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CONTROLLABILITY FOR DISTRIBUTED BILINEAR SYSTEMS*

, I’g‘;‘;‘t - J. M. BALL.} J. E. MARSDEN} Ann M. SLEMRODS
Analyse Abstract. This paper studies controllability of systems of the form dw/dt = sfw + p()Bw where of is the i

infinitesimal generator of a C° semigroup of bounded linear operators ¢**' on a Banachspace X, ®: X ~ X is *

5(1930) aC' map,and pe L' ([0, T); R) is a control. The paper (i) gives conditions for elements of X 10 be accessible ;.

' o from a given initial state wq and (ii) shows that controllability to a full neighborhood in X of wy is impossible

1930, for dim X = 0. Examples of hyperbolic partial ditferential equations are provided. N

’:“5’;"” ';” 1. Introduction. The purpose of this paper is to discuss controllability for abstract

>3 tin evolution equations of the form

etions. (1.1) W(r) = sw (1) +p(D)B(w (1),
(1.2) w(0) = wy,

niversity,

' Lecture where of generates a C” semigroup of bounded linear operators on a (possibly complex)
London, ; Banach space X, B:X - X isa C' map, and p € L'([0, T); R) is a control defined on a
i specified interval [0, T'). Usually we assume that @ is linear, so that (1.1) is bilinear in
ing, K. J. : the pair (p, w); note that even in this case the solution w of (1.1), (1.2) is a nonlinear )
3s-102. ' function of p. A motivating example is the rod equation i
'resented L
auer and (1.3) U+ Ugsss +pu,, =0,  0<x<1, '
»n Math. with hinged end conditions <
Angeles. (1.4) u=u,,=0 atx=0,1, .
;, These. . . . " B b
pray ; thch can be put in the form (1.1) by setting w=(;,) with X=
(G W X 1 (H*(0, NN H0, 1))x L*(0, 1). Here the control p(t) is the axial Joad. ¥
! The main tool used in our analysis is the generalized inverse function, or *local
L. Berlin, onto™ theorem., In finite dimensions, the well-known controllability results for bilinear
2 : systems have been obtained in this way (see, for example, Brockett [1972] and Hermes Tl
"97-108. [1974)). In infinite dimensions, however, new phenomena arise. Perhaps the most
\ppl, 13 interesting of these is our result (Theorem 3.6) which shows that for @ linear and )
dim X =0, the set of states accessible from wy for p € L1,.([0, ©); R), 1 <r =00, has
tes Com- dense complement in X. Hence we can never expect to control to an open neighborhood '
. i of wp for controls in Lj,. (Using L' controls doesn't help, at least for examples such as
:¢i Rend. : , . ) . .t
i (1.3), (1.4); see Theorem 5.5.) This stands in direct contrast to the available positive
slecki, C. results on controllability when dim X < c0.
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Given the impossibility of controlling the system (1.1) to a full neighborhood of wy
with p's in L', we investigate two alternative procedures. One approach generalizes an
idea of Hermes [1979]; we show that it is often possible to control with respect to
finite-dimensional observations in a neighborhood of wy,. Qur second idea is based upon
the concept of approximate controllability, i.c., we identify a dense subset of X,
depending on wy, and ¢ to which w(s) belongs, and show that with respect to a
strengthened topelogy one can control to a neighborhood of ¢ 'wy, (the “*free solution"
of (1.1), (1.2) corresponding to p = 0) in this set, provided 1 is suitably chosen. For (1.3),
(1.4) we prove that 7 >0 can be taken arbitrarily small, whereas for the wave equation

t1.5) M= U +p(0D1 =0, O<x<],
with either the boundary conditions
u=0 atx=0,1,
or the boundary conditions
u=0 atx=0, u+au, =0 atx=1, a >0,

t has to exceed some number T >{). This study of local approximate controllability
involves technicalities concerning nonharmonic Fourier series in the spirit of Russell
[1967} and Ball and Slemrod [1979). The delicacy of these questions has the
unfortunate consequence that we have only been able to obtain positive results in cases,
such as these described above, in which (1.1) is an abstract hyperbolic equation that is
“diagonal™; i.e., is reducible to an infinite set of uncoupled ordinary differential
equations {cach, of course, containing the control p(1)). Since we have to control
infinitely many ordinary differential equations simultancously, however, the problem is
still not trivial. Nevertheless. our assumptions exclude some important nondiagonal
examples such as (1.3) with clamped end conditions

u=u. =0 atx=0,1.

In special cases, such as (1.3), (1.4), our local approximate controllability theory leads to
a global approximate controllability result; thus. for example, for suitable initial data,
we prove that the attainable set for (1.3), (1.4) is dense in X.

The paper is divided into six sections. Scction 2 assembles the machinery for
studying (1.1), (1.2) in the form of various abstract ¢xistence and smoothness theorems.
Section 3 provides an abstract controllability thcorem and the result on noncon-
trollability mentioned above. In § 4 we discuss the general theory of control with respect
to finite-dimensional observers. In § 5 we consider abstract hyperbolic equations, apply
the theory of § 4 to this case, and develop our theory of approximate controllability. We
conclude in § 6 with specific applications to partial differential equations, such as (1.3),
{1.4).

2. Abstract existence and smoothness theorems. In this section we give some
basic results on nonlinear evolution equations which will be useful in our later analysis.
Let X be a Banach space with norm J|- ||, let o generate a C* semigroup of bounded
linear operators on X, and let 8 : X - X bea C* mapping, k = 1. Let Z(T) be a Banach
space continuously and densely included in L'([0, T'); R), where T >0 is given.

Foragiven woe X and p € Z(T), consider the initial value problem associated with
(1.1) written in integrated form, i.c.,

!

2.1 wi)=¢ J’lt'..+J e’ “p(.\'l.ﬁ(lt'(s))dx.
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Solutions of (2.1) are often called “mild solutions" of (1.1), (1.2). The question as to
when solutions of (2.1) are actually solutions of (1.1) is discussed in Remark 2.7 at the
end of this section.

PROPOSITION 2.1. For each wye X, and p € Z(T) there exists to, 0<t,=< T, such
that (2.1) has a unique solution w € C([0, 1,]; X).

Proof. Let  F={weC([0, b}, X)|w(t)~wo|SR}, and define Tp:F->
C (0, 1); X) by

(T, w)t)=ewy+ J: " ""p(s)B(w(s)) ds.
Since le*“|l < M ¢ for positive constants B, M, an easy estimate shows that T maps & to
¥ provided

e wo = wal| + M ¥ J::u lp(s)lds =R, 0s1=1¢,,
where C is such that |Bw||= C for |lw — wy| = R. This condition is achieved for R, 1

sufficiently small via the continuity of 93, ¢ “w. and the fact that pel'({0, T} R).
Similarly, T}, is a contraction map of & to ¥ provided that

KM P J lp(s) ds <1,
(1)

where K is a Lipschitz constant for 3 on the ball [|w — w| < R. Again this holds for R

and 1o sufficiently small. The result now follows from the contraction mapping prin-

ciple. O

Of course the above proposition is a special case of many more general results on
existence and uniqueness of solutions to semilincar evolution equations (see, for
example, Segal [1963), Pazy [1974), Balakrishnan [1976] and Tanabe [1979b]). The
point for us here is that use of the contraction mapping principle leads to other
important features of the solution map w, as we now see.

