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We start with an unperturbed system containing a homoclinic orbit and at least two families of
periodic orbits associated with action angle coordinates. We use Kolmogorov-Arnold-Moser
(KAM) theory to show that some of the resulting tori persist under small perturbations and use a
vector of Melnikov integrals to show that, under suitable hypotheses, their stable and unstable
manifolds intersect transversely. This transverse intersection is ultimately responsible for
Arnold diffusion on each energy surface. The method is applied to a pendulum-oscillator

system.
PACS numbers: 46.10. + z,03.20. +1i
1. INTRODUCTION

In a previous paper (Holmes and Marsden)' we devel-
oped a method for proving the existence of Smale horseshoes
in two-degree-of-freedom Hamiltonian and nearly Hamil-
tonian systems. This paper extends those methods to systems
with three or more degrees of freedom. We start with an
unperturbed system containing a homoclinic orbit and at
least two families of periodic orbits associated with action
coordinates. We use KAM theory to show that some of the
resulting tori persist under small perturbations and use a
vector of Melnikov integrals to show that, under suitable
hypotheses, their stable and unstable manifolds intersect
transverselly. This transverse intersection is ultimately re-
sponsible for Arnold diffusion on each energy surface.

Our methods are a generalization of those of Arnold?
where “Arnold diffusion” was first introduced. The applica-
tions are, however, somewhat different and, we believe, of
more direct physical interest.

For two-dimensional forced systems, the existence of
transverse homoclinic orbits using Melnikov type methods
is discussed in Chow, Hale, and Mallet-Paret, Holmes,* and
Greenspan and Holmes.® These methods apply to two-de-
gree-of-freedom Hamiltonian systems through the process
of reduction and are discussed in Holmes and Marsden.’
These methods also apply to certain infinite-dimensional
problems with external forcing and damping; see Holmes
and Marsen.® The purpose of this paper is to extend the Mel-
nikov method to Hamiltonian systems with three or more
degrees of freedom where the new phenomenon of Arnold
diffusion arises.

The main example treated in this paper is a Hamilton-
ian system consisting of a pendulum coupled to two oscilla-
tors (with amplitude-dependent frequencies). The system is
shown to have Arnold diffusion. Using the techniques in our
previous paper, one can also show that the Arnold diffusion
on a certain energy surface survives suitable positive and
negative damping perturbations.

“Research partially supported by ARO contract DAAG-29-79-C-0086
and by NSF grants ENG 78-02891 and MCS-78-06718.
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We shall assume that our coordinates are given in ca-
nonical form. However, many interesting problems involv-
ing rigid body dynamics are best done in a more general Lie
group theoretic context. This situation is discussed in
Holmes and Marsden.’

2. TRANSVERSAL INTERSECTION OF INVARIANT
MANIFOLDS BY MELNIKOV’S METHOD

In this section we are concerned with perturbations of
Hamiltonian systems of the form

H%gpx,y) = Flgp)+ G(x.), (2.1)

where (¢,p,x,y) are canonical coordinates on a 2(n + 1)-di-
mensional symplectic manifold P; g and p are real and

x = (x",...,x"), y = (V1,---,p,, )- We assume the coordinates are
canonical although, in some examples such as the rigid body,
this requires modification (Holmes and Marsden’). We shall
also assume that action-angle coordinates (0,,...,6,,{,,....1,)
can be found in a certain region of phase space such that (2.1)
takes the form

H%p0,)=Flgp)+ 3 G(L). (2.2)

i=1

We also assume that G;(0) and that

G,
0,() = c?Il >0 forl >0. (2.3)

J

The perturbed problem we consider has the form

HE(‘],P:9’I) = F(q’p) + EIG:‘(I,') +eH ](q,P:G’I)’ (24)
where H ' is 2m-periodic in 8,,...,8, . Now we recall how this
{(n + 1)-degree-of-freedom system may be reduced to an »n-
degree-of-freedeom nonautonomous system; the reader
should refer to Holmes and Marsden’ for details.

