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C =-Z% (second) elasticity tensor

¢ =2Cly.s, classical elasticity tensor

Torlg identity map on R? or £

l=(B,1) a (dead) load

L7 all loads with total force zero
L(Ty%#,R3) all linear maps of Tx# to R3

L(Ty#, R)* linear maps of L(Tx%,R) to R

sym (T3, Tx%) symmetric linear maps of T3y to T3y
S0(3) {QeL®*RY)|QTQ =1I,det Q = 1}
RF? real projective 2-space; lines through (0, 0, 0) in R?
M, L(R3, R3)

sym symmetric clements of M,

skew = s50(3)
v

2.

k: %~ M,
A = k(i)

J = (k| (ker k)})~!

Skew = j (skew)
Sym = j(sym)

skew symmetric elements of M,
infinitesimal rotation about the axis v
equilibrated loads

astatic load map

astatic load for a load I

non-singular part of &

skew viewed in load space

sym viewed in load space

D:C> P #(¢) = (—DIV P, P- N)
Cym {u: 2 — R?| u(0) = 0, Vu(0) € sym}
N image of %y near Iy under @

F Z.— Skew A" is the graph of F
F:RXZ,— Skew F, 1) = F(AhjA®
Sa Q’s in SO(3) that equilibrate A

§ 1. Introduction

This paper is the first of a series of three devoted to the study of the traction
problem in three-dimensional nonlinear elasticity by means of geometric tech-
niques and singularity theory. The first two papers in the series treat the traction
problem with dead loads for configurations that are nearly stress-free. As was shown
by SigNorint [1930] and StoppeLLl [1958], this problem has nontrivial solutions.
However, their analysis is incomplete for three reasons. First, their load is varied
only by a scalar factor; in a full neighborhood in load space of a load that has
an axis of equilibrivm there are additional solutions missed by their analysis.
Second, their analysis is only local in the rotation group, so additional nearly
stress-free solutions are missed by restricting the rotations to those necar the
identity. Third, some classes of loads with a degenerate axis of equilibrium are not
considered. This series of papers completes their analysis by treating these ques-
tions as well as the stability of solutions. The complexity of the answer is indicated
by the fact that near certain types of loads, we find up to 40 distinct solutions
that are nearly stress-frce. Our constitutive hypotheses on the stress tensor are
*“generic™; for a degencrate stress tensor there can be even more solutions.
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The literature on this problem is very extensive, going back to SIGNORIN{
in the 1930’s. Our primary sources have been StorpeLtt [1958], GrioLt [1962],
TRUESDELL & NoLL [1965), VAN BUREN [1968}, WANG & TRUEsDELL [1973],
and Carriz & Popio GuipuaLi [1974]. However, none of the references beyond
StoppELLI [1958] gives complete proofs of any of the theorems dealing with
nontrivial cases: i.e., loads with axes of equilibrium. However, GrioL! [1962}
is a convenient reference for the statements.

The outline of this paper is as follows. We establish our notation for nonlinear
elasticity and we formulate our problem near a natural state in Section 2. In Sec-
tion 3 the basic properties of the astatic load are reviewed and developed. The
problem is reformulated with special reference to the global aspects of the rota-
tion group in Section 4. Here we introduce the bifurcation equation, which plays
a crucial role throughout the paper. Qur treatment of SO(3) is invariant; if we
used Euler angles to parametrize it, unnecessary analytical singularities would
result. Section 5 treats loads with no axis of equilibrium; there are three new
features in this section. First, the proof of STOPPELLI'S results is considerably
simplified. Second, the results are global relative to the rotation group. Finally,
the stability of the solutions is determined. The number of solutions is classificd
by load types; this classification scheme is explained in Section 6. (Some work
related to the “type classification” was given by OGDEN [1977].) In Section 7
a second-order bifurcation equation is shown to be a gradient. This consequence
of Betti reciprocity is basic to our analysis. Section 8 gives a complete bifurcation
analysis of loads of type | (the case considered by SToPPELLI), including a stability
analysis. New local and global solutions are found. The final section makes
explicit the comparison with STOPPELLY’S theorem.

In Part II of this series we shall analyze the remaining types of loads, using
a reformulation of our gradient results. We shall also discuss linearization sta-
bility and parallel loads. In Part III we shall investigate general loads and stressed
initial configurations.

Acknowledgments. The Signorini-Stoppelli problem was introduced to us by RosiN
K~ors in 1977. Since then a number of other people have made useful comments,
including STUART ANTMAN, JoHN BALL, ROGER BROCKETT, MARTIN GOLUBITSKY,
DAvID SCHAEFFER, MORTON GURTIN, and CLIFFORD TRUESDELL.

§ 2. Statement of the Problem

Let 8 CR?® be an open bounded set with smooth boundary* and assume
for convenience that 0€ 4. Let | < p<<oo, s> (3/p) + 1 and let € be the

space of maps ¢: # — R3 that are of class W*” (so they are C') such that ¢(0) =0,

* We believe that our results also hold when # has piccewise smooth boundary.
This program depends on elliptic regularity for such regions. Except in special cascs,
this theory is non-existent and seems to depend on a modification of the usual Sobolev
spaces near corners. However, for simple shapes like cubes, the necessary regularity
can be checked by hand in situations where the lincarized elastostatic equations can be
solved explicitly.



298 ~D. R.J. CuitLingworti, J. E. MARSDEN & Y. H. WaN

¢ has a WW*+-,.verse on its image, and J(¢) > 0, where J(¢) is the Jacobian of
¢.1

For example, if p: 4 — R? is close to the identity in W*” and if y(0) =0,
then € ¥. If Q is a linear isomorphism of R to R3 with det Q > 0, then
Qopc @ as well.

Let points in 2 be denoted X and points in R? be denoted x. The vector from
the origin to X is denoted X, Sometimes we write x = ¢(X). Let Ty be the
tangent space to 2 at X, regarded as vectors in R* based at X. We do not identify
Tx# and R? for conceptual clarity. For ¢¢€ &, let F(X)€ L(Tyv#, R be the
derivative of ¢ at X; by standard abuse of notation we write F(X) = D¢(\)
or V¢(.X) interchangeably. L(Tx%, R?) denotes the set of all linear maps of 7.4
to B3 We let F(X)"€ L(R? Tx%) denote the adjoint of F(X) relative to the
Euclidean inner product. Observe that F(X)€ LH(Ty4, R3), the linear transfor-
mations with positive determinant, since det F(X) = JP)(X)>0. We la
C=F'F (that is, C(X)=F(X)" F(X)€ L(Tx®, Txy®B)) dcnote the Cauchy-
Green tensor. Observe that C(X)€ symp.(TxB, Tx®B), the positive definite
symmetric lincar transformations on Ty%.

Assume we are given a smooth stored energy function W defined on pairs
(X, C) where C€ sym, (TxB, TyB). For ¢€ %, the stored energy of ¢ is
f WX, C(X))dV(X), where C is the Cauchy-Green tensor of ¢ and dV is the
A

volume element in #. That W depends on C rather than on all of F is a conse-
quence of the Principle of Material Frame-Indifference. (See TRUESDELL & NoLt
[1965].) Since C is a_function of F, we shall abuse notation by writing W(¢) and
W(X, F) for W(X, F'F).

The first Piola-Kirchhoff stress tensor P(X,F) is defined by P(X,F)=

0

#, W(X, F), the partial derivative of W with respect to F. Thus, P(X,F):

L(Tx#,R%)*. The second Piola-Kirchhoff stress tensor S(X, C) is defined by
bij

S, C) =ic WX, C), so that S(X, C)€ sym (Ty%, TyB)*. The chain rule

implies that
1
P(X,F)-G = —2-3(,\', C): [F'G + G"F)

for all G¢ L(Ty#, R3).1t

For finite dimensional inner product spaces V, W, the inner product (A, B) =
trace (ATB) on L(¥, W)and L(V, V) defines isomorphisms L(V, W)* = L, w
and L(V, V)* = L(V, V). The latter isomorphism also identifics sym (V, V)*
with sym (¥, V). Using these identifications we get  P(X, F)€ L(Ty4%, R?),
S(X, C)€ sym (Tx#, Tx#) and P(X,F) =F-8(X,C), or P =FS for short.

t There is a W*P inverse function theorem: if @isin W s > (np) -I- |, and has
a C! inverse, then the inverse is in W*”, For our analysis onc can also use the Holder
spaces CA i,

tt The mass density does not appear in our formulas as we are building it into the
definitions and use, for example, the body force per unit volume rather than per unit mass.
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ap
Let A(X, F) = 3F (X, F)e L(L(Ty2, R*), L(Tx#, R%)) denote the elasticity

tensor. We may regard A as a bilincar form on L(7#, R3) via A(X,F)(G, H) =
(MX, F) G, H). In the hyperelastic case, which is our concern, A = PWeF F,
so this bilincar form is symmetric in G and H.

. . . Ay 3w
The second elasticity tensor C(X, C) is similarly defined to be Eroi ZW

evaluated at (X, C), and so may be regarded as a symmetric bilinear map on
sym (Tx 3, Tx#). The chain rule gives
2A(X, F)- (G, H)

=C(X, C)- (F'H + H'F,F'G + G"F) + S(X, C)- (H'G + GTH),

The following two assumptions will be made in the first two papers of this
series:

(H1) The undeformed state is stress-free; ie., P(X,I) =0, or equivalemly,
S(X, I) =0, where I is the identity.
(H2) Strong ellipticity holds: there is an € > 0 such that

AXD-w®Ev@HZ |51 v

Jor all S€TyB* and ve R, where v ® §€ L(Ty®, R®) is defined
by (v ®5) (V) =§V)v.