PROPOSITION 2.2, Fix poe Z(T). Then there exist an open neighborhood U of p, in
Z(T) and to>0 such that foranype U, (2.1) has a unique solution w(t; p, wg), 05 ¢t = .
Moreover w(t; p, wo) is a C* map from U 1o C{[0, 1,]; X).

Proof. The proof of Proposition 2.1 shows that if R and 1, are sufficiently small and
p is close enough to py in L'-norm then T,, is a uniform contraction. Also, T, is a C*
function of w and p on the interior of &, so that the C* result follows from Hale [1969,
Thm. 3.2, p. 7]. The C* result is then obtained by induction. O

COROLLARY 2.3, The map wita; -, wo): U » X is C*.

Proof. This follows from the chain rule, Proposition 2.2 and the fact that the map
w{+ )= w(ty) is smooth (since it is continuous and lincar from C(0,n); X)to X). O

In the same way we sce that the solution w(r; -, -) is a C* function of wo and p.
However, in this paper we are primarily concerned with differentiability in p. The proof
of the theorem in Hale [1969] cited above shows that the derivative can be obtained by
formally linearizing. Thus we get the following result.

COROLLARY 2.4. The (Fréchet) derivative Dpw(t; po, wa) p of w(t; p, wo) with
respect 1o p at po in the direction p is the unique solution of the equation
A=)

Dpwi(t; po, wo) p =I e P S)B(w(s: po, wy)) ds
0

(2.2)

+J e,dn-tlpn(s)D.%( wi(s; Do, w‘,))D,,W(S; Po, wo) P ds.
0
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Here DB(w(s; po, wa)) denates the Fréchet derivative of B ar w(s:; po, wo). In particular,
at po =0, D,w(t; 0, wy) - p is given explicitly by

{2.3) Dpw(1;0, wo) p= I e‘”’”"'p(s)@(e"’"wn) ds.
0

Next we show that solutions are globally defined under a sublinear growth
condition.

THEOREM 2.5. If there are constants C and K such that |B(x)l| = C + K|x|| for all
x € X, then (2.1) has solutions defined for 0=t = T. These solutions are unique within the
class C([0, TY); X). Moreover, the solution w(t; p, wy) is a C* function of pe Z(T) and
wo € X with (Fréchet) derivative in p given by (2.2) (or (2.3) if pu=0).

The proof is based on the following version of Gronwall’s inequality (sce, for
example, Carroll {1969, p. 124)).

LEMMA 2.6. Lerpe L'([a, b]; R) and let v € L™([a, b); R) with v Z 0. If there exists
a constant C 20 such that for all tefa, b]

v(=EC+ I Ip(s)lo(s) ds,
0
then
]
v(1)=C exp (I lp(s) ds).
Proof of Theorem 2.5. Suppose w(¢) solves (2.1) and is defined for0=t<asT.
Then
Ieto= M el + [ lplC+ Klwisih ds),
(1]

and so, assuming K >0 without loss of generality, we get
¢
IS M e™lwoll+ CK ™'Y exp (Me™K [ lp(s)lds) - CK ' s €.
(1]
Therefore, for s, t€ [0, a) we have

I () = we(s)ll élle’“"wo—e‘“"w(.||+l” e "p(r)B(w()) dr“

slle™wo—e " wol|+ Me® (C + KCy) j lp(7)| dr.

Thus lim,~.,_ w() exists, so that by Proposition 2.1 w{r) can be continued beyond t = a
Hence solutions are defined for0=¢=T.

For global uniqueness, we usc the standard argument: suppose w(¢) and w(¢) solve
(2.1) for 0=1=T. Let S={a [0, T)w(t)=w(s) for 1[0, al}. The local uniqueness
assertion in Proposition 2.1 shows that § is relatively open in [0, T). If a. €S and
a,»a=T then aeS§ since lim,.x w(a,)=lim, .« w(a,). Thus $ is closed, so that
§=[0,T)

Thus there is a globally defined semiflow F7(wo), F(:): SR‘ x X - X, which
depends parametrically on p. Proposition 2.2 shows that £ (wa) is C* in p and wy for ¢
sufficiently small. Let S=1{a €[0, T]|F7 (wa) is C* in (wy, p) for 1€[0, a]}. We claim
that $ is open. Indeed, if a € § and k is small,

anll(“'l))=Fh(F-‘:(“'()))
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is C* in p and wo, because by Proposition 2.2 Fj(w) is C* in p and w for w near
Fiy (wo). The local uniformity of the time interval on which Proposition 2.2 holds shows
that § is closed, and hence $ =[0, T].

Thus we have shown that w(t; p, wy) is C* in p and wy. By differentiating (2.1) we
obtain (2.2). O

Remark 2.7. Suppose woe D(A) and pe C'([0, T); R). Then w(s)e D(A) and
w(t) is differentiable and satisfies (1.1). This assertion follows from Segal [1963, Lemma
3.1]or from Tanabe [9, p. 102]. If merely woe X and p e L'([0, T); R) then w isa “weak
solution™ of (1.1) (see Balakrishnan [1976] and Ball [1977)).

3. An abstract controllability theorem and a negative result, Define the linear
operator Lr:Z(T)- X by

T
Lip= I e T p(5)Ble ™ wy) ds.
0
Then by (2.3) we have

3.1 Dyw(T; 0, wo):p=Lqp.

A natural consequence of Theorem 2.5 is the following.

THEOREM 3.1. Let &/ be the infinitesimal generator of a C° semigroup of bounded
linear operators on the Banach space X, and let B: X » X be a C* map, k =1, which
satisfies |Bx||= C + K||x|| for all x € X, where C and K are constants. Suppose that
Range(Lr)=X. Then there is an € >0 such that w(T; P, wo) = h for some pe Z(T),
provided {lh — el <e.

This resuit follows casily from the (generalized) inverse function theorem; a
convenient reference is Luenberger [1969, p. 240). The p that controls i, to hit A will
be in a neighborhood of zero in Z(T).

. We note that if s generates a group, surjcctivity of Ly is equivalent to surjectivity
of Ly:Z(T)=> X, where

T

(3.2) Lip= j e p(s)Ble™ wy) ds.
0

A major difficulty with Theorem 3.1 is that is is not usually an easy matter to check
the surjectivity of L (or L1). In fact, as we shall prove in Theorem 3.6, if dim X =0, Ly
will not in general be surjective, though it may have dense range. This prevents us from
applying Theorem 3.1 to partial differential equations.

We now present a basic criterion for Ly to have dense range.

PrROPOSITION 3.2. Suppose that

(1’ edll—ﬂ%(e.vlsu’“)) =0

foralls,0=s =T, where l € X* (the dual space of X), implies | = 0. Then Range (L) is
dense in X.
Proof. Range (L) is dense if the only / € X* annihilating the range is / = 0. But

.
hLy=[ ™ B wap(s) ds.
)

If this vanishes for all p € Z(T), then the continuous function {/, e™" TR (e wy)) must
vanish. This follows because Z(T) is dense in L'([0, T]; R). Our hypothesis then gives
1=0,




580 3. M. BALL, J. E. MARSDEN AND M. SLLEMROD

Remark 3.3. If B is linear and & is a bounded lincar operator, then
2
d’gj e Vwo = Bwo+ 5[, Blwa ’*'52" [-54; {Jd, Bllwa+- -+

(i.e.. the Campbell-Baker~Hausdor{f formula), where [, B)=—s(B + Bsd. From
Proposition 3.2, we see that Range (L7) is dense in X for all T > 0 if the closure of the
span of Bwo, [, Blwy, [, [, B])wa, - - - is densc in X,

The next two well-known controllability results now follow for X =R" and &
linear.