Choose one of the action coordinates, say I,,. Since
2,(1,)>0for I, >0, we can invert the equation

Hegp,6.I)=h (2.5)
to obtain
1, =Lcgp.0,...0,,1,..1, h) (2.6)
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If we write
L<=L°+eL'+0(e), (2.7)
then a simple computation shows that
L°%qgp1,,....I, ,;h)
n—1
=G, (h—Flgp)— Y GiI) (2.8)

j=1
and

LYgp,0,,.0,.1,,...0,_;h)
_ H l(q’pyel’-'wen Ay, 1)L O(ql’p’llv--»]n _;h)
02,(L%gpd,,. L, _ 13h))

(2.9)

Changing variables from ¢ to 6, and writing ( )’ for (d /d6,)
( ), Hamilton’s equations for H € become

g oL L _dL
ap, aq!
aL< dL<
= - = -2 j=l.,n—1 (210
; i U 28, J n (2.10)

Using (2.7)+2.9), Eqgs. (2.10) are in the form of a 27-periodi-
cally forced n-degree-of-freedom Hamiltonian system. No-
tice that L °is (formally) completely integrable, having # con-
stants of the motion given by

L%energy) and (I,,....,0, ;)= (l1yeeesly _ i )s
or alternatively,
L®and (G\(I}),...G, _ (I, ) = (hyysh, o).

{This reflects the general fact that complete integrability is
preserved by the reduction process).

Assume now that the Hamiltonian F has a homoclinic
orbit (g(¢ ),p(t )) joining a saddle point (gq,p,) to itself. (The
case of heteroclinic orbits connecting different saddle points
proceeds in the same way.) The Hamiltonian system for L ©
thus has an (n — 1)-parameter family of invariant (n — 1)-
dimensional tori T'(A,,...,h, ) given by

G,(I})=h; =const [ie, [, =1, =G, '(h)],
6, = 0,(,6, + 6,(0) (mod 27), j=1,..n—~ 1,
9=4¢ P=Do

(2.11)

Correspondingly, the system for F has an n-parameter fam-
ily of invariant tori T'(h,,...,h, ). Henceforth we write the
{phase) constants of integration 6,(0) as §0j = 1,...,n — L,n.

The torus T (h,,...,h, _,)is connected to itself by the n-
dimensional homoclinic manifold

G/L)=h,
6, =02,)8, +6°% j=1..n—1,
where the phase constant 69 associated with the “reduced”
degree of freedom appears explicitly. This manifold consists

of the coincident stable and unstable manifolds of the torus
T(hy,...h, )ie,

WAT (hyynh, )= W T (hysh, )
given by (2.12). See Fig. 1.

(2.12)
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{agsp,)

FIG. 1. The homoclinic orbit for the F system X the invariant torus
T(hy,...,h, _ ) gives the homoclinic manifold of the torus.

For e#0 the system (2.10) possesses a Poincaré map P,
from (a piece of) (¢,0,0,,.--,6, _ 1 11,1, _ ) space to itself,
where 6, goes through an increment of 27, starting at some
fixed value 82 (which will be suppressed in the notation).
The tori T'(h,...,h, _ ) are invariant manifolds for P,. In
fact, these tori are isotropic submanifolds (i.e., the canonical
2 form w vanishes on them), a fact we shall need later.

The program is to show that for €0 some of the tori
persist and that their stable and unstable manifolds intersect
transversely. To do this we shall invoke the KAM (Kolmo-
gorov—Arnold-Moser) theory and Melnikov’s method. The
result will then be interpreted as Arnold diffusion.

Let us first discuss the invariant tori. The manifold ob-
tained by setting ¢ = ¢,,p = pyisa(2n — 2)-dimensional nor-
mally hyperbolic invariant manifold, say M,, for our Poin-
caré map P,,. Thus, for € small, M, perturbs uniquely to an
invariant manifold M, for P,. The KAM theory now can be
applied to the family of invariant tori T'(h,,...,h, _ ,) on M,,
If the hypotheses of nondegeneracy and nonresonance hold®
then the torus T'(A,,...,h, _ ) will perturb to an invariant
torus T (h,,...,h, ) for P,, for € sufficiently small (depend-
ing upon the precise “degree” of nondegeneracy). Moreover,
the proof shows that this torus is also isotropic.® We note
that the perturbed torus 7, has the same frequencies £2;(4,)
as the unperturbed torus and thus the perturbed phase an-
gles do not drift appreciably from the unperturbed ones. We
use this fact below.