The classical elasticity tensor is defined by c(X) = 2C(X, 1), so c(X)is a sym-
metric bilincar mapping on sym (T4#, Tx#) to R; at ¢ = Is we identify Ty
and R? since x and X coincide. By (H1),

AX, D) (G, H) =%c(X)‘(G + G", H + HT).

If we regard A(X, I) as belonging to L(L(Tx®, Tx%), L(Tx#,TxA)) and c¢(X)
as belonging to L(sym(Ty#, Ty%), sym (Tx3B, Ty%)), this last equation reduces
to

20X, I)- G = ¢(X)- (G + GT),

or, if G is symmetric, to
AX, I): G =¢(X)(G).

By (H2), solvability of the lincarized cquations of elastostatics can be determined
by the Fredholm alternative (see, e.g., MARSDEN & HucGHEs [1978]).

We shall let B: B —> R denote a given body force (per unit volume) and
v: 84 —>R* a given surfuce traction (per unit area). These are dead loads; in
other words, the cquilibrium cquations for ¢ that we are studying are:

[ DIV P(X, F(X)) + B(X) =0 for X¢ &

E
® : [P(X, F(X)) - N(X) = ©(X) for X¢c e
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where N(X)is t..éutward unit normal to 3% at X¢ 8# and DIV P is the diver.
gencet of P(X, F(X)) with respect to X, ’

Let & denote the space of all pairs (B, t) =1 of loads (with B of class J*~2
on # and with v of class W*~'~1r* on 98) with zero resultant:

[BXOYAV(X) + [ =(X)dA(x) =o0.
£ o

Here dV and dA are the volume and area elements on # and 23, Using the
divergence theorem, observe that if the pair (B, ) is such that (E) holds for some
$€ ¢, then (B,r)c &.

Throughout the paper, the group SO(3) ={Q€ LR RY)| QTQ =
and det Q = +1} of proper orthogonal transformations will play a key role.

By (H1), ¢ = I, (the identity map on 2) is a solution of (E) with B = ¢ =,
By the principle of material frame-indifference, ¢ = Q | # is also a solution for
any Q€ SO(3). Themap Q> Q | # embeds SO(3) into €; we shall identify
its image with SO(3). Thus, the “trivial” solutions of (E) are elements of SOQ3).

Our basic problem is:

(P1)  Describe the set of all solutions of (E) near the trivial solutions SO(3) for
various loads 1¢ % near zero.

Such a description is to include the counting of solutions, the determination of
their stability, and the demonstration that the results are insensitive to small
perturbations of the stored energy function and of the load.

§ 3. The Astatic Load and Axes of Equilibrium

This section is devoted to the geometry of the load space £. Many of the
results of this section are available in the literature, but we gather them here for
convenience.

Before beginning, we shall recall a few notations and facts about the rotation
group SO(3). Let

My = L(R* R3) = the space of lincar transformations of R3 to R3,

sym ={A€ M, | AT = 4},
skew ={Aec M, | AT = —A},

We identify skew with so(3), the Lie algebra of SO(3); skew and R? are isomorphic
by the mapping v€ R3 > i€ skew, where dw) =wxv. If v=(p,gqr)
relative to the standard basis, then

0 T —q
v=|-r 0 rl.
q —p 0

t Recall that P(X, F(X)) € L(Ty#,R%). For any ve¢ R3, P(X, F(X))T v decfines a
ector field PTv on 4. Its divergence defines DIV P by (DIV P) - v = DIV (PTv).

"@on

The Lie bracket is [§, W] =v @ w —w @ v = (vxw)" where v @ we M,
is given by (v ® w) (&) = v¢w, u). Theinner product is {v,w) =+ trace (V")
the Killing form on so(3). Finally, exp (¥) is the rotation about the vector v in
the positive sense through the angle |jv].

Now we turn to a study of 2. For ¢€ % and I¢ 2, we say that [ is equili-
brated relative 10 ¢ if the total torque in the configuration ¢ vanishes:

[ PX)XBX)dV(X)+ [ d(X)x2(X)dA(X) =0
4 o

} Symmetry and Bifurcation in Elasticity

where I = (B, r) and ¢(X) is the vector from the origin to the point $(X). From
the symmetry of the stress tensor S, one sees that if I = (B,t)€ £ satisfies
(E) for some ¢€ %, then ! is equilibrated relative to ¢. (An easy proof uses the
Piola transform; ¢f. MARSDEN & HuGHES [1978].)

Let 2, denote the loads that are equilibrated relative to the identity config-
uration [,

Define the astatic load map k: ¥ x¢ — M; by

K, 9) = [BLY) ® d(X)dV(X) + [7(X)® B(X)dAX)
] &

and write k(l) = k(1, I,).

We have actions of SO(3) on & and ¥ given by:

Action of SO(3) on £: QI(X) = (QB(X), Qz(X)),

Action of SO3) on €: Qd = Qo ¢.

Note that QI means “the load arrows are rotated, keeping the body fixed.”
We shall write @; and 0, for the SO(3) orbits of I and ¢. Thus, 0,, denotes the
trivial solutions corresponding to I = 0.

The following is a list of basic observations about the astatic load, each of
which is readily verified:

(A1) Lis cquilibrated relative to ¢ if and only if kI, ¢)€ sym. In particular,
lc &, if and only if k(I)€ sym.
(A2) (equivariance). For 1€ &, $€ ¥, and Q,, Q.€ 50(3),

k(Qil, Q:9) = Q,k(1, ¢) 07"

In particular, k(Ql) = Qk(l)
(A3) (infinitesimal equivariance). For l¢ L, $€C, and W,, W, € skew,

k(W\L ¢) = W,k(1,¢,) and k(l, W,¢) = —k(l, $) W,.
In particular, k(Wl) = Wk(1).

Later on we shall be concerned with how the orbit of 1€ & meets Z.. The
most basic result in this direction is the following.

3.1. Da Silva's Theorem. Let I¢ 2. Then ONZL, =0,
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Proof. By the puiar decomposition theorem, we can write k() = QTA for some
Q€ SO3) and A€ sym. By (A2), &(Ql)=Qk(l)=Ac sym, so by (AD,
Qlc?.. A

Similarly, any load can be equilibrated relative to any chosen configuration
by a suitable rotation.

The concept of an axis of equilibrium deals with the case in which 0, meets &,
in a degenerate way.

3.2. Definition. Let Ic &, and ve R3, flvll = 1. Such a v is an axis of equi-
librium for I when exp (09) I ¢ £, forallreal 0, i.e., when rotations of f about the
axis v do not destroy equilibration relative to the identity.

A number of useful ways of reformulating the condition that v be an axis of
equilibrium are as follows.

3.3. Proposition. Ler I1¢ %, and A = k()€ sym. The following conditions are
equivalent:

1. I has an axis of equilibrium v;

2, there is @ vER?, vl =1 such that dl¢ Z.;

3. Wi AW + WA fails to be an isomorphism of skew to itself ;

4. trace A is an eigenvalue of A.

Proof. [ = 2. This follows by differentiating exp(Ov)lin 0 at 0 = 0.
2= 1. By (A2), ,

i 1 |
k(exp (09) 1) = [I + (0v) + T(Of))’ + ] k(D).

Since k(9) = 0k(I) is symmetric, each term on the right-hand side of this last
equation is symmetric,

2=> 3, Since k(9I) = VA is symmetric, $A + AD = 0, so W AW 4 ¥4
is not an isomorphism.

3:=% 2. There exists a v€ R3, [lv|| = I, such that 4 + Ad — 0, so k(vh)
= pA is symmetlric, '

3¢ 4. Define L& M, by L= (trace A)I — A. Then

(Lv)" = Ab + BA.

(In fact, i [u, v, w] denotes the scalar triple product, the relationship [Bu, By, Bw)
=(det B) [u,v, w] gives [Au,v, w] - (11, Av, w] + [u, v, Aw] = (trace A) [u,v,w].
This yields (Lv)" = 0A + A", which gives the claimed results for symmetric
A). Thercfore, AD -- A =0 if and only if Lv =0, i.c., if and only if v is an
cigenvector of A with eigenvalue trace A. W

34. Corollary, Let 1€ %, and A = k(Y€ sym. Let the eigenvalues of A be
denoted a, b, ¢. Thenl has no axis of equilibrium ifandonly if(a + b) (a -+ ) (b + ¢)
r!: O.
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Proof. This condition is cquivalent to saying that trace A is not an cigenvalue
o A. B

3.5. Definition, I€ 2, is said to be a load of fype 0 if I has no axis of equilibrium
and if the cigenvalues of A = k(I) are distinct.

The following proposition shows how the orbits of type 0 loads mect &..