CoRrOLLARY 3.4 (Hermes [1974], Lobry [1970)). Assume X =R" and that
dim span {Bwo, [, B]wa, [, [, 53]]w.., ««<}Y=n. Then for every T>0 there is an
er>0 with the property that if lle™wo—h||<er, we can find a pe Z(T) such that
w(T; p, wo)=h.

Here one can choose Z(T)=L%[0, T);R) for any ¢, 1=g=, or Z(T)=
c*([0, T); R), for example.

COROLLARY 3.5 (Lobry [1970], Jurdjevic and Quinn [1978)). Let the hypotheses
of Corollary 3.4 hold. Assume e™"wy is almost periodic. Then for any k Z0, there exist
T>0 and €>0 such that |h-wi|<e impliecs w(T;p, wol=h for some pe
c*(0, T]; R).

Proof. Let T, >0 be fixed and lct e, >0 be as in Corollary 3.4. We show that if
|4 -Wu||<€r./2 then there exists >0 such that w(T. +71;p, wo)=h for some pe
C*([0, T, +7]; R). First, by the almost periodicity of e o, there exists 7> 0 such that

5 . r _
"t’ Wo— T Wu"< % “t' 4”'" "

We run (2.1) from time (=0 until r =7 with p=0, %0 that w(7)=e""wo. By
Corollary 3.4, we can hit &t in additional time T, usmg a C* control which vanishes
together with its first & derivatives at 7, provided |[le’ ()= hl| < £r,. But this is true,
since

le?Twiry—hll= e e wo— b= le™ (e wa=e “Twate “Twg)— bl

= "e.svl'r; Il”edr“." —e -, “-nl] + “Wu —-h " <ep,. 0

In the case dim X = o things are quite different. Specifically, we shall now show
that for a large class of spaces Z(T), the map w(T;-, wu): Z(T) - X will never cover an
open neighborhood of ¢ i, (and consequently L ; cannot be onto). Thus, for these
Z(T)'s, Theorem 3.1 will be vacuous unless dim X <co,

THEOREM 3.6. Let X be a Banach space with dim X =00. Let sl generate a c®

semigroup of bounded linear operators on X and let B:X -+ X be a bounded linear
operaror. Let woe X be fixed and let w(t; p, wy) denotc the unique solution of (2.1) for
peL.oc([O ©);R). If T>0 and p,-»p weakly in L Y{0, T R), then w(-; pa, wo)~>
w(- 3 p, wo) strongly in C([0, T); X). Moreover, the set of states accessible from wy, defined
by
S(wg) = U wit; p, wo)
20

'
e L0 R
[ ]

is contained in a countable union of compact subsets of X, and in particular has dense
complement.
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Proof. Let p,»p weakly in L'([0, T]; R). Write wa(2) = w(t; pn, wo), w(t)=
w(t; p, wo), and z,,(#) = wa(?) — w(t). Then o

wa(t) = e™'wo+ I Pnl(s) e " " Bw, (s) ds
({]

and

1
w(t)=ew, +J p(s) e " Bw(s) ds,
{1]
so that

(3.3)  z.(n= J; [Pals) = p(s)] €™ 'Bw(s) ds +I Pa(s) €7 "Bz, (s) ds.
(]

We now need the following: i
LEMMA 3.7, Let

€, = SUp
1€(0,T)

L [pa(s)=pls)] e~ Bw(s) ds]

Then lim,, . £, = 0.

Proof of Lemma 3.7. Suppose the lemma is false. Then there exist £ >0, a
subsequence {p,.} of { p.} and a sequence {1,} = [0, T}, ¢, >t €[0, T), such that for all 2

(3.4)

Uo [pu(s)—p(s)) e " Bw(s) ds||> e.

We can suppose without loss of generality that cither ¢, =t forall 2, or ¢, = ¢ forall u. In
the case 1, =1 let

€. = sup "(e.du“-—ﬂ -e'“""’)@w(s)ll.

s[04, ]

The joint continuity of the map (x, 7)~¢"“'x and the continuity of w(-) together imply
that ¢, -0 as u » . Hence

ii.p:: ||L“(p“(s)_p(s)](e.d(l‘u-ﬂ_e.d(l—s))%w(s) ds

3.5)

t

éﬂ‘l ‘»L“ Ip.(s)—p(s)lds =0.

Furthermore, since p,, -+ p weakly in L'([0, T); R), |p,. —p| is uniformly equi-integrable
over [0, T] (see Dunford and Schwartz [1964, pp. 293-294)), and hence

t ] .
(3.6) lim I” [Pu(s)—p(s)] e " Bw(s) ds||§const - lim I Ip.(s)—p(s)| ds =0. T
[ ek . [ aded ("
Combining (3.5) and (3.6), we deduce that

3.7 ‘Em HL“ [Pu(s)—p(s)) e "'Bw(s) ds -L [p.(s)—p(s)]o(s) ds|| =0,

where v(s) is defined by v(s) = e "Bw(s). A similar argument shows that (3.7) holds
if 4, =1 for all p.
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Let p =sup, J, |p.(s) = p(s)] ds. Since v e C{[0, T]; .5) there exists a step function
g such that [lg = vlle=go.r1.x)<&/4p. Suppose g(s)=Y ., xu,(s) ¢, where the I; are
disjoint intervals and ¢; € X. Then

! M
j [puts)—pis)lgts)ds = X l[p,‘(s) -p(s)ldse;
0

=140,

which tends to zero as u - o from the weak convergence of p,,. Therefore

1] Py ] t ’ €
(3.8 L [pu(s)=p(s)lu(s) dsli é‘; L |7 () —p(s)| ds + "L [p.(s)—p(s)]gls) ds“ =5

for large enough u. We now combine (3.8) with (3.4) and (3.7) to reach a contradiction,
which proves the lemma. 0O
Continuation of proof of Theorem 3.6. From (3.3) we have

] 3
lza(0l = €. +j [Pt e 1Bz (s)l ds < en + Cj 1P (5)llza ()]} s,
0 [}
where C is a positive constant independent of 1€ [0, T]. By Gronwall's inequality

lza (=€, exp (C J lpa(s)] dS),
($]

which by the lemma tends to zero uniformly in [0, T} as n —» 00, This proves the first part
of the theorem.
To prove the second part, given positive integers m, n and r, define
S"I'II( “'0) = U “'(‘; Ps “'())-

te{0m)
Uple ¥ * Vv gosm aie

Let wit;: p;, wa) € Sy ve). Since L - '/'([0, m}: R) is reflexive there exist subsequences
{1.}<[0,n] and {p.}=L'"'"([0,m]: R), such that f,-¢ and p,->p weakly in
L''"([0, m]; R). By the first part of the thcorem, wif,: p., wo) = w(r; p, wy) in X.
Hence S,..(wq) is precompact in X, But S(wy) < Uf:,'.,,_,.,, Sinr(Wa) SO that S{iv,) is
contained in a countable union of compact sets.

Since dim X =00, S,...(wo) is nowhere dense. By the Baire category theorem,
Stwy) has dense complement. O

Remark 3.8. The thecorem leaves open the question of whether

{w(t; p, wo); 120, p € Liu([0, ); R))

has dense complement. We show in Theorem 5.5 that this holds in an important special
case.