Although a set of positive measure of the perturbed tori
persist near the original ones, the resonant tori containing
continuous families of periodic motions generally break into
finite sets of alternating elliptic and hyperbolic periodic or-
bits with associated homoclinic motions, as in Arnold
[19781,® (p. 397). The boundaries of the elliptic islands are
conventionally drawn as homoclinic orbits of a flow: these
actually belong to an associated averaged ( = canonically
transformed) system. Restoration of the terms omitted in
averaging leads to the prediction that these islands will, in
turn, be surrounded by regions containing transverse homo-
clinic orbits (cf. Holmes*) but these regions are smaller than
any power of €, since they can be removed by successive
averaging operations. In fact such “stochastic layers” are
generally exponentially small in € and attempts to compute
them by the Melnikov method necessitate a careful examina-
tion of errors. This will be the subject of a further publica-
tion; cf. Sanders [1980].'°

In the case of two degrees of freedom for which the
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unperturbed reduced system has a hyperbolic saddle point
Xo = (gosPo)» SOlutions of the perturbed system lying in the
perturbed stable and unstable manifolds of the perturbed
saddle point x, of the map P, can be expanded in power
series which converge uniformly in the intervals indicated:

WoT, =0~ 0% + ex(6,0°) + O(¢?), 6e[6° ),

Weid = %0 —0°% + ex¥(6,6° + O(€), Be— «,0°],
(2.13)

where
- [ 6(9—'90)
Mo —67) = ‘(6*00))

is the unperturbed homoclinic orbit. (Recall that the period-
ic variable @ has replaced time.) For details, see Holmes,*
Sanders,'? or Greenspan and Holmes.® [Basically (2.13) fol-
lows from the fact that the perturbed solutions lie in mani-
folds of solutions forward- or backward-asymptotic to the
perturbed saddle points.] Similarly, solutions lying in the
perturbed invariant manifolds W*(T,),W *(T.) of a per-
turbed torus T, can be expanded in convergent power series
in € in such intervals, since the perturbed actions are € close
and the perturbed angles do not drift but remain close to the
unperturbed angles on the tori. This result will be used im-
plicitly in what follows.

The perturbed invariant manifolds W*(T,) and W*(T,)
of the torus T, for the map P, are n-dimensional manifolds
lying C "close to the unperturbed homoclinic manifold given
by (2.12), i.e,,

F=h, I=1, j=1l.,n-1, (2.14)
where 4 is the energy of the homoclinic orbit for F. Now we
are ready to give a criterion for the transversal intersection of
WH(T,)and W*T,). In order for the results to be applicable,
it is useful to present the hypotheses in terms of data given
for the original, rather than the reduced, system.

We consider a Hamiltonian system with » + 1(>3) de-
grees of freedom of the form

Heqp,04..0,1..,1,)

—Flgp)+ 3 GL)

i=1
+ €H Yg.p,6,,...0,,0 1, 1) (2.15)
Introduce the following assumptions and terminology:

(H1) F contains a homoclinic orbit {¢{¢ ), (¢ )} connecting
asaddle point (g,,p,) to itself. Let 4 be the energy of this orbit.

(H2)02,(I;) = G/{I;)>Oforj=1,...,n.

Let 4> h and let the unperturbed homoclinic manifold
be filled with an n-parameter family of orbits given by
(cj,ﬁ,ﬂ,,...,ﬁ,,,[,,...,l,,) = (q_(t )vﬁ(t )’nl(ll)t + 0(1)"""071 (In )t

+ 6%.,1,,...,1,). Pick one such orbit and let {F,H '} denote
the {g,p) Poisson bracket of F{g,p) and
H'g,p,8,,....0,,1,,...,1,) evaluated on this orbit. Similarly,
let {I,,H'} = —dH'/36, .,k =1,...,n — 1 be evaluated on
this orbit. Define the Melnikov Vector M (8)

= (Ml!""Mn —1 ’Mn ) by
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Mk( ([),92, krhl)hz;'--,h" — |)

=f (L Hdt, k=1,.,n—1
M, (8%,...0% hh kg ik, )

= fw (F,H'}dL. (2.16)

- n—1
(Wenotethath, = h — h — > h;; 1, and A, do not explic-
j=1

itly enter the calculations, sirjlce I, is eliminated by the re-
duction process; we also note that these integrals need not be
absolutely convergent, but we do require conditional
convergence.)

