with an answer similar to that
in vacuum relativity. We refer to Arms, Marsden and Moncrief [1980] for additional
details,

First we need a bit of notation (see Abraham and Marsden [1978], Chapter 4). Let
M be a manifold and let a Lie group G act on M. Associated to each element £ in the
Lie algebra 6 of G, we have a vector field £y naturally induced on M. We shall denote
the action by @ : G X M - M and we shall write @, : M — M for the transformation

of M associated with the group element g € G. This &y(z) = dit expiter{ ) emge

Now let (P, @) be a symplectic manifold, so @ is a closed (weakly) non-degenerate
two-form on P and let @ be an action of a Lie group G on P. Assume the action is
symplectic: i.e. ®jw = w for all g € G. A momentum mapping is a smooth mapping
J: P — @* such that

(dJ(x) * T 5) = w(EP(x)’ 7’:)

for all £ € &, v, € T.I> where dJ(x) is the derivative of J at z, regarded as a-linear
map of T,P to G4* and (,) is the natural pairing between & and G*.
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A momentum map is Ad*-equivariant when the following diagram commutes for
each g € G:

Py

P + P

J J

o

BE—— 3 G*
¢ Ad;_, ©

where Ady_, denotes the co-adjoint action of Gon @*. If J is Ad* equivariant, we
call (P, w, G, J) a Hamiltonian G-space.

Momentum maps represent the (Noether) conserved quantities associated with
symmetry groups acting on phase space. This topic is of course a very old one, but
it is only with more recent work of Souriau and Kostant that a deeper understanding
has been achieved. '

See Fischer and Marsden [1979] for the sense in which the map @ described in § 2
is the momentum map associated with the group of diffcomorphisms of spacetime.
See Moncrief {1977] and Arms [1979] for the corresponding result for gauge theory.

Let S;, = (the component of the identity of) (g € G| gxo = 2o}, called the symme-
try group of z,. Its Lie algebra is denoted s,, 80

55, = {§ € B | §plxo) = O},
Let (P, w, G, J) be a Hamiltonian G-space. If z, € P, o = J(x,) and if
dJ(z,) : T, - @*

is surjective (with split kernel), then locally J-1(u,) is 2 manifold and {J~}(u) | u € &%}
forms a regular local foliation of a neighbourhood of ;. Thus, when dJ(z,) fails to be
surjective, the set of solutions of J(x) = 0 could fail to be a manifold.

Theorem. dJ(x,) is surjective if and only if dim S, = 0; i.e. s,, = {0}.

Proof. dJ(z,) fails to be surjective if there is a & &= 0 such that (dJ(z,) - v,, &) = 0
for all v, € T, P. From the definition of momentum map, this is equivalent to
w, (€p(xo), vz,) = O for all v,,. Since w,, is non-degencrate, this is, in turn equivalent
to &plxg) = 0; i.e. 5, 4= (0}

One then goes on to study the structure of J~'(uy) when xy has symmetries, by
investigating second order conditions and using methods of bifurcation theory. It
turns out that, as in relativistic ficld theories, J~{(u,) has quadratic singularities
characterized by the vanishing of second order conditions. The connection is not an
accident since the structure of the space of solutions of a relativistic field theory is
determined by the vanishing of the momentum map associated with the gauge
group of that theory.

-
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Some open problems for 4.

\

(i) All the results obtained so far on spaces of solutions are local. What is the global
structure? Is there a global Morsetype theory for momentum maps?

(ii) Much current work on Yang-Mills fields and the twistor program for gravity
utilize a Euclideanized viewpoint. Some routine calculations show that in such
a context the connection between symmetries and bifurcations is lost. (In parti-
cular, the symmetries discussed by Rebbi and Jackiw [1976] are not related
to Euclidean linearization instabilities.) What has become of the difficulties with
perturbation series and quantization encountered in the Lorentz context?

(iii) Bifurcation theory exploits connections between symmetry and bifurcation to
study phenomena like pattern formation. See for example, Golubitsky and
Schaeffer [1979] and Sattinger [1980]. Can one use this theory in relativity to
study physical consequences of breaking the symmetry of a solution of a rela-
tivistic field theory?
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