4. Finite-dimensional observability. In this section we consider the restricted
problem of trying to control only a finite-dimensional projection of the state variable
w(r; p, wo); i.e., we try to control only a *finite number of modes.’* This problem was
discussed originally by Hermes [1979], and our first result is analogous to his.

THEOREM 4.1. Let &4, B be as in Tacorem 3.1, Suppose G: X >R" is a bounded
linear map. Suppose that for given T >0 and A € (R")*,

A, Ge™ B way=0

for all s, 0=5 = T implies A =0. Then there is an £1 >0 such that |g - G ™ "willan< &7
implies Gw (T p, wy) = q for some pe Z(T).

Proof. The derivative of the map p— Ghwis: p, wy) from Z(T) to the range of G,
evaluated at p =0 is the operator GL . To show this is surjective, let A € (R")* and
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assume A annihilates the range of GLy. An argument similar to the proof of Proposition
3.2 shows that A =0,

COROLLARY 4.2. Letsy, B and G be as in Theorem 4.1, where G is now assumed to
be surjective. Suppose the hypothesis of Proposition 3.2 holds. Then there is an e > 0 such
that

lig — Ge* Twoll= < &1 implies Gw(T; p, wo) = qforsomepe Z(T).

Proof. Set I = G™*A, where G* is the adjoint of G, and use Theorem 4.1, [

The usefulness of Corollary 4.2 is that it applies to all surjective bounded maps
G:X > R", n arbitrary.

COROLLARY 4.3. Assume that either the hypotheses of Theorem 4.1 or those of
Corollary 4.2 hold for some T, >0 and that e™ is a group with e*'wo an almost periodic
function of 1. Then for any k 20 there exist T >0 and e >0 such that g — Gwolla~< er
implies Gw(T; p, wo) = q for some pe C*([0, T); R).

Proof. This is very similar to the proof of Corollary 3.5. O

We note that the above results could be extended to nonlinear Ge C'(X:R") in
the obvious way.

One approach to trying to obtain full state controllability might be to solve an
infinite sequence of finite-dimensional controllability problems by letting n - co. This
possibility will be precluded by Theorem 3.6. More specifically, we note:

CoROLLARY 4.4, Let {X,} be an increasing sequence of subspaces of X, with
dim X, =n for each n such that Closure (U, ., X,)=X, and with corresponding

”n=

continuous projections G, of X onto X,, having uniformly bounded norms. If

H={heX;thereexistT>0,r>1and {p,}< L'([0, T]; R) such that
G.w(T; pn, wo) = G.h and ||p,|li. o, 71.0 = const (independent
ofn)yn=1,2,-},

then H has dense complement in X,

Proof. Let h € H. Then there exists a corresponding sequence {p,}< L ([0, T]; R),
r> 1. Since {p,} is bounded, there exists a subsequence, also denoted by {p,}, such that
pa - p weakly in L'([0, T); R). Now

lw(T; p, wo)—hllZ|lw(z; p, wo)— G.w(T; p, wo)
(4.1) +|Gw( T p, wo) = G w(T; oy wo)|
+|GawtT; puy wo)— Ghl|+11Goh — bl

Since the G, are projections having uniformly bounded norms the first and last terms on
the right-hand side of (4.1) tend to zero as n »c0. By hypothesis the third term is
identically zero. As to the second term, w(T'; p,, wa) = w(T'; p, wy) by Theorem 3.6 and
Gl = const, so that this tends to zero also. Hence &t = w(T; p, wy) and so H is a subset
of the attainable set S{wo), which by Theorem 3.6 has dense complement. 0

In practical terms Corollary 4.4 says that, in general, approximation of the problem
w(T; p, wo) = h by a sequence of finite-dimensional problems will inevitably lead to the
need for ever larger controls p, as n > . In this sense, finite-dimensional approxima-
tions can be misleading for control of the full problem.

S. Abstract hyperbolic equations. We now investigate systems of the form
(5.1 H+Au+p(t)Bu=0,
(5.2) w0 =une DA'S), WOy =u,eH,
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where A is a positive definite self-adjoint operator with dense domain D(A) in the real
Hilbert space H, B is a bounded linear operator from D(A'?) to H, and p is a
real-valued control. The inner product in H is denoted (-, -). We suppose that A" is
compact, and that A has simple eigenvalues A%, n=1,2, -+, where 0< Ay<Ay<e e,
Then there exists a corresponding complete orthonormal basis {¢,} of eigenfunctions:
AQS,, =A :¢m (Pn, Om) = B

To investigate controllability of (5.1) we could rewrite (5.1) in first order form

v=(@ 2=y ok a=(5 0

and set X = D(A'?)x H with inner product
(w1, u3), (01, 02))x = (€' %uy, A 200) + (uz, v3).

With this set-up, we see that &f generates a C® group of isometries on X and the
hypotheses of Theorem 2.5 are satisfied. Controllability then hinges on the operator L.
To facilitate computations, however, it is advantageous to introduce a different first
order form. We therefore set up a complex structure in a way that is standard for
Hamiltonian systems (see Chernoff and Marsden [1974, § 2.7)).

Let & denote the complexified Hilbert space H @ iH withinner preduct defined by

(xy +iy1, X2+ iy2)ee = (x1, x2) +H{y1, y2) + il(yy, x2) = (x1, ¥2))
for x1, x2, y1, y2€ H. The map ¢ : X - ¥ defined by
wluy, “2)=A‘/2u| +iuz

is an isometry. Let 2 = A2 + g, so that (5.1), {5.2) become

(5.3) i2=A"2z+p()BA " Re 2,
(5.4) 2(0) = zq,

where

(5.5) 20= A" uy+iu e %,

Of course, in(5.3) p(¢) is still real. Writing of = —isg'’? (regarded as a complex operator)
and @ = —iBA~"/* Re (a real-linear bounded operator from ¥ into ), we see that the
hypothescs of Theorem 2.5 are satisfied.

The basis {¢,} of H may also be regarded as a basis of %, For anyze€ ¥, let {z,} be
the (complex) components of z relative to this basis, i.c.,

(5.6) 2= 3 2.

so that {z,,} € /. Thus we have

(5.7) e?'z= nijl 2, 67",
Let B.p = (Bdm, da), so that the B, are real and

B¢m = z, an‘bn'
Thus (5.7) gives

[+ o]

BeVz =i s Bonn Re (e "z, )P0,

mmna=1 Am
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and so

(5.8) e Betz =5 T % (" Mz, + e A g,
mansl Am

5.1. Riesz bases.
DEFINITION. A sequence of elements {e;};2, of a (real or complex) Hilbert space
Z is called a Riesz basis of Z if every 8 € Z has a unique expansion

a®
0=3% au;
i

that is convergent in Z, and

(> <) [-+]
G T la* =6l = C, ,Z, |a;f?
m= -

for absolute positive constants Cy, Cs.
We collect together some useful facts concerning Riesz bases.

LEMMA 5.1. Let {w;} be a Riesz basis of Z, and let {e,} be any complete orthonormal
basis of Z, Then:

(i) the formula T(Z:’,, a;e;)= Z;‘f,, a;w; defines an isomorphism

T:Z-2Z;
(i) forany 0e Z,

I l(e. w)* = IT*IFllol’;
i

(iii) given any sequence {a.}€ I, there exists a unique solution 6 € Z of the equations
(5.9) (0, w,-)=a,. j= 1, 2, LB
Proof. For a proof of (i) see Gohberg and Krein [1969, p. 310]. To prove (ii) note
that (6, w;) = (8, T'¢;) =(T*8, ¢,), so that
L 16w =IT* 6 =IT* el
i=

Finally, the equations (5.9) are equivalent to
(T*G. E,') = aq;,
and thus have the unique solution

0=(T*)" T ae, 0

il

A useful criterion for the construction of a Riesz basis is as follows.
THEOREM 5.2. Let O=po<u  <pa<-++,pu_p = —u, and suppose that

l!l‘ﬂ; (x+y—pe)Zy>0.