(H3) Assume that the constants Gl)=hj=1,..,n,
are chosen so that the unperturbed frequencies
£24(11),...,82,(1,) satisfy the nondegeneracy conditions [i.e.,
£2/(I)#0,4 = 1,...,n — 1] and the nonresonance conditions
mentioned above (cf. Arnold,® Appendix 8).

(H4) Assume that the multiply 27-periodic Melnikov
vector M:R"—R" (which is independent of €) has at least one
transversal zero; i.e., there is a point (4 9,...,8 %) for which

M(69,.,6° =0
but
det [DM(B?,...,&;’)]#O,

where DM is the n X n matrix of partial derivatives of
M,,...M, with respect to 89,...,8", the initial phases of the
orbit.

Here is our main theoretical result.

Theorem 2.1: If conditions (H1)~(H4) hold for the sys-
tem (2.15) then, for € sufficiently small, the perturbed stable
and unstable manifolds W*(T,) and W *(T.) of the perturbed
torus 7, intersect transversally. (See Fig. 2.)

Remark: The conclusions imply that the perturbed sys-
tem has no analytic integrals other than the total energy H ©
and, for n + 13, that Arnold diffusion occurs. This is dis-

S
W) ()

T

£

FIG. 2. The stable and unstable manifolds of the invariant torus 7, for the
Poincaré map in the reduced space for a system with three degrees of free-
dom. This figure occurs in (g,p,6,,1,) space [one dimension (/) is sup-
pressed], in a @3 = fixed cross section for fixed total energy A.
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cussed in the next section.

Proof: First we notice that the brackets of the original
functions project to corresponding brackets of the reduced
system:

1

L LY =—— (FH!' 2.17
{ J m"(m]z{ J (2.17)
and

Ny 1 1 _ =
{(LL'} = .Q,,(I,,)”“H L, k=1,.,n~1 (2.18)

(see Holmes and Marsden,' Prop. 3.1).

We next wish to relate these brackets to a vector mea-
suring the distance between the perturbed stable and unsta-
ble manifolds.

Consider the suspended system in
{g0.6,,...60, _1,..1,_)space. Pick a transversal 3. to
the unperturbed homoclinic manifold W*T)= W*T}in
(g.2,6,,...0, _.1,,....I,_|)space at the point
(7(0),5(0),69,....,6% _,.I,,....I, _,)and at “time” 8°. Now for
€ sufficiently small, W*(T,) and W*(T.) intersect . in
unique points in (g,p,6,,...,6,, _, ,1,,....I, _,)space, which we
denote

x$(60°,6°) and x*(6°,6°).
The unique trajectories in (¢,p,0,,...6,, _ ; d1s--sd, _ ,,0,)

space with these points as initial conditions and time 8, will
be denoted

x:(6°86,)and x4(6°0,).
As in Holmes and Marsden,® a measure of the distance be-
tween these vectors and the tangent to W*(T)= W*T)in
the 6, direction,” i.e., the direction of X, ., the Hamilton-
ian vector field of the unperturbed dynamics, is provided by

the symplectic form w. Let
def

As,n(etwe?z) = w(XL"’xZ _x:) =A etx _A 631 + 0(62)'

Now as 8,— + o0,x;—T, and as 8,— — o0, x4—T. so, as
in Holmes and Marsden® Lemma 5, we obtain

Ae,n(o?l) =A€.Vl(g?"92)
GM,,(H(])’-"yeS-l’eS)
(2]

Note that the integrals (2.16) are well defined since one inte-
grates forward along the stable manifold and backward
along the unstable manifold [cf. Eq. (2.13)].