3.6. Proposition. Let 1€ &, be a type 0 load. Then 0, Z, consists of exactly
Jour loads of type 0.

Proof. We first prove that the SO(3)-orbit of 4 in M 3 under the action Q > QA
mects sym at four points. The matrix of A relative to its basis of cigenvectors is
diag (a, b, ¢). Then 0, N sym contains the four points

diag (a, b, c) Q=

(0 =diag (—1, —1, 1))
(Q =diag (-1, 1, —-0)
(Q =diag(l, —1, —1))

These are distinct points since (a + b) (@4 c)(d+¢) 0. Now suppose a,
b and ¢ are distinct. Suppose QA =S¢ sym. Then S$? = A2, Let #; be an
cigenvalue of § with eigenvector u,. Then S%u; = pu; = A%u,, so u? is an eigen-
value of A%, Thus, as the eigenspace of A2 with a given eigenvalue has dimension 1,
u; is an eigenvector of A and - ;is the corresponding eigenvalue. Since det Q =
+1, itfollows that det S = det A, and we must have one of the four cases above.
By equivariance, k(0 N\ sym = OwnNsym is a sct consisting of four
points. Now O,N &L, = k=" (04 N sym), so it suffices to show that k is one-
to-one on @, This is a consequence of the following lemma and (A2).

diag (—a, —b, ¢)
diag (—a, b, —¢)
diag (a, —b, —)

3.7. Lemma. Suppose that A€ sym and that dim ker A < 1. Then A has no
isotropy; i.c., QA = A implies Q = I.

Proof. Every Q == I acts on R? by rotation through an angle ¢ about a unique
axis, that is, about a line through the origin in R®. Now QA = A means that 0
is the identity on the range of A. Therefore if Q = I and QA = A, the range
of A must be zero-dimensional or one dimensional, so dim ker A =22. n

Finally in this section we study the range and kernel of &: % — M,.

3.8. Proposition. 1. ker k& cousists in those loads in 2, for which every axis is an
axis of equilibrium.

2. k: &~ My is surjective.

Proof. 1. Let Ickerk. For W skew, A(WI) = Wik(l) =0 so Wic #.;
by 3.3 every axis is an axis of equilibrium. Conversely, if Wie 2, forall W¢skew,
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then k(WI) . ; k(1) is symmetric for all W; ie, k() W ++ Wk(l) =0 for al
W. From (Lv)" = AV 4 A, where A4 = k(), and L = (trace A)J -4
we see that L = 0. This implies that trace 4 = 0 and hence 4 =0.

To prove 2 introduce an invariant inner product on & under S0(3):
B = [ <BON, B> dVx) + [ (o), 1700 dA(x),
L4 o
Relative to this and the inner product trace (ATB) on M,, the adjoint 47
My—> % ofkis given by

!
k(D) = (B, 7), where B(X)=DX — G,

t(X)=DX - G,
and
G = u DX dv(X) +e£ DXdA(X)]/[J dv + Ju‘dA].

If k(D) = (0,0), then it is clear that D — 0. It follows from the Alternatise
Theorem that & is surjective. m

3.9. Corollary. 1. ker & is the largest subspace of &, that is invariant under SO(3).

2. k| (ker k)L:(ker k)L — M, is an isomorphism.
Let j=(k| (ker k)4)~' and write
Skew = j(skew), Sym = J(sym),

These arc linear subspaces of & of dimension 3 and 6 respectively. Thus we have
the decomposition:

SO(3)-invariant pieces
|
| /
£ = Skew @ Sym @ ker k
“
Z.
corresponding to the decomposition My = skew @ sym; U = +(U—-UY+
1 T .
(U +TY).

Note: Skew and 2, need not be orthogonal.

§ 4. Equivalent Reformulations of the Problem

Define: 0:%¢ > @ by ¥(¢)=(—DIVP,P- N), ie.,
D(4) (X) = (=DIV P(X, F(x)), P(x, F(X))- N(X))

so the equilibrium equations (E) become @(¢) =1, The principle of material
frame-indifference implies the equivariance of @: $(Q¢) = Qdx¢). Standard
Sobolev estimates show that @ is a smooth mapping (sce, for example, PALAIS

™ Symmetry and Bifurcation in Elasticity

[1968]). The derivative of @ is given by

Ddb(¢)-u =(—DIV(A-Vu), (A-Vu)-N)
wmd at ¢ =I5 this becomes
DP(ly)-u =(—DIV(c-e), (c-e):-N)

shere e =4 [Vu 4 (Vu)T).

If Dd(I,): T, w8 —> &£ were an isomorphism, we could solve D) =1
miquely for ¢ near I4 and I small. The essence of our problem is that DP(1,)
s #ot an isomorphism: since D(SO(3)) =0, ker DD(I,) contains skew.

Define %y ={u€ 7)€ | u(0) =0 and Vu(0)c sym}. From (H2) and
fom the lincar theory of elasticity we have:

Ll Lemma. DP(L,) | Gyt Coymn — &L, is an isomorphism.

The connection between the astatic load map k: % — M, and 9 is seen from
he following computation of 4o @,

12. Lemma. Let €% and let P be the Sirst Piola-Kirchhoff stress tensor at ¢.
Then

Ko@) = [P av.

This result follows by application of Gauss’ theorem to

k(D(¢4)) =J(-—DIV P)® XdV(X) + J (P-N)® X dA(X).

This expression for k(%(¢)) should be compared with the astatic load relative to
he configuration ¢ rather than / #: il @ denotes the Cauchy stress, then

KP($),9) = [adV,
E

shich is symmetric, while k(D(¢)) = k(d(¢), I5) need not be.

To study solutions of ¢($) =1 for ¢ near the trivial solutions and I near a
zsiven load I, it suffices to take b€ £.. This follows from DA SILVA's theorem
md the equivariance of . -

Let €,,m be regarded as an affine subspace of & centered at I,. Let & be the
restriction of & to Com. From the implicit function theorem and Lemma 4.1
ve get:

3. Lemma. There is a ball centered at Ig in Gy whose image N under & is
1 smooth submanifold of £ 1angent to ZLe at 0 (see Figure 1). The manifold & is
the graph of a unique smooth mapping

F: %, Skew
mch that F(0) =0 and DF(0) = 0.
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Sym
4
Skew
O
A =
/

Later we shall show how to com 2 i
pute D*F(0) in terms of Dd(/,)-"
Now we are ready to reformulate problem (PI). (al™ and ¢

‘6’sym

\)

Fig. 1

(P2) Foragi . :
) ! nearg;:,m lo€ . near zero, study how 0, mects the graph of F for various

Problems (P]) and (P22 are related as follows. Let ¢ satisly (E) with lc ¥
and let Q be such that $ = Q€ Gy Then &) = QI, so the orbit of !
meets the graph of Fat &(g), Conversely, if the orbit of I meets .4 at (¢) = Ql.

—_ _l - - -
tlfl‘cn 14) = Q~'¢ satisfies (E). We claim that near the trivial solutions, the numbers
ol sotutions to each problem also correspond. This follows from the next lemma.

4.4. Lemma. There is a neighborh ,
ighborhood U of I f R
Qb U, then Q =1 f Lg in Gy such that if $€ U and

Proof..Nole that €, is transverse to 0,, at Iy and I, has trivial isotropy. Since
SO0Q3) is c?mpact, 0,, is closed. Thus there is a ncighborhood U, of I in 4.,
:;::u;lha:llgm()”l 5’86 ﬁﬁ,, I:her:j Q = I The same thing is truc of orbits passil'w
all neighborhood of 7, by the openn ans i ¢
compactness of SO0 2 bY penness of transversality and the
o i:rla,l meels A" in k points Q= @A), i=1,...,k, then ¢ are distinct as
s l- on a nelgh'borhood of Iy in %y, (by the implicit function theorem). If
this ncugh!)o_rhood is also contained in U of 4.4, then the points O-“'#; =¢
are also distinct by 4.4. flence. the problems (P1) and (P2) are t’quimk';u. '

) ( ’ )

1
Skew (4) = 5 (4 — A€ skew (3.2a)

’% Symmetry and Bifurcation in Elasticity

"@m

(3.2b)

ind
1 T
Sym (A) =7 (A 4 A')€E sym

¢ the skew symmetric and symmetric parts of A, respectively.

We shall abuse notation by suppressing j and identifying Sym with sym and
skew with skew. Thus we writca load 1€ & as [ = (A, n) where A =k(I)e M,
ind nckerk; hence 1€ %, preciscly when A€ sym. The action of SO(3)
a2 is given by

Q! = (QA, Qn).

Using this notation, we can reformulate problem (P2) as follows:
P3) For a given l, = (Ay, o) € L, near zero, and 1 =(A,n) near ly, find
Q€ SO(3) such that
Skew (QA) — F(Sym (QA), Qn) = 0.

Define the rescaled map F: R X £, — Skew by
- 1
FAD = T F(21).

Since F(0) =0 and DF(@0) =0, Fis smocth. Moreover, if F(I) = -5— G(h +
+C() + ... is the Taylor expansion of F about zero, then F(, 1) = e} G{) +

2—'C(l)+...; here G() = D*FO)(,1) and C(l) = D*F(O)(l, 1, ).

In problem (E) let us measure the size of I by the parameter A, Thus, replace
(¢) = I for I ncar zero by () = Al for A near zero. This scaling enables us
to distinguish conveniently the size of I from its ‘orientation’. In the litcrature I
has always been fixed and 4 taken small. Here we allow I to vary as well. Thus we
arrive at the final formulation of the problem. :

(P4) For a given 1, = (A, ny) € 2, for L near Iy and for 2 small, find Q € SO(3)
such that :

Skew (QA) — AF(A, Sym (QA), On) = 0.