Then for any T>2n/y the functions {€"*'}¢.- may be extended to a Riesz basis

of L*([0, T1; C).

Proof. Let S denote the closed linear span of the set of functions {e™'} in

L*([0, T}; €). It follows from Ball and Slemrod [1979, Thm. 2.1] (the essential idea is
due to Ingham) that for any finite sum

)= Y ace™,
Ik

SN
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we have

N
S lafsz| oldasc 3 jaf
aN ] Ikiz=N
It follows that any f€ § has a unique expansion

ac

f(‘)= Z ax e"‘"

k=-x

convergent in L%([0, T]; C), and that

a % lak|’<—] fofa=c I laf.
- -0 =—20
Let {e,} be an orthonormal basis of S *. It follows readily that {¢;} U {e “*'} is a Riesz basis
of L*([0, T];C). 0O
The above discussion is a slightly different presentation of results summarized in
Russell [1967].

5.2. Finite-dimensional observers. We now employ Theorem 4.1 to discuss when
(5.1) is controllable relative to a finite-dimensional observer.
THEOREM 5.3. Assume the initial daia ug, 1, in (5.2) satisfy

(i) Blm[(ul)o ¢n)z+(ulv ¢n)2]¢0y n= lv 2' e
and that T >0 is such that
(li) {(’2.‘"‘}:; . U{eiu‘,- A“N’ (’“A"‘ A"“]P # q and Bm # 0}

can be extended to a Riesz basis of L*([0, T); C).

Then (5.3) saiisfies the hyporheses o/ Proposition 3.2, In particular, forany T\=T
and bounded surjective maps G,: D(A'"®)»R", G2: H - R, there exists 1, such that if
llgy = Grae(Ty; 0, w0, t)lam<er,  llq2= Gaut(T1; 0, tto, 10yl < e,

then
Gu(Tipusw)=q,  Gaui(Ty;p, o, 1) =qa
forsome pe Z(T)). Here u(t; p, wo, 1y) is the solution of (5.1), (5.2).

Proof. Letl=Y._, L&, be an arbitrary element of %. Then (/, e ™ Y e *20) x may
be computed for (5.3) by using (5.8). Specifically we have

'.l" - X - _ vix < B"'
2i(e - ;ﬂ (”d':"' 1)‘\; = Z‘ I'l(z()n +20n e A, ).R___'
n=
{5.10) n
> I, A A TEWEY W N Bnm
+ E ln (:llm 1'" . + :lim c " ) —_
me#n "

mn =l

where 2, is given by (5.5) and where

s0 that 2, = Au (it @)+ (11, &.). Thus, if (¢ B ez, D=0 for all s such that
0=s=T,,the right-hand side of (5.10) will equal zero on [0, T']. By assumption (ii) the
coefficients of {¢**+°} vanish: that is,

ln-;llnBrm

A =0 forn=1,2,-
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By (i) this implies {, =0 forn = 1,2, - - -, and hence ! = 0. Therefore, the hypothesis of
Proposition 3.2 is satisfied, and by Corollary 4.2 the result follows. 0O

COROLLARY 5.4. Assume the hypotheses of Theorem 5.3 are satisfied, and let G,
G2 be bounded surjective linear maps, G,: D(A"?)>R™, G,: H »R". Then for any
k =0 there exist T\ >0 and v, >0 such that

llg: - Grudlla-< e, llg: - Grslln < &7,
imply
G u(Ty; p, io, ty) = qy, G2(Ty; p, wo, 1) = qa

for some p e C*([0, T\); R).
Proof. The result follows immediately from Theorem 5.3 and Corollary 4.3. O
Hypothesis (ii) of Theorem 5.3 is difficult to verify unless Bp, =0 for p#gq.
Sufficient conditions for it to hold may be deduced from Theorem 5.2, but they are not
revealing except in the case just mentioned.

5.3. Approximate controllability. In this subsection we study approximate
controllability, in a sense to be made precise, of (5.1), (5.2). As above we work with the
equivalent first order system

(5.11) =z +p(1)Bz

where o = —iA" 2, B =—-iBA ?Re. In addition, to simplify matters we make the
assumption

(D1) Bumn = bubn

for nonzero constants b,,, where §,,, is the Kronecker delta. Since (D1) implies that
B... =0 for m # n, we shall refer to (D) as the dingonal case.
Writing

(=20 2,0l
1

n

L]

we see that in the diagonal case, (5.11) reduces to the infinite system of uncoupled
ordinary differential equations

(5.12) 2n=—iAgZa —ip(1) fﬁ Re z,, n=12---
The corresponding initial conditions are
(5.13) 2y (0) = Zon-

We note that the fact that BA ' is a bounded linear operator from H->H is
equivalent to the condition

(5.14) {Ib-} €l

We first strengthen Theorem 3.6 in the diagonal case by showing that even when L'
controls are allowed, exact controllability is in general impossible.
THEOREM 5.5. Given {z9,} € l2, the set
U {z.(25 p, z0)}

' (R
PE L {0,01R)

is contained in a countable union of compact sets of 15, and thus has dense complement.
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Here, {2.(t; p, 20)} denotes the unique mild solution of (5.12), (5.13) with 2o ={zoa}.
Consequently the attainability set {u(t; p, tio, 1), t,(1; P, to, t1)|t 20, p € Linc([0, )} is
contained in the countable union of compact sets in D(A''*)x H and so has a dense
complement.

Proof. Since

]
Zalt) =" *'zq, = i-i—"— j e *="""p(s) Re z,(s5) ds,
n J0

it follows that
oIS lzaul+ | 2] [ oIz o) s,
and hence, by Gronwall's inequality and (5.14)
el zonl xp ( [ lots) as),

where k =|[{#a/An Y. Thus {z, ()} € Un.., Sn(z0) for any 1= 0 and p € Li.([0, ©); R),
where Sy is defined by

Sn(zo)={{an} € la:]a | = N|zonl}.

The result now follows from the next lemma.
LeEMMA 5.6. Sn(zy) is a compact subset of .
Proof.I Let a”eSy(zo), r=1,2, . Then

< @
E 1 FSN T ool = Nl
R

So some subsequence a'“’ > a weakly in [, which implies in particular that a**’ -» a, for

each n. Also, given £ >0
- { 2 - 2
I lax'PSN® T leanl’<e
n=M neM

for M sufficiently large. Therefore 3o, la'*» ¥, |a.|’, and so a'*’+ a strongly in

1. Hence Sn(20) is precompact. Since Sy (zo) is closed, the lemma is proved. 0
We now make the following additional assumption

(D2) f—"=c+y,. for some c € Rand {y.} € L.

We write P(1) = f; p(s) ds and make the following change of variables (motivated by
averaging):

Al 2 b
5.1 = — = ( ol +— )-—1].
(5.15) I b, [Zo.. exp il Aut 7, plt)

Substitution of (5.15) into (5.12) yields

’f—:'f,,(!)’i' 1) exp [2:‘(A,,:+2'!:\"'1 p(!))],

P oy
(5.16) L =i Z0"(

(5.17) £.0)=0.