A crucial feature of this calculation is the fact that
41,0,0,)-0as8,— + o« since w vanishes identically on
T. This holds as follows. The invariant tori are isotropic and
4 1,6,,0%) = w(X,.,ex}) where X, » and x; are evaluated
on the unperturbed homoclinic manifold and x; is the solu-
tion of the first variation equation. Since X . is tangent to 7,
x7 necessarily approaches a tangent to 7, so as T'is isotropic,
4 ,—0. We note that in this context the perturbed torus T’
may move [by O (€)] and need not remain fixed as in the spe-
cial case treated by Arnold? or as in Melnikov’s'" paper (cf.
Holmes?).

Thus, M, (69,...,6 _,,0%) measures the leading non-

+0(€). (2.19)
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trivial component of the distance between W*(T,) and
W(T,) (up to a constant) in a direction transverse to the
“dynamic” variable 8,. Likewise, M,(i = 1,...,n — 1) mea-
sures the distance between W*(T.) and W *T.) in the direc-
tion transverse to the generator of the 6, variable. The theo-
rem now follows from these facts.

Remarks: 1. One can, of course, permute which of the
action-angle variables is used for the reduction procedure.
The remaining oscillators must satisfy the KAM nonreson-
ance and nondegeneracy conditions.

2. Gruendler'? has treated the 2n-dimensional, periodi-
cally forced case in which one also has an n-parameter family
of unperturbed homoclinic orbits but in which they are ho-
moclinic orbits to a hyperbolic saddle point x and
dimW’(x) = dim W “(x) = n. Again one obtains a general-
ized n vector of Melnikov functions each depending upon »
arguments, one of which is the section time (6%) and the
remaining 7 — 1 of which serve to parametrize the family of
orbits. The manifolds W*(x) and W “(x} are both necessarily
isotropic, so one can proceed in a way analogous to that here.
However, no KAM theory is needed and ordinary horse-
shoes rather than Arnold diffusion occur. Gruendler applies
the theory to the case of a periodically forced spherical
pendulum.

3. The theorem can be somewhat generalized. For ex-
ample, many integrable systems do not decompose precisely
as assumed in the form F(g,p) + 2/_, G;(I;) and one some-
times finds that the unperturbed ‘“‘frequencies, ”

0, = JG,/3dI,, also depend upon (g,p). If this occurs, and
£,(1;,q,p) is not constant on the unperturbed manifold, then
it must be incorporated into the Poisson brackets [cf. Egs.
(2.17) and (2.18)]. This situation will be dealt with in Holmes
and Marsden.’

4. Alan Weinstein has pointed out that even without
hypothesis (H4), the stable and unstable manifolds of the
perturbed torus 7, must intersect. This comes about as fol-
lows. As in the standard Melnikov analysis (Holmes and
Marsden),® pick a 2n-dimensional cross section 2 go- Thesta-
ble and unstable manifolds 7, for the associated Poincaré
map, W*(T,)and W*(T,), are Lagrangian submanifolds of
240 which are coincident at € = 0. Lagrangian intersection
theory {Arnold’? and Weinstein'?) shows that the perturbed
manifolds must intersect. This observation generalizes one
of McGehee and Meyer.'* It follows that the Appothesis (H 4)
holds for generic perturbation terms H '. However, condition
(H4) allows one to check transversality in specific cases.

5. In contrast to our results, Easton and McGehee!® use
Moser’s'” fixed point theorem to show that some homoclinic
orbits in a model system survive under special perturbations.
Alan Weinstein points out that, similarly, at least two homo-
clinic orbits survive perturbations of the spherical pendu-
lum’s S ' family of homoclinic orbits.