The left-hand side of this equation will be denoted H(Z, A, nn; Q) or H(J, Q)
if A and n are fixed.

§ 5. Loads of Type 0, having no Axis of Equilibrium

We shall begin the analysis by giving an (almost trivial) proof of one of the
basic theorcms of StoprELLL [1958] *:

* The only other complete proof in English we know of is given in VAN Buren [1968],
although sketches arc available in Griov) [1962], TRUESDELL & NoLL [1965) and WANG

& TruespeLL [1973). Our proof is rather different; the use of the map F avoids a serics

¢ of complicated estimates used by StorreLil and VAN BUREN,
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S.1. Theorem, _dppose I¢ £, has no axis of equilibrium. Then Jor 4 sufficiem;
small, there are a unique ¢ ¢ Coym and a unique Q in a neighborhood of the identir;

in SOQ3) such that ¢ = Q-1¢ satisfies the traction problem

Proof. Define H: R xS0(3) - Skew as above by

H(, Q) = Skew (Q4) — AF(3, Sym (Q4), Qn)

where 1 =(A,n)c &, = Sym @ ker k& is fixed. Note that the partial derivatji.
is DoH(0, I)- W = Skew (WA) = 3 (WA 4+ AW). By Proposition 3.3, DyH(0. /.
is an isomorphism. Hence, by the implicit function theorem, H(Z, Q) =0 can bk
uniquely solved for Q near I¢ SO(3) as a function of A near 0¢€ R. |

The geometric reason “why” this proof works and the clue to treating othe-
cases is the following.

5.2. Lemma. 4 Joad ¢ &L, has no axis of equilibrium precisely when & = &,

@ T,0,. In particular, if' 1 has no axis of equilibrium, then O, intersects L, tran-
versely at 1.

Proof. The tangent space to ¢, at I¢ L. is 10, = {WI| W¢ skew}, and it
projection of this into the complement Skew to L is Wirs 4 (WA + AW
where A = k(!). The result then follows from part3 of 3.3. m

We have shown that there is only one solution to PD($) = Al near the identit,
if 4 is small and ! has no axis of equilibrium. How many solutions are there nc:
the trivial solutions SO(3)? As we shall see, this problem has a non-trivial answe:
which depends on the 1ype of I. We analyze the simplest case here. Recall fror
Definition 3.5 that a load I¢ Z. is said to be of type 0 if ! has no axis of equ-
librium and if A = k(l) has distinct eigenvalues.

Loads with no axis of equilibrium occur amongst other types of loads classifi:
in the next section, and StoppeLLI'S Theorem 5.1 applies to them. However, (-
global structure of the solutions (“global” being relative to SO(3)) is differs-
for the different types. For loads of type 0 the situation is as follows.

5.3. Theorem. Let I, &, be of type 0. Then for ), sufficiently small, d(¢) = ;!

has exactly four solutions b byand ¢ ina neighborhood of the trivial solut:. -
SO(3)C ¥ (see Figure 2).

Proof. By 3.6, €1, meets &, in four points. By 5.1, ina neighborhogd of Oin -~
Ox, meets A" in exactly four points, the images of ¢,, ¢,, ¢; and ¢, say. T

problem (P2) has four solutions. By the equivalence of (P1) and (P2). s0 ¢ -
(Pl). m

Let A =£k() and S, ={Q| QA< sym). From the proof of 3.6 we »<
that S, is a four-element subgroup of SO(3) isomorphic to Z, © Z,. By o
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arlier discussions, the clements ¢; are obtained from 4;; by applying rotations close
10 elements of S,. In particular, as 2 - 0, the solutions {¢:} converge to the four-
dement sct S, (regarded as a subset of 7).

S0(3); the é
{riviol solutions

Fig. 2

For I sufficiently close to Iy, the problem #(¢) = Al will also have foqr solu-
ions, Indeed, by the openncss of transversality, @, will also meet 4 in four
~oints. In other words, the picture for loads of type 0 in Figure 2 is stable under
mall perturbations of I,. )

Next we study the stability of the four solutions found in Theorem 53 This
+ill be done under the hypothesis that the classical elasticity tensor ¢ is stable;
¢. that it satisfies

H3) There is an > 0 such that
1
ge) := ?c(X) (e,e) =9 e|?

Jor all  ecsym(TyB, Tv#). (Here -1 is the .p_ointwise norm and
&(e) is the stored encrgy function for linearized elasticity.)

Because of difficulties with potential wells and dynamical stability in elasticity
¢ KNors & WiLkes [1973] and Barr, KNops & MARSDEN [1978]) we shall
pt the following “energy criterion” definition of stability.

4. Definition. A solution ¢ of D(¢) =1 will be called stable if ¢ is a local
mimum in € of the potential function

Vild) = [ @) dV — I, )
“

ere

h¢> = [BX)-$(X)dV(X) + [ (X) -$(X)dA(X) = trace k(I, ¢).
2 &
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If ¢ is not stac.] its index is the dimension of the largest subspace of vectors y
tangent to ¢ at ¢ with the property that ¢ decreases along some curve tangen i
u. (Thus, index O corresponds to stability.)

5.5, Theorem. Ler (H1)—(H3) hold and lct do be as in 5.3. For 2 sufficiently smal;
amongst the four solutions ¢,, $1, $3, b4 given by 5.3, exactly one is stable; i,
others have indices |, 2, and 3. Suppose ¢ is a solution approaching Q€ S, ¢
A—>0. Then ¢ is stable if and only if QA — trace (QA) Ic sym is positir,.
definite. In general, the index of ¢ is the number of negative cigenvalues o
QA — trace (QA) L. '

Proof. Let ¢,€ ¢ satisfy &(¢,) = Aly = 1. Then ¢, is a critical point of ¥;,.

Consider the orbit 0,, = {Q¢,| Q¢ SO(3)} of ¢o. Its tangent space decompose-
T, % as follows:

T&o(g = nnwéu @ Téo(aéa)l‘

First consider ¥, restricted to (TeuC%s,)*. Tts second derivative at $o in the direction

2

e
of ue (T, 0,0 is [ 7 ar @ (i, Vu) dV. At2=0,$0€ S0 (3) this become.
F;
;,f o(X) - (e(X), e(X)) dV(X), where e =4 (Vu + (Va)"). This is larger than

a positive constant times the square of the £2 norm of e, by (H3). As u¢ (T,0,)-.

leli: = (constant) | u%. by Korn's incquality (see FicHera [1972]). By con-
tinuity, we have in general

DV o) - (1, 1) = 6 | )2,

if u is orthogonal to Oy, at ¢ and 2 is small. This inequality implies that ¢, is
a minimum for Vu, in directions transverse to 0., (Actually one can see tha
$o is a local minimum in the topology of ¢ on (74,0:,)* by using the version of the
Morse lemma given by Trompa [1976) or by GOLUBITSKY & MARSDEN [1982])

Next, consider Vy, restricted to 0,,. By material frame-indifference, I’ is
constant on €, . Since ¢, must be a critical point for ¥, restricted to 0, it i
also a critical point for Al, =1 restricted to @, (where I($) = <, $)). It suf-
fices therefore to determine the index of 1 | O, at ¢g. The result is now a conse-
quence of continuity and the limiting case 2->0 given in the following lemma
about loads of type 0.

5.6. Lemma. Let ! be of type 0 and ler A — k(). Then S,, regarded as a subsct
of 6, equals the set of critical points of 1o, 4+ These 4 critical points are nonde-
generate with indices 0, 1, 2, and 3; the index of Q is the number of negative eigen-
ralues of QA — trace (QA) 1.

Proof. First note that &, = (T:SO3))! since DUKI,) has kernel T,50(3) =
skew, has range %, and is sel-adjoint. Thus Ql¢ &, ifand onlyif 1 | TorSO(3).
It follows that Ql¢ &, il and only if Q7 is a critical point of !| @, . (Recall
that clements of S, = {Q€ 5003)| Qte £} are symmetric.) *

Symmetry and Bifurcation in Elasticity . . 311

'—.E compute the index of 1| 0,, at Q€ S, we compute the second deriv-
ative
2

d
72 exp (W) Q) |,.0 = [(W2Q).

Now
I(W2Q) = trace k(I, W2Q) = trace [k, Q) w?)

= trace [AQ~"'W?] = trace [W2QA]

because Q-! = Q. This quadratic form on skew is represented by the element
QA — trace (QA) I of sym as is seen from UA + AD = (Lv)" with A replaced
by QA and trace (§7i) = 2v - w. Using the representations for {QA} given in
Proposition 3.6, namely

diag (a, b, ¢), diag(—a, —=b, ¢), diag (—a, b, ~c) and diag (a, —b, —0)
one checks that all four indices occur. m

Remark. This lemma is a special case of the general problem of studying the criti-
cal points of linear functionals on orbits of a representation of a Lic group. This
situation will arise again in_our analysis of the other load types; ¢f. FRANKEL
[1965] and RaMAaNwIAM [1969). .

§ 6. Classification of Orbits in M,!

The purpose of this section is to classify orbits in M, under the action
(Q, 4) = QA of SO(3) on M, by the way the orbits meet sym. The polar decom-
position theorem implies that it is enough to consider orbits 0, of elements of
sym. We begin by recalling Proposition 3.6 (another proof of which will be given
below).