' This lemma follows from Dunford and Schwartz [1964, p. 338]). We have included the proof for
completeness,

—————
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The following existence and differentiability theorem gives conditions under which the
solution {{.(#)} of (5.16), (5.17) belongs to /3, and thus gives more precise information
on the attainable set (but under stronger hypotheses) than Theorem 5.5.

THEOREM 5.7. Suppose {2on}€ b2y 2o # 0 foralln = 1,2, - - -, and that {¢**~'} can
be extended to a Riesz basis of Lz([O, 1}, R) for some 1>0. Letpe Lﬁ,,([O, o0); R). Then
(5.16), (5.17) have a unique absolutely continuous solution [, = {,(t; p) defined for all
120, and {{,.( ;DY E C([O T); L) for 0<T <=\l Furthermore, the mapping p—
{Za(T; p)Y is C* from L*([0, T); R) to I, for each 0< T =1, and
f Zo,,

(5.18) DT 0} p= -3 2 L p(t) exp (2iAn0) di.

Proof. We write (5.16), (5.17) in integrated form:

(5.19) £, --—j pls) 22(2 ::‘..<s)+1) exp [ 2i{ s + 22 - p(s))] ds.

20n

We can solve these equations in a manner similar to Theorem 2.5, but for variety we
shall adopt a standard device to get existence on an arbitrary time interval in a single
step. Let 0< T =/ For any § =0 the norm

ells= sup e ™z,
1€(0.7]

on Xt = C([0, T); {,) is equivalent to the usual one, namely || IIo. For { € Xt define

() 1)) = —% J:p(S) z-o"( Lu(s)+ l) exp [2:

Z0n

Then for0sSrsSt=T

I U= 2l

2

(5.20) =— ¥y ” pls) zo,. {,.(s)+ 1) exp [24

n-l Z0on Arl

i) as
[2'(" 2b

2

2 L (j lp(IZats)] ds) 1

)] ds

where, as before, & =|{ba/A Y. But

";T( j Ip(s)f® ds) il

I‘p(s)exp [ZI(A,,s 2’;" )] dsr

"-'- z ” p(s) exp (icP(s)) exp (2iA,s)[1 + iv.p(s)+ o ya])] dsl

nvl

2 ..- (J lp ()12 ()l ds) =

while

1 ©
2.%,

= c[ po)f d 1+ T nf]

where C is a constant (depending on p), and where we have applied Lemma 5.1 (ii) to
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the function 8(s) = xi...(s)p(s) exp (icP(s)) with Z = L*([0, {]; C). From (5.20) we thus
deduce that J, maps yrinto itself.

Let {, n € X Then
1/2 2

(£ Wit -snonal) =5 e £ ([ ptsiliato- nld) )

K 2 V3o Stx~1)
g-z-(L lp(s)] ds) '[, e dsllZ = nlls.

Hence J, is a uniform contraction with respect to the norm || ||; provided & is sufficiently
large. Calculations similar to those above show that J, is C' in p. The result then follows
as in Propositions 2.1, 2.2. O

It is now easy to prove a local approximate controllability result.

THEOREM 5.8. Suppose {2y} € l2, Zyn ;-é 0, b, #0, foralln=1,2,---, and that
{1, e**™ '} can be extended to a Riesz basis of L {0, 1; ©) forsomel >0, Then there exists
&> 0 such that if |h|l,, + |6l <&, where h € I and 6 € R, then

AII z' (I) of b
21 _.('_ [(" __”_)]__ )= s = RN
{5.21) b\ 2o exp|i A HZA,. 8 1)=#h n=12

for some p e L*([0, 1); R) with ]:, p(ndi=8.
Proof. Consider the map Q:L*([0, I}; R)- /> x R defined by

Q(p)= ({L.(l; p)h J:p(l) d:).

By (5.18),

D,Q(0)-p= ({— Pl!) exp (2iA,¢0) dt} I p(t) dt)
Since Q is C' by Theorem 5.7 it suffices to show that D,Q(0) is surjective. Let{a,}€ 1,
a €R. Write b, = 2i(20a/ Zon)a,. By Lemma 5.1 (iii) we can solve the equations
{ !
q(t)exp (2iA ) dt = b, I q(2) exp (—=2iA.0) dt = b, n=12---,
0 0

Zon

1
J qtydt=a

for g € L*([0, /]; C). Setting p(r) =Re 4qU1) we see that D,Q(0) is surjective. D

Remark 5.9. Suppose that{1, e’ L Bur), - -+, dx (1)} can be extended to a Riesz
basis of L*([0, !] C), where ¢; € L*([0, {); R), l<1 <N Then the proof shows that we
canfindapel- ([0 1]; R) such that (5.21) holds, L,p(l) dr =6, and f,,p(l)d).(!) dt=
1=i= N, provided that

Uil 161+ ol

is sufficiently small. Thus, the more deficient the set {1, ¢ *2*+'} is, the more controls
there are such that (5.22) holds. If {1, e***- '} is already a Riesz basis, then pis umque
COROLLARY 5.10. Suppose {zou}€ b2 withb, # 0, 20, # 0 foralln =1,2,-+ -, and

‘im (/\,..l_A'|)§V>0.
ne=ex
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Then given any T >(m/v) there exists ex >0 such that for any hely, 6 R, with
lkll, +16l < £, there is a p & L*([0, T); R) such that

%(%{Q exp [i(/\,.T+2[;"" 9)] - l) = h,,, n=12:.--

T
and [; p()dt = 6.

Furthermore, if A,/ o is an integer for all n and some o >0, then there exists an € >0
such that if k||, +|6} < e then there is a p € L*([0, 27/ }; R) such that

2,27/ o) (—ib,.ﬁ)( b,,h,.)
_— —= ) 1+=1), =12,
Zon exp 2An 1 An " 2

and {377 p(r) dt = 6.

Proof. The first part follows immediately from Theorems 5.2, 5.8. The second part
is then obvious. O

Remarks 5.11. 1. InCorollary 5.10 there exist infinitely many families of possible
controls p. This follows from the fact that by Theorem 5.2 {1, e ***+'} can be extended to
a Riesz basis of L*([0, A); C) for any m/v <A < T, so that there are infinitcly many
linearly independent real functions in the orthogonal complement of the subspace of
L*([0, T]; C) spanned by {1, e***~'}, and Remark 5.9.

2. Thesetof 2 =Y, _, 2.4, € ¥ such that for some fe R

A,. Zn Y bn
{" - bn (z(ln exp [l(A"T-{’.ZI\" 0)] l)

belongs to the ball ||¢]l, <& is compact (use |z,| = (|budn/Aul + 1) 20n] = (Ce /2 + 1)|zon]
and Lemma 5.6). Hence the results of Theorem 5.8 and Corollary 5.10 do not say that
we can control in finite time to points of a dense subset of some neighborhood of
e“"2(0) in %. To prove such an approximate controllability result we would need to
extend Theorem 5.8 by allowing ¢ to be arbitrarily large.

We now show how Corollary 5.10 can be applied to prove a global approximate
controllability theorem. We restrict attention to the case when e™' is periodic.