3. NONINTEGRABILITY AND ARNOLD DIFFUSION

If the stable and unstable manifolds W (A ),W*(A )of a
hyperbolic invariant set A intersect transversely then it fol-
lows from the lambda lemma (Palis,'®* Newhouse'?) that
WA ) accumulates on itself and W *(A ) accumulates on it-
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self. A similar result holds for the invariant tori in the pre-
sent case (cf. Arnold,” Theorem 1); more precisely, if
A, CWHT.)is an n-dimensional neighborhood of a trans-
verse homoclinic point xe W “(T nW (T ,),and A,C WH*(T,)
is any open disk, then there are points of UOP "4,) lying

nz

arbitrarily close to 4,. Such a torus 7, is said to be a transi-
tion torus. The torus is said to lie in a transition chain of
transition tori T'},T°2,..., T ¥ if the unstable manifold W *{(T".)
of the jth torus transversely intersects the stable manifold of
the (j + 1)st. This holds in our case since, by KAM theory,
the set of “sufficiently irrational” tori preserved when € #0
has measure (€)1 as e—0 (it is, in fact, a Cantor set). Thus,
for sufficiently small € one can find tori 77,72+ ! which are,
along with their stable and unstable manifolds, arbitrarily
C '’ close away from the torus and these manifolds have large
“oscillations” near the torus as in Holmes and Marsden,’
Fig. B.1. It follows that if W*(T.) intersects W (T) trans-
versely it must also intersect W(T.* ') transversely. Apply-
ing the same argument to 72+ !, T2%?,..., one constructs a
transition chain. Orbits lying in W *(T".) therefore accumu-
late on W*{T %) for k>j and these orbits and nearby ones
provide a mechanism by which solutions can “diffuse” from
the neighborhood of the torus to any other in the transition
chain. (cf. Arnold,” Theorem 2). An argument analogous to
that above shows that W*(T." ') intersects W *(T".) and thus
that diffusion can take place in both directions along the
chain. Note, however, that the length of the chain is general-
ly governed by the perturbation strength ¢, since as € in-
creases the set of perturbed tori generally diminishes.

The mechanism outlined above, which we attempt to
portray in Fig. 3, is the basis for Arnold diffusion. Clearly it
can only occur in systems with three or more degrees of
freedom (n>2), since the unperturbed 2n-dimensional re-
duced Poincaré map must admit continuous families of tori
connected by smooth homoclinic manifolds, and this cannot
occur in two dimensions. For more information, numerical
examples, and physical insights, see Chirikov?® and Lieber-
man.?' The main physical consequence of diffusion is that
( given sufficient time) energy can be transferred back and
forth in relatively large amounts between distinct physical

Wl el

WiTh nweerd)

3 S, j+i
Wiy awrl™

FIG. 3. Intersections of manifolds and Arnold diffusion in a three degree of
freedom system. The Poincaré section 8, = 89 is shown on the energy sur-
face H = h.
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components or vibration modes of the system. Moreover this
transfer of energy will typically take place in an irregular
manner, in contrast to the regular quasiperiodic energy
transfer occuring between modes in linear or other integra-
ble systems.

Thus, in contrast to the two-degree-of-freedom case, in
which the sufficiently irrational invariant tori, preserved for
small perturbations, serve as boundaries to regions of homo-
clinic (chaotic) motions in the three-dimensional total-ener-
gy manifold, in systems with three or more degrees of free-
dom the solutions can diffuse from torus to torus along
transition chains; the »n tori which are preserved do not
bound regions of 2n + 1 space for #>2. In our case, since
two-way transition chains can be chosen, we can find period-
ic motions of arbitrarily high period close to such chains, just
as in the standard two-dimensional horseshoe example. The
density of the set of such motions and the dense orbit accom-
panying them guarantees nonexistence of any additional
analytic integrals other than the total energy H . (In fact one
sees that such dense orbits exist within neighborhoods of any
transverse homoclinic orbits connecting a torus to itself,
without invoking the idea of diffusion.)

The presence of a small amount of noise in a system is
believed to “stabilize” in some sense the occurrence of Ar-
nold diffusion, in the same way that noise often “‘stabilizes”
or “makes visible” horseshoes (cf. Holmes and Marsden.).

4. AN EXAMPLE:THE SIMPLE PENDULUM COUPLED
TO TWO OSCILLATORS

We illustrate the theory developed above with a gener-
alization of our earlier two-degree-of-freedom pendulum-
oscillator model (Holmes and Marsden [1981]"). Consider a
simple pendulum linearly coupled to two nonlinear oscilla-
tors. For simplicity we assume that the oscillators are identi-
cal (this is not important) and that their Hamiltonians