6.1. Proposition (Type 0). Suppose A€ sym has no axis of equilibrium and has
distinct eigenvalues. Then @4 N sym consists of four points, at each of which the
intersection is transversal,

We shall let the eigenvalues of A¢ sym be denoted a, b, c. Using the ter-
minology from § 3, we say that A has no axis of equilibrium when (a -+ b) (b + ¢)
(@4 ¢)+0; ie,when a+b-+c=a,borc Inthiscase 04 intersects sym
transversely at A.

6.2. Definition. A is said to be of type 1 if A has no axis of equilibrium and if ex-
actly two of a, b, ¢ are equal and non-zero (say a = b + ¢ a=0).

t The reader may gain some insight by replacing the ““abstract” proofs in this section
with explicit matrix computations. This is, of course, how we originally obtained the
results.
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63 Propo§itio: é‘A f's of type 1, then @, N sym consists of two points (each
with no axis of eqitilibrium) and RP* S* (cach point of which has one axis of
equilibrivm).

. Bf:fore proving this,.we give a number of lemmas of general utility. If /¢ RE?
s a line through the origin in R3, let Q,be the rotation through angle = about /,

6.4. Lemma, /s Q; is an embedding of RP? onto SO3) N sym\ I

Przoof. It 'is clear that /> Q, is a one-to-one map of RP? into SO(3). Since
Q7 =1, it follows that Q=07 = Qf. Hence Q, lies in SO(3) N sym.
Every Q¢ SO3)\ I is a rotation through some angle 0 about some axis i

g‘ such Q also is symmetric then it has three independent real eigenvectors. Hence
=n N

6.5. Corollary. The orbit Oy of the identity meets s ]
ym at one point (I) and at
RP? 2 (S0(3) N sym)\ I d (@) and a

6.6. Lemma. Let A€ sym with dim ker A = 1 and suppose that Q¢ So3)\1

and QA€ sym. Then Q = Q: for some line | invariant under A, and in parti-
cilar Q€ sym.

[’rf)of. We can suppose Q =1, By Euler’s theorem on rotations, there is a
unit vector x¥€ R® (unique up to sign) such that Qx =x. Since QA¢ sym,
we have QA = AQT, so QAQ = A. Thus QAx = A%, so As =cx fora
Fonstflnt ¢. Hence Q and A leave V=xl the orthogonal complement of
Invaniant, and A is not identically zero on V., - ’

Let §=QA€sym, so $* = A2 Since Q| V is a rotation, it follows
that S| ¥ =4A|V. Thus Q =1 or Q = Qy.) where /(x) is the line through
. Then Q€sym as in Lemma64. m

'lt follows that if dim ker A =1 and QA€ sym, then QA = AQ. Since
Q is both orthogonal and symmetric, A and Q can be simultaneously diagonalized.

?roof of 6.1. If A has distinct eigenvalues, its eigenvectors are unique, up to
«calar factors, so Q is either I or a rotation by = about one eigenvectors. M

’roof. of 6.3. Suppose that 0 fFa=>b=c and let w be an eigenvector corres-
:ondmg' to the eigenvalue ¢, Let ¥ be the plane orthogonal to w so ¥ is the eigen-
pace with eigenvalue a. As Q and A can be simultaneously diagonalized and Q
sa ro{aliqn by z (excluding Q =1I) we have cither Q=0 or 0=0Q,
orla Ime. in V. In the former case, QoA is has eigenvalues (—a, —a, ¢) and so
1as no axis of equilibrium. In the latter case, Q;A has eigenvalues (a, —a, —c)
O W Is an axis of equilibrium (sce 3.3). m

.7. Corollary. The RP! iy Proposition 6.3 is a right coset of the subgroup S},

Tall rotations about w; in fact RP* = Si{Qu | o isaline in V, the plane ortho-
onal to w},
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1}1‘. RP! ={Q,| /¢ ¥} and we have the easily verified identity
Olwz = &xp (0‘1’) olo

where /, makes an angle 0 with /, (in the positive sensc) in V. ®
These lemmas also enable us to handle the next type.

6.8. Definition. A is of ype 2 if A has no axis of equilibrium and all three of ab,c
are cqual (and so Q).

6.9. Proposition. If A is of type 2, then 0, N\ sym consists in one point (A) and
an RP?,

Proof. This is immediate from 6.5. W

Notice that each point of RP? has a whole circle of axes of equilibrium;
namely Q;A has as axes of equilibrium all vectors orthogonal to /. The eigenvalues
of Q,A are a, —a, —a.

Types 0, I, and 2 exhaust all symmetric matrices with no axis of equilibrium.
Itis casy to check from the results above that any symmetric A with dimker A < |
lies on the SO(3)-orbit of a matrix of type 0, 1, or 2. From now on we shall say
that these orbits, or any representatives of them, are of ype 0, 1, or 2.

Finally we turn to the remaining A’s with an axis of equilibrium that is not
already on an orbit of type 0, 1, or 2.

6.10. Definition. A is of type 3 if dimker A =2and A is of ype 4if A =0.

6.11. Proposition. If A is of type 3, then 04 /\ sym consists in two points, A and

Proof. § = QA ¢ sym implies that $? = A2? and so again § = -4 asin 6.6,
even though possibly A| ¥ =0. In this case Q could be any rotation about
(x). m

All the foregoing information can be summarized as follows:

6.12. Theorem. The SO(3) orbits in M, fall into five distinct t ypes according to
the way in which they meet sym (see Table 1 below). Furthermore, if A€ sym,
Sa ={Q| QA€ sym} consists in I\ {Q} for all | invariant under A (and hence

Sa C sym) except if
() dimkerA =2,

in which case Sy also contains the rotations through any angle about the eigen-
axis of A corresponding to the non-zero eigenvalue, or if

73] A=0
in which case S, = SO(3). (See Table 2 below.)



Axes of
Equilibrium

Dim orbit
Nsym

Isotropy
none

Eigenvalues
a, b, c distinct’
(@a+b)(a +¢)
Xb+e)+0

Set
I, € cigenspaces of A

Table 1. Orbit types in A 3 under the SO(3)-action
A, {Q, A}

Picture

four points

Orbit

Type Dimof Orbit N sym

CHILLINGWORTN, J. E. MARSDEN & Y. I1. WAN
" w Symmetry and Bifurcation in Elasticity ’—% 315
gy I 028~ 388 _|. 2 Table 2
§s 9 §38o 288> (8
2E& £ =gt se3Fo M2 Type of A Description of S,
e ST e S
9 —_= = 0 four points
K e | two points and RP! » S
2 one point and R P2
ee ew © @ e 3 two disjoint circles
4 S0(3)
g2 2 g2 - - a
g2 2 ee “w v S Remarks.
I. Table 1 highlights the fact that having an axis of equilibrium or not is not an
i invariant of the SO(3) action on . This means that there are equilibrated
~ o~ S loads having an axis of equilibrium, but which, when rotated globally by a
ST D s =3 ' g q Tl
SERCE| "i" ] + < s certain amount to another cquilibrated load, no longer have one.
L B s v 2 ', o 2. Thus, by Theorem 5.1, we get existence of solutions to the traction problem for
- ¥ | < s = | all types of astatic loads except 3, 4.*
s = 83 s - 3. The notion of type can be pulled back from M, to 2 with a little care, as we
K see below. :
'E - > 6.13. Definition. By analogy with our definition
£
S 8=8 <
CENE 5 o | g Sa={0€50%)| Qacsym}, Ac M,
Sygweg <% < s
= _% ;;,;::) - < = which we applied when A is of type 0, let us now write
A S E
S = s S, ={Q€ S03)| Qle £}, le 2.
(=}
§ From the equivariance of £ we clearly have
-]
* ' . & - § 6.14. Lemma, S‘ = Sk“).
* 3
5 Note that the map of S, to @4 Nsym given by Q — QA is an cmbedding
B for types 0, 1, 2 but not for all types 3 and 4, because of the isotropy. Pulling back
- Z | to 2, weseethat Q — Q! isan embedding of S, to O; N\ &, if k(l)is of type 0,
g z 2 E E I or2, so we can refer to / as being of type 0, I, or 2 according as k(l)is. On the
8,"57; §'§é H g G other hand, if k(I) is of type 3 then either
o o o -
2 5 £ 5§ | 2 @ ONZ ={l -1
&
= or
4
L ™ ) o E (b) N2, =two disjoint circles in {f, =1} + ker k.
3 .
- ~ - Ny ke * In particular, STorreLLr's failure to find solutions for certain loads of type 1 is
scen to be due to neglect of the full rotation group (sce Scction 8). Our results are also

consistent with those of BaLw [1977].
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. Finally, if k() is of type 4, then @, Ckerk C 2, and any SO(3) orbit ¢
is allowable, '

Figure 3 illustrates some simple examples of loads of different types. These
loads are all pure traction, with B = 0.

Axis of equilibrium

AN

Type 1 Type 2

Type 3a

Type &
Fig. 3. Load types
Type 1.. Rotation by 180° about one of the horizontal axes produces an equilibrated
load with no axis of equilibrium.

Type 2. Any horizontal axis is an axis of equilibrium; vertical axis is not an axis of cqui-

librium. Rotation by 180° about the vertical axis gives an cquilibrated load with no axis
of cquilibrium.

Type 3 (a). :I'he load itself admits a circle group of symmetries about the axis « —which is
thus an axis of equilibrium.