THEOREM 5.12. Suppose that =g ={zo,} € I with z,, # 0 Joralln=1,2,--- and
let A,/ o be an integer for all n and some o >0. Then forany h el with 1 + (b,/A)h, #0

for all n, and any 6€R, there exist a positive integer m and a control pe
L*([0, 2mm/o]; R) such that

, (Zmﬂ)
\ o ib, b,
T—CXP(—ZA,:F)(I+A" h,,). n=1,2,
Proof. Let
A= [(h, el xR| zn(m) =exp (-M)( 1 +ﬁ h,.)zﬂ.. for all n}.
(22 2An /\n

some positive integer m, and some p € L([0, 2mn/o]; R) and

B={(h, O)EI;XIRIH-%I:,, # 0 for all n}.

n

We show that A = B. By the backwards uniqueness of solutions to (5.13) and the
assumption 2, # 0 for all n we see that A < B. It therefore suffices to show that (i) A is
open, (ii) A N B is empty, and (iii) B is arcwise connected.
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To prove (i), let (1, 8) € A, so that » Since
2mm ib.6\(.  ba | Defir
z,,(T)—exp(—a:)(l+z h,.)zo,., n=12---
for some m and p € L*([0, 2mmu/c); R). We apply Corollary 5.10, with initial data i
= _ 'bno bn ' for S
20n “CXP( 2An)(l+An hn)zl)m 1 peL
to deduce the following assertion: if !
(5.22) g, + et < e
then there exists p € L*([0, 2(m + 1)7/o]; R) such that Exte;
2(m+ l)ﬂ) ( ib,,a) ( by \.
| = A +— n ny =1,4,"'"
z ( > exp 2, 1 A 8 )zo n=1,2
But if ||k — £|,, and |0 - 6] are sufficiently small then He“f
b — h, - AN =
n S ——— =6- =
& S T A, 29 @070 (B,
satisfy (5.22) (note that {h,}e I, implies that |1 +(b,/A,)h.|=k >0), and so for the (s, 0
corresponding p we have Th“s(
2(m + 1)7) ( ib,.B.)( b, ~ )
| S A +—1n, ny il P AR
z ( pn exp 20, 1 A hn)za n=12 i
Thus A is open. .
Suppose that (h, 8) € A N B. We show that the time reversibility properties of (5.1) f is den
lead to a contradiction. Let ' f
ib.0\(.  ba ' k
Won = €XP (— 2\ )(1 +A_ h,.) Zon. ; contre
n n precis
By Corollary 5.10, if (5.22) holds, there exists g € L*([0, 27/ o }; R) with f; e q(t) dt = ‘ 6
a, such that the solution of ; E
Bu (1) = —iAa0a (1) = igq (1) f— Rev,(r).  0.(0)= ¥, } equati
satisfies |
27\ ib.a b, _\ _ % with b
v,.(:)—exp(—un)(l+zg,,)w(,,., n=1,2,--- ,
Hence ) | and in
fa=a,(=2-1) i
a
satisfies In the
Z'n(l) = _i/\nin (t) "IQ(EE— t) ﬁ Re En(t):
o An
! ibuct\ (. b
: (5.23) 5.(0)= (’ n )( bn )
Z.(0)=exp A 1+ A 8n ) Won,

-
s
“n

(2

PR T TR Y et




data

o for the

:s0f(5.1)

-

qnNdt=
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Since (h, 8) € 3A, there exists a sequence (1, 8"y e A with (1", 8> (k, 8) in LXR.
Define

h(l) - h
- pg_atn = n n Vit
a=@-60 and g, —_*1+(b,fA")hn' o
for some fixed r large enough for (5.22) to hold. For this r there exist m and .

peL*([0,2mn/ o]; R) such that _,_ "

.

z(———zm”)-ex (-———ib"am)(l+-b—"h"’)z =ex (M)(“_ﬁ )w ..“
AN A N THY A W e A F TW IR O At

Extending p to be q(2(m + 1)7/a 1) on [2m=/a, 2(m + 1)w/o] we see that by (5.23)

( 2(m+ 1)11’)
2| —————) = wop.

o
Hence (h, 6) € A, a contradiction. This proves (ii).

To prove (jii), note that if (h,8)e B then |(b,/A,)h.|<1 for n>N, say. Let
h” = (R, b0, - ). The arc 1> (h™ +1(h — k™), 16), 1[0, 1] connects (k, 6) to s
(h", 0) and lies in B. But ("™, 0) can be connected to (0, 0) by an arc in B of the form . ;
(s, 0) where s € R™ and runs from A" to 0 and avoids (—A,/b;, =A2/ba, * + +, —An/bN).
Thus B is arcwise connected. 01

COROLLARY 5.13. Let the hypotheses of Theorem 5.12 hold. Then the attainable set

s(zo) = U z(t; p, zo)
{1}
ve Lintl0, orR)

is dense in X. )

Proof. The set { € I|1+(b,/A,)h, #0 for all n} is dense in 1,. 0O

Remark 5.14. Clearly the information provided by Theorem 5.12 implies global
controllability with respect to suitable finite-dimensional observers. We leave the
precise formulation of these results to the reader.

6. Applications to partial differential equations.

Example 1. Wave equation with Dirichlet boundary conditions. Consider the wave
equation

Up— Uy +p(Nu =0, 0<x<1,
with boundary conditions
u=0 atx=0,1
and initial conditions
uix, 0) = up(x), u(x, 0) = u,(x), O0<x<1.
In the notation of (5.1), (5.2) we have
A=-L Bt H-r0n=L'0 1R

D(A)=H?*0, )NH0.1), DA =HL0,1),

An =nm, ¢,.=~/Esinmrx. n=1,2,---,

(Bdm &m) = S
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We thus see that (D1) holds, and since b, = 1 we have ,/A, = 1/n so that (D2) also
holds.
As before, we set

2(0)=A"u()+ii(1) and zo=A Y2+ iuy,

so that
= A (100, ¢n)+ ’.(uh ¢n)

In this case % = L%(0, l)@:L2(0 1). We suppose that z,€ ¥, We note that {1, e*>*~)
forms a Riesz basis of L*([0, 1]; C) and can be extended to a Riesz basis of L*({0, 1]; )
forany / = 1. Then Theorem 5.3, Corollary 5.4, Theorem 5.7 and Theorem 5.8 are all
applicable. For example, Theorem 5.3 says that if 2, # 0 for all # we can control any
finite-dimensional projection of the solution to take any value sufficiently close to the
projection of the free solution (p =0) at time 7, = 1, while Theorem 5.8 holds for any
=1,

In particular, Theorem 5.5 shows that the set of {i, «,} in H)0, 1)xL%0, 1)
accessible from {uy, 1} with controls in Li,c[0, ), r = 1, given by

S({ug, 10, = U {ute; p, 1o, 1)), wlt; p, ug, 1))}
pe L;,::f:)).aonﬂl

has dense complement in H (0, 1) X L%(0, 1). On the other hand, by Theorem 5.12 and
Corollary 5.13 we have global approximate controllability: thus the set § of states that
can be reached using L” controls on a time interval of length at least one is dense in
H{xL?, provided zq, # 0, i.c., all modes of the initiul data are active.

Example 2. Wave equation with mixed boundary conditions. Consider the wave
equation

Uy — Uy +p(DUu =0, O0<x<],

with boundary conditions
u=0atx=0, u—au,=0atx=1, a>0constant,
and initial conditions
w(x, 0) = uo(x), t(x, 0) = 1 (x), O<x<1.