Type'3 (b). The load .is not symmetric, but the astatic load remains constant under
rotation about the axis #—which is thus an axis of cquilibrium,

Type 4. The astatic load is zero: all axes arc axes of equilibeium,

Y
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§ 7. The Bifurcation Equation and its Gradient Character

According to the formulation (P4) of our problem, we wish to solve the equa-
tion H(, A, n; Q) =0 for Q, where

H(Q, A, n; Q) = Skew (QA) — AF(4, Sym (QA), Qn),

(A, n) is near (A,, no) € £, and 4 is small. In this section we perform the Lia-
punov-Schmidt procedure on this equation and show that the resulting bifurca-
tion equation is essentially a gradient.

Define the right-invariant vector field X,, on SO(3) by

X4,(Q) = skew (Q4,)- O,

which is a right translation of skew (QA,)€ so(3) = T;SO(3) to TeSO(3).
Likewise, we shall regard H as a right-invariant vector field on SO(3) depending
on the parameters 4, A, nn by setting

X(, A, n; Q) =k(H(,A,n;Q))- Q.
Thus,
X(0, Ao, 1105 Q) = X,4,(Q).

Finally, note that S,  is the zero set of X, ; i.e.,
Sa, = {Q € SO(3) | skew (QA,) = 0}.

What S,, is for various types of loads was given in Table 2 above.

7.1. Lemma. Suppose Aq € sym is of any type. Then for Q& Su,,
ToSs, ={WQ | Wcskew and WQA, + QAW =0} = ker DX, (Q).

Proof. The second equality is clear for any Ay, because DX, (Q): WQ > skew
(WQAy) - Q. For the first one, the inclusion C immediately follows by differen-
tiation of X, (Q) =0 in Q. Equality then follows by a dimension count; rccall
from 3.3 that v+ v gives an isomorphism from the space of axes of equilibrium
for A (not necessarily of unit length) to the W¢ skew such that WA 4 AW
=0 MW

Recall that W WQA, + (QA,)T W corresponds to the linear transforma-
tion trace (QA,) I — QA, under the isomorphism of skew = s0(3) with R3.
When Q€ S,,, QAyis symmetric, so this transformation is symmetric relative
to the Killing form on so(3). This remark and 7.1 yield the next lemma.

7.2. Lemma. Suppose A, is of any type. Then at each point Q of S,,u,' the range
of DX,4(Q): ToSO(3)— ToSO(3) is the orthogonal complement of ToSa,.

Next we recall a general context for the bifurcation of vector fields that will
be applicd to our situation (¢f. REEKEN [1973]). Let Af and .1 be manifolds and
X: MxA—TAM a smooth vector field on A depending on the parameters
A€ /1. We scek the zeros of X, For 4 = 4,, suppose the zero set $of X is a known



318 =%, J. CiLLingworTH, J. E. MARSDEN & Y. H. WAN

smooth compact submanifold of . Assume that A7 carries a Riemannian metric
and that for x€ S, the range of D.X(x, 2,) is the orthogonal complement of
T.S. The normal bundle E of § trivializes a neighborhood U of S. For each
XCU, let P:T M T Sa be the orthogonal projection to the fiber Sater
over a(x), where x: E— § is the projection. By the inverse function theorem,
there is a unique section ¢,: 5~ £ such that P.X(¢,(x),A) =0 for x¢§
and 2 in a neighborhood of 4, (by use of the fact that S is compact), Let
X(x, 2) be the orthogonal projection of X(x, ) onto the tangent space to the graph

of ¢, at a point x on the graph. Thus, /\7(x, 2) is a vector field on the graph of ¢,
and finding its zeros is clearly equivalent (for small 2) to finding zeros of Y,
We call the equation X(x,4) =0 on the graph of ¢, the bifurcation equation,
Since S and the graph of ¢, are diffeomorphic under ¢,, we can cqually well regard

X as a vector field on S. This reduction of the problem is often known as the Lia.
punov-Schmidt method.

The above procedure may be applied to our vector field X(4, A, n; Q) with
parameters (2, A, n) and variable x = Q€ SO3) = M. Assume 2 is near zero
and (A, n) is near a load (Ay, 1,) where Ay is of arbitrary type. Thus, there is a
unique section $1,4.n Of the normal bundle to S, determined by the Liapunov-
Schmidt procedure as described above. Let I'(2, A, n) denote the graph of 140
and let X(4, A, n; Q) be the orthogonal projection of X to the tangent space of

I’at Q. Thus, X is a vector field on I'. As above, we may also regard X as a vector
field on S,

The rest of this section is devoted to proving that the essential part of X i
a gradient. In the general context above, if X is a gradient, then so is X since the
orthogonal projection of a gradient vector field to a submanifold is the gradient
of the restriction. This simple version does not directly apply to our situation as
X need not be a gradient vector field on SO(3). However, the “second order”
Taylor approximation X, of X will be.?

To state our gradient results, recall that in § 4 we defined the quadratic func-

tion G: £ .—>skew Lo be the second order term in the Taylor expansion of F
- | A

tbout 0. Thus F(4, 1) =~2—G(l) + 3 C() + ... where G(I) = D*F(0) (I, )]

's a quadratic function of L. The appropriate second order approximation to the
vector field X will thus be defined by

XA n; Q) = [skew (QA) -%}.k G(Olo)] - Q.

Let ,f’, be the second order approximation of the vector field X on S,, obtained

wy the Liapunov-Schmidt procedure. Thus, A.;;(O) is the orthogonal projection
of X; onto the tangent space TpS,, for Q¢ Sa,-

t A somewhat more invariant procedure for this construction is given in the next
vaper in this series.
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1.3. Theorem. Suppose that A, is of arbitrary type. Then X. 2 IS a gradient vector
ficld on Sa,. In fact, X 2 = —prad f, where
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1 1 '
N0) = <y, Q1) + <’o. “2—')- QT“Q> = lo, QML) - TA-! Vug, e(Veg)y dV

and Ug = D@(Ig)"(Olo); i.e., ugq is the unique solution in €y, of the linearized
cquations with load Ql,€ 2..

Recall that the pairing between loads I = (B, r) and configurations (or dis-
placements) is given by

L$> = [B(X)-p(X)dV + [ =(X): Pp(X)dA = trace k(l, ¢)
] o
and physically represents a potential for the working of the loads. Observe that

if 1€ %, then (I, QTy> = trace (AQ) = trace (AQT) = ¢/, Q1> for all
Q€ SOQ3).

Remark. In the second term of X, and f we can replace I, by I. Indeed, thf: di.ﬂ‘cr-
ence is of higher order, so the use of I, is sufficient for subsequent applications.

To prove 7.3, we shall show that X, is a gradient field on SO(3) which, by
the remarks following 7.2., is sufficient. ) )

We proceed in two parts. Let us first show that X,4(Q) is the gradient of
L, Q714> on all of SOE3).

14. Lemma, Let 1€ % and A =k(l). Let the vector field A:A on SO(3) be
defined by Xa(Q) = skew(QA) - Q as above and Iet-the map ! of SO3) 10 R
be defined by 1(Q) = I, Q"1,>. Then X, = —grad .

Proof. Two simple, but useful observations are that if E, W€ M,, with W ¢ skew,

then
(E, W) = (skew E, W), ¢))

and if EC M,, 1€ % and ¢$€ ¥, then
I, E$)> = (E, k(i, ). @
To prove 7.4, we compute as follows:
di(Q) - (WQ) = (I, (WQ)" I»>
=<{WO)", k(1, 1,)> by (2)
= (WO, 4> = (WT, 04)
= —(W, skew (QA)> by (1)
= —(WQ, skew (QA) - 0> = — (WQ, X4(Q)>. ¥
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This result takes care of the first term of A;,. To deal with the second term, we
need a special case of Betti’s reciprocity theorem:

7.5. Lemma. <Ql,, ttyyo) = (WQ) Iy, o) for Ql, and (WQ) I, € Sym.

This is a direct consequence of the symmetry of DD(ly), i.e., of the elasticity
tensor. It is also proved in standard references; for example, see TRUESDELL &
NoLv [1965]; p. 325.

To prove 7.3., we shall also need to calculate the second derivative of the
skew component of @; i.c., of F(¢) = Skew [k(D(¢))]. Surprisingly, this second
derivative depends only on the classical elasticity tensor ¢. Recall from § 2 that
we regard ¢ as a linear map of sym to itself and that we write e = 4 (Vu + Vu)h.

7.6. Lemma. Let & :% —> skew be defined by F(¢) = Skew [K(2($))). Then
F(ly) =0, DF(I3) =0 and

D2*F(I4) (u, 1) = 2 Skew U Vu - c(e) dV) = —2 Skew k(I,, u)
where 1, = (b, Tu), b, = —DIV (c(e)) and v, = c(€) - N. If we identify skew
with R3, this becomes

—D*F(14) (u, u) = [b,xudV+ fTaxudd.
2 o

Proof. By Lemma 4.2,, #(¢) = Skew [ f P dV] where P is the first Piola-Kirch-
<

hofT stress tensor. We have P(Iz) =0, so F(Iy) =0. Also, DF(ly) u=

oP
skew | —-VudV=Skew [c-edV =0, since c-e is symmetric and since
:;/‘ oF xf

oP .
ﬁ(l_ry) =c¢. To compute D2F, we shall need to use the fact that § is sym-

metric. Write P = FS and use the product rule to obtain DgP(F)-Vu =
Vu - S(F) + FDzS(F)-Vu. Thus, as S(/,) =0,

DiP(l,) - (Vu, Vv)
=Vu-DS(ly) Vv + Vv - DpS(ly) - Vts + DES(1y) - (Vu, V).

Now DgS(ly)-Vu =DcS(ly)-(Vu +Vu") =c-e and DIS(ly) is sym-
metric, so

D*F(1,) (1, u) = Skew [ DEP(Iy)-(Vu,Vu)dv
P

= 2 Skew (,f Vu - ¢(e) dV) .

2
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Finaliy, this equals
—25kew{jb., QudV+ [r,® udA}
¥ o

by the divergence theorem, so the last statement follows. ¥

1.7. Example. For a homogeneous isotropic material,
c(e) = A (trace €) I + 2ue
where e = 4 [Vut + (Var)") and 4, x are the Lamé moduli. Thus

D2F(I4) (u, u) = 2 Skew (;,f {AVu - [trace (Vu)] I +2u Vu - ¢} dV)
=2 SkewJ{ﬂ. [trace (Vu)]Va + u Vu-Vuldy. ®

Let us next sce what 7.6 says about the quadratic term G in the Taylor expansion
of F. For ¢$€ %y, we have the identity

F(¢) = FPD($)

where P,: ¥ — %, is the projection and F is the mapping given by 4.3. Thus,
because DF and DF are zero at I and O respectively, and P, D(I;) = DP(l,),
we get

D*F(Ig) (2, v) = D*F(0) D(P(Ig) - 11, DP(Ig) - v).

Let u; = DP(I5)~" 1. Then for 1€ £, we have the identity

G(l) = D*F(Iy) (u, wy),
ie.,

—G(I) = 2 Skew Lfb ® w,dV + f T QU dA]
o8
= 2 Skew k((b, z), u;)
where b= —DIV(c-(e)), z=cle):N and e =+ [Vu, 4+ (Vu)

However, these last equations say exactly that (b, r) =1, and so we get

- % G(l) = Skew k(, u). (€)

Completion of the proof of 7.3. The derivative of Q> (o, +2 QT > in the
direction WQ is given by A times

| 1 .
(tor 70T 1) + I3 0o
= (lo, (WQ)T up> (by Betti reciprocity, 7.5)

—(Ql,, Wug)
= —(W, k(Ql,, uo))

by (2)
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= —(W, skew k(Qly, uo)> by (1)
= —<WO, skew /\’(Olo, uo) O)

—{wo. L .0)
= \”’O» 2 G(Qly) O/ by (3. =

§ 8. Bifurcation Analysis of Problems of Type I

We now discuss the solutions of the basic equation
H(, A, n; Q) = Skew (QA) — AF(A, Sym (QA), On) = 0 m

for the load ! = (A, n) near a load I, = (A,, n,) of type 1 (having an axis ¢
equilibrium) and for 2 near 0. We shall also obtain the stability of the solutior:
and finally we shall compare our results with those of STOPPELLI [1958]. For loaé-
of type I we need to do a bifurcation analysis on the circle Sa, correspondin;
to the degenerate zero set of H when 2 =0 and ! = I,. The analysis has som
features in common with the papers of HALE [1977) and of HALE & Tasox
[1981].

Without loss of generality we can assume that A, = diag (a, —a, -«
where 0 == a2 4= ¢ Thus, from § 6 the set 8,4, of zeros of skew (QA) fo
Q€ SO@3) is given cxplicitly by the following two points and circle:

Sa, = {diag (1, =1, —1), diag (=1, 1, N}V C,, @
where .
x —y 0
Cay=1C=\|y x O J|lx=cos0,y=sin0;.

0 0 1

The loads corresponding to the two points are A¥ = diag (4, a, ¢) and A¢* -
diag (—a, —a, ¢). ‘

From 7.3, we are led to study the critical points of f(Q) = ¢/, QT/;) -
T Ao, QTug) on C,,. Note that the divergence theorem implies that

Clo, QTugd = [ (Vug, c(eg)y dv @
&3

where 1y = DP(I4)~'(Ql,) and eo =45 [Vug + (Vug)'). Thus the functior
Jis computable from linearized elasticity alone, which Icads to the curious ob
servation that our “*second order™ nonlincar clasticity here involves no more dat:
than lincar clasticity, but merely processes the information in a different wa.

x —y 0
Ifwewrite Q={)y x 0

0 01

» then f becomes a polynomial of degree 2 in

Symmetry and Bifurcation in Elasticity W
Y. y,%rite the two terms of f as
SQ) =/(x, ) = (bo + byx + byy)

1
+ 7/’1(a,x2 + axxy + ayp* + a;x + asy + a,), C))

-hich defines the numerical constants b,, by, by and a,, ..., as. Next, define new
wrameters «,,..., &g by writing

2
S*x, p) = Tf(x, y)
d letting
T30, y) = o x® + ayxp + a3p? + e + &5y + .

(3

“ote thata,, ..., g depend on our parameters 2, 1 as well as on the clastic moduli
7 the material, Thus,
al = a|,

&y = a,, &3 = a,,

2
o7} ='z‘b1 + a,,

2 2 6)
“5=7bz + as, “6=Tbo+as- (

Replacing I, by Ql,, where Q is as in (2), effects a rotation of the x-y plane,

“hus, by rotating I, if necessary, we can assume oy =0,
*

d,
Let us fix &, «; and consider the bifurcations of zeros of -dfT =2(x3 — &) xy

“Xxsx —agy on 8! (ie, of critical points of £* on S') with a4 and &g as para-
~ers. df* ’
Set M = {(a.,, as, D)€ R2xS! |W(a“’“5’ 0) =0] , the manifold of critical

“ints of £*. Indced, M is a manifold and can be parametrized by o: RxS! — M,
,0) = (=2(xy + p) cos 0, —2(x3 + g)sin 6, 0). Denote by m:R2xS!'—>R?
¢ projection onto the first factor.

1, Lemma. Set

4 = [2xy — a3)? —ad — a3 — 108aF ad(x; — o)) &)
"Xy —a30, then a: M—>R? j5s q proper stable map in (x4, «s)-space,

«dits set of critical values is the astroid defined by A4 =0 (see Figure 4 below).
*

. . {f
Since the number of points in ") (i.e., the zeros of %{7 at & = (ay, a,))
- a4 constant over 4 <0 or 4> 0, we obtain

df :
12, Corollary. — has 4 zcros if A>0, and has 2 zeros if 4 < 0.

I *
d0

f‘roof of Lemma 8.1. The critical set  of z-9: R xS' —>R? s {(, )€ R x
|, sin2 0 + oy cos? 0 + ¢ = 0}. Thus, the set of critical values of = can be
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parametrized }
&g = *2(“1 —a;) COS3 0, .
s = 2(x; —«3)sin3 0. ¢

Since X' consists of 4 cusp points and 4 fold lines and since ;o)X is|.
a res_ult of WHITNEY (see MATHER [1969] or GoLuBITSKY & GUILLEMIN [197:
implies that z-p is a stable map.

Eliminating 0 produces the bifurcation set

2 — o = of + of. -
For «; —a; 50, (8) describes the astroid shown in Figure 4.

«s

A
Nz

Fig. 4

Next, observe that for real numbers A, B and C, ;

A+ B+C=0if and only if 43 + B® + C* = 34BC (I

by virtue of the identity 43 + B® + ¢ — 3ABC = (A + B + C)(A% +- B* -
C? — AB — BC — CA). Appl}iljg (10) to (92) shows that (9) is equivalent 1c
o + a3 — 2a; — ay)? = —3adad(2x; — oy))3. Cubing both sides gives tt:
stated conclusion. m

.odf* . .
The family v of functions on S*'with parameters 04, &5 €NjOYS a universa.

. af*
property. Consider a perturbed family 7f0- + &4, p,0), with g(0,0, 0) =¢

for (4, P)ERXR™ To each (4, p), denote by M, = {(a4,a5,0), (% gJ

A, P, 04, a5, 0) = 0} the “manifold” of zeros.

8.3. Lemma. For (4, p) sufficiemtly small, the sets M, are manifolds and there
exist two smooth families of diffeomorphisms vy, ,: R* > R? and Vo Myp—> M
defined for A, p sufficiently small, such that 7o Vie=vipon, and Wyy=
identity, o = identity, ' '

3

W
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?:m.}or 2, p sufficiently small, the map g, ,: R X $* — M,p with g, (s, v) =

2 2
[ -2(xy + p0) cos 0 + sin 0%, —2(x3 + p) sin 0 — cos 0%, 0)

- -ametrization of M, ,. By Lemma 8.1, 7o 03p: RXS!' = R? is an unfolding
“the proper stable map n o p. Thus, one can find diffeomorphisms Yo vap
- RxS' and R? respectively such that y, , o (o 01p) = (o g)e ¥y This
~ma follows by letting ¥, =po ¥}, 005) M

defines a

Now we are ready to state our main result on the number of solutions near
s of type 1. Let I =I(p) depend smoothly on a parameter P in R™, with
"0 =lo. Recall that 4 is defined by (7), a,, 2, and a, by (4).