In the notation of (5.1) and (5.2) we have

dz
A= T dx®
DA)={ueH0,1)|u=0atx=0,u+au, =0atx =1},
DAY ={ueH'0, D|u=0atx =0},
172

1
tan A, +ali, =0, @dalx)=(sin /\,.x)/(J sin’ A,.x) , n=12.--,
(4]

B=1I, H=L%0,1),

and (B, dn) = Spn.
In this case,

/\,,='-121-r+s,.(a), n=1,2,---,

where |e,(a)| =0 as n +a - 0. Thus, since b, =1, {b./A.}€ l,. Hence (D1) and (D2)
hold.

T T I T T

A
so thai

Asin |
5.4, Tt
Theore
that in
lability
we car
sup, le

which i
L*0,2
Ena

6.1)
with bc
(6.2)
and ini
(6.3)

In the s

In this
z(t)=A

(6.4)

Theorer
L*%[0,7
Corolla;
Corollas
approxi:

TH!




1(D2) also

™

{1 ,e tZl‘;\,,l}
2o, 1); C)
5.8 are all
:ontrol any
:lose to the
Wdds for any

)x L*(0, 1)

mS5.12 and
“states that
is dense in

:r the wave

(m,

1) and (D2)
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As usual, we set

z(')=A‘/2u(t)+h.l(‘)| Z()=A‘/2u()+l.“|,
so that
Zon = /\n(“l)o ¢n)+ i(uh ¢n)-

As in Example 1, %= L*(0, 1)@iL?(0, 1), and we let zo€ %. Theorem 5.3, Corollary
5.4, Theorem 5.7, Theorem 5.8 and the first part of Corollary 5.10 are all applicable. By
Theorem 5.2 {e*™*'} can be extended to a Riesz basis of L*([0, T); ©) forany T>2, so
that in the above results the assertions of finite-dimensional or approximate control-
lability apply to time intervals of length greater than 2. Actually, for a sufficiently large
we can take T, =2 in Theorem 5.3 and T=2 in Corollary 5.10. (This is because
sup. len(a)| =e1(a)| < }log 2 for a sufficiently large, so that

sup [2A, - nw|<log2,

wl;ich implies by Riesz and Nagy (1955, p. 209] that {1, e***+'} forms a Riesz basis of
L0, 2).)

Example 3. Rod equation with hinged ends. Consider the system
6.1) Hy F Upyex + p(Ditgy =0, O<x<l,
with boundary conditions
6.2) u=iu,=0 atx=0,1

and initial conditions

(6.3) u(x, 0) = ug(x), ulx, 0) =15(x).

In the notation of (5.1), (5.2) we set
da’ d?
a 8=
D(A)Y={ue H"0, D|u, u, e H)O, 1)},
DA = H0, H)NHNO, 1), n=nlnwd,
¢,.=‘/§sinmrx, n=1,2,---,
(Bdm $1)=0, n#m, (Bd,, ¢.)=-nm".

A= H=L%0,1),

In this case 4,/A,=~1, so that (D1), (D2) are again satisficd. As usual we write
z=A"u@ +iit) =5, 24()bn, 2040) = z0,. Note that

(6‘4) li_.n; (An +1 7 An) =00,

Theorem 5.2 therefore implies that {1, e*’“‘"} can be extended to a Riesz basis of
L*([0, T]; C) for any T>0. Theorem 5.3 is therefore applicable with any T,>0,
Corollary 5.4 holds, Theorems 5.7 and 5.8 hold for any />0, both conclusions of
Corollary 5.10 are valid, and Theorem 5.12 and Corollary 5.13 hold. We summarize the
approximate controllability results in the following theorem.

THEOREM 6.1. Let uye H (0, DNAHNO ), u 1 E Lz((). 1) and suppose thar

20n Enzﬂ'z(tlo, ) +i(uy, ) #0 foralln=1,2,-:-.
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% 2
For any p € Lio.([0, ©); ®) a unique mild solution ;‘ for the
{u, 4} e C([0, ©); X) !
_ of (6.1)-(6.3) exists, where X =(H0,1)NHo0,1)xL*0,1), and if pe |
Zii o Li([0, ©): R) then | The or
3 . (1 ] 1 ' Theor:
pated {zz( ) exp [t()l,.t—i J p(s) ds)] - 1} e C([0, x); 15). ! there ¢
L " Oon 0
£ and Tt
Conversely, for any T >0 there exists er > 0 such that if ||k, +|a| < er then l using ¢
Z_"@e"*ﬂ'—ﬂ_1=hm n=12-+-- :
Z0n !
for infinitely many p € Lic([0, T); R) with L;r p(8) dt =2a. In particular, setting T =2/, | A.V.B,
there exists € >0 such that if A, +|a| < then ] )
2 . J I.M. B,
- 2(2)=e" Ut hzon  m=1,2, |
™ i 1. M. B.
for infinitely many p € L*([0, 2/7); R) with [o'™ p(t) dt = 2. Furthermore, if (h, a)€ | R, Brox
LXR with h,#—1 for all n, there exist a positive integer m and a control pe R.W.C.
L*({0, 2m/ 7 ]); R) such that P. Curs
2m ia ' N. Duni
= (6:5) z,.(?) =e”(1+hn)zon n=12---, 1.C.Gor
50 that the set of states accessible from {uq, 1} is dense in X. J.K. Ha
e Remark 6.2. Our method of proof shows that given £ > 0 we can find m and p such ; H. Her:
3 that (6.5) holds and ||p||.2s.ay < & for any interval I =[0, 2m/ ] of length 1. Of course m H. Her:
will need to be large if ¢ is small. V. JURD
Example 4. Rod equation with clamped ends. Consider (6.1) with boundary C. LoBr
conditions ' D.G. Lt
A.PAzy
u=u=0 atx=0,1
. F. RiEsz
and initial conditions (6.3). As is well known, this case is much more delicate than (6.1) | D. Russ:
with hinged boundary conditions (6.2). We now have :
s 2 ; 1. SEGar
d d : H. Tana

; = — = =72
i A—dx“ B F’ H L(Ovl)'

D(A)=H0,)NH30,1), D(A"*=H}0,1), |

coshAM? cosAb? =1, n=1,2,-+-, ,

5 The usual graphical analysis shows that i
Av=(n-3’m’+e,, i

where &, »0 as n » . (Very precise estimates for ¢, are given in Ball and Slemrod :
Vo [1979].) The corresponding orthonormal eigenfunctions ¢,, do not satisfy (B@m, ¢a) = .
IO 0, m # n, and so none of the results in § 5.3 are applicable. Furthermore, hypothesis (ii) '
L of Theorem 5.3 does not hold, since 2A,—(A,+4,) can be arbitrarily small for f
5 arbitrarily large n, p and q (cf. Ball and Slemrod [1979], especially pp. 560, 574). So itis ‘
N not obvious that (6.1), (6.6) is controllable locally with respect to finite-dimensional

observers. It is possible that estimates on the lines of those in the preceding reference
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for the A, might establish local controllability relative to G of the form

@ N

Zl a..zn) = L( ZI a,.z,.)-
The only resuits in this paper applicable to (6.1), (6.6) are the basic existence theorem,
Theorem 2.5, which just gives the standard result that for {uo, ti}e DAY XH =X
there exists for each p € Lj..([0, 0); ®) a unique mild solution with initial data {uo, u,},
and Theorem 3.6, which demonstrates the general impossibility of exact controllability
using controls p € Ly,.([0, ©0); R), r>1.
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