4. Theorem. Let I, be a load of type 1 with k(l,) = (a, —a, —c), 0% a? 4 c?,
: =0, and ay = a;. Then there exists a (smooth) function 4@, p), A.'(}., 0)=
“ay, as) + O(2) defined for (A, p) sufficiently small and 2> 0 such that the
~stion problem has: -

1) four solutions for the load AI(p) if A(4, p) < 0 (two of them near Cy).

) six solutions for the load M(p) if 5(7., P) > 0 (four of them near Cp).

Proof. Finding zeros of X (¢ §7) on Cu, (= S8") is the same as finding zeros

[_#2\_/_3 2\, 1 Y. 1 /i

‘here g0, 0, 0) = 0. Let y, , be the family of diffeomorphisms found in Lemma
~ zb,1 bl

*3. Take A4, p) =4 o y, o k;, where k(p) = ( ,)(p) + a,, z 2;(1’) + as) .
-hich has the desired property. W

Next, we wish to determine the “generic™ structure of the bifurcation set
¥ ={d =0} in (4 p) space, 1> 0. ‘

If m=0 and d(xs,«5) =d(a,, as) &0, then it is clear that ¥ =0,
‘ndced, our traction problem has two solutions near Cy, if A(ay, as) < 0, and
“aur solutions near C,, if A(a,, as) > 0.

For m =1, consider k,:R->R2 This represents a linc assumed to inter-
2t the astroid transversely if they meet. Notice that ={p| (A p)e A}

5 the inverse image of the astroid (defined by equation (9)), under the map
i p = yap0 ki(p). Recall that I(Ap) = Al(p) + O(2%) and consider the map

In: p> h(p) = pap « (ky(p) + O(R)).

Since the astroid is bounded and y,, is close to the identity, there exists an inter-
vl (—M, M) such that o, ={p|2p€ o} C (=M, M) for 2> 0 and for Jp
sufficiently small. Applying the isotopy theorem for transversal maps (see e.g.,
Hirsch [1976)) to the family I through 7:., = k,, we conclude that the bifurcation
et A" consists in 0, 2, or 4 curves with slopes given by the inverse image under
ky of the astroid) (see Figures 5, 6). Thus, for example, by choosing p 4= 0 suf-
ficiently small, and letting A — 0 (consider the load Al(p)), one can pass from
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1 parameter region where there are two solutions near the circle (four in all) to
yne where there are four near the circle (six in all) and back again to the two-
;ofution region (see Figure 5). Such a situation is not dealt with in the analysis
»f StoppeLLr [1958].

4 p

Fig. 5 Fig. 6

For m =2, let us suppose that the affine map: k,:R" > R2? is surjective
Without loss of generality, we may also assume that b(p) =p, and
by(p) = p,, where p =(py,p2,2). Notice that o, ={(p,,p2)[(AP1.P2, Z)EX.
is the inverse image of the astroid under the map ;22 (21, P2) > Wap,.pnz° K2 (P12
and consider the map

};A,z: (P1,P2) h,x,,(lp,. Aps) = Yip.apa.z 2p, + aa, 2p; + as).

As before, X 2 ={(P1sp2) | (Apy, Ap2) € X} is bounded uniformly fer
2> 0 and for 2p sufficiently small. Applying the isotopy theorem for transvers:
maps to the family I-;;_., through /o = k, we conclude that the bifurcation set i
a cylinder-like set along the z-axis with base a cone over the astroid in p,.f:
space. The first order approximation of this cone is given by the cone over tk
astroid in the planc 4 = 1, centered at (— ¥ a4, — % as) with “size” 4 |a, —a,
(see Figure 7).

Next we discuss the stability of the solutions corresponding to loads near :
load of type 1. This can be determined by combining our stability results for load:

Fig. 7

' % Symmetry and Bifurcation in Elasticity %7

of type O (Theorem 5.5) together with well-known stability results for the cusp.
We make the same assumptions as those in Theorem 8.4.

8.5. Theorem. Let Ay =diag(a, —a, —c), A¥ =diag(a, a;¢) and A}* =
diag (—a, —a, ¢) as above. The indices of the bifurcating solutions are given by
the boxed numbers in Table 3. (Recall that stable solutions have index = 0.) In
cach case the circle represents Cy,, defined by equation (2).

Table 3

Yalues of
¢, 0

. [ BER]
c<lal,a<0 | 4@ O A . o
c<g 0 o (0] 0]

t<lol,o<0
>0

Values of 4 [see Theorem 8.4]

c<l6l,o>0

< -0

C<lgl,a>0
C>-0

t>lgl, 0> 0

t=lal, 0 <0
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Note that 1..”stable solutions bifurcate off the circle when ¢ > lal. Inaln
other cases the solutions near the circle are unstable,

8.4. Example. Let 2 CR3 bea region with unit volume and let the load be given
by I, =(0, r,) where

a 0 0
To={0—-a2 O]N, 0za?c?,
0 0 —c

where N is the unit outward normal on 4. Consider a homogeneous isotropic
hyperelastic material whose linearized elasticity tensor ¢ has Lamé moduli 2, I
(sce Example 7.7) and is stable and strongly elliptic; i.e., 0> 0,

a 0 0
20 +432>0. Thus, k(Ip)=|0 —a 0 by the divergence theorem, and so
0 0 —c
Iy is a load of type 1. It is easy to check that
a 0 0 ax ar 0
U(X)=¢c'|Q|0 -2 O] |X=0¢c ay —ax 0] X,
0 0 —¢ 0 0 —¢
for
x—py 0
Q=|y x 0],
0 01
v2 4+ 32 =1, where c~!(F) —i — (trace F) A He
’ ) ’ T 2u 2u(2p + 34)° fee,
o, QTugd = [(Tug, e(Vug)d dv  (by 3)
o
a 0 0 a 0 0
=<c"0 0—a 0}, Q{0 —a O \
/
\0 0 —¢ 0 0 —c
a 0 0
0 — 0 a 0 0
(° 0 0]+ ef{o-a of)
= - —, —
: 214(2y¢ - 32
\ P pe(2pe -+ 32) 0 oo’

_ 2a? - ¢? Ac?
T 2 T 2u2u +3%)°
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which is a constant (independent of x, y). In this situation, «; =& =0 and so
our theorems do not apply. This degenerate problem is discussed in Part IL.

8.5. Example. Consider the same traction problem as above, but with a homo-
gencous anisotropic hyperelastic material whose linearized clasticity tensor is
given by c(e) =e — 3 diage. In this case,

a 0 0 x =y 0
Uo(X) =c'{Q(0 —a O X, O=|y x 0},
0 0 —c¢ 0 01
where ¢~!'(F) = F 4- diag F. Then
<109 OTl‘Q) = f(vuo, c(Vuo)) dV
#
2ax ay 0 ax ay
=/ ay =2ax 0 |, ay —ax 0 \
\ /

0 0 =2/, 0 0 —c¢

=4a’x? + 2a*y? 4 2¢2.

Hence, 4 =8a'2 > 0, and so our traction problem for 2,7 has six solutions (four
near Cy,), with stability determined by Table 3. N

Next we shall discuss how to obtain the results of STOPPELLI [1958] as a special
case of our analysis. We refer the reader to the statements of STOPPELLY'S results
by GrioL1 [1962, p. 58]. In this approach one focuses attention on bifurcations
that occur on the circle by examining what happens near a particular location
on the circle and ¢ = I,. We can assume that this point is (1,0), i.e., that 0 =0,
with no loss of generality.

First of all, if «, + «g == 0, then (1, 0) is not a critical point of f*, so there
are no solutions near (1, 0). We may assume then that &y + a5 =0, in which
case the Taylor expansion of f* about 0 =0 becomes

S*0) = (x; + ) + (_“1 + ay —%) 02 —?03

1
+ E (a, —ay + %) 0* + (higher order terms).

For critical points, we are sccking zeros of

daf* « 3 4 «
72— e =)o - Fa 3 (20— e +5) 0 + 009,
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. /A
Casel. If —a, Ay —%'3:#:0, then ‘{—'Ifo-=2(~c\, - ay —-%)0-{—0((/9)

and so there it just one solution. This js Theorem F on p. 58 of Grior

[1962].
¢ i+ 3
Case2. If —a, 4 a, —%‘-:0 and a, 5= 0, then %{F= —3«20’ -+ O0Y

and so there are 0, 1 or 2 solutions (fold point). This is Theorem G on
p. 58 of Griott [1962].

‘ase 3. 1f —a,+c\,—-(;—4=0, a; =0 but z\',—«;-{-%:f:O then
dr* 4

W=7 (a, — A&, 4-%) & 4 0(0*), so there are 1, 2 or 3 solutions
(cusp point). This is Theorem H on p- 58 of GrioLr [1962].

Furthermore, if we €xpress our constants a; (= a;) in terms of the elasticity
‘nsor ¢ and solutions of the linearized problem using (3) above, we find the same
nditions for these three cases as is given on p. 57 of GrioLl [1962).

Thus we recover the results of STOPPELLI on loads of type I. As was explained
t the Introduction, however, his analysis is only local on the circle and does not

ve the full story of the bifurcation picture, even in this case. The complete

furcation analysis, including stability, is summarized by our Figure 7 and Table 3.

The research reported here was partially supported by the U.S. National Science
wundation under Grant MCS.78-06718, by the U.S. Army Rescarch Office, contract
AAG-29-79-C-0086, and the Miller Institute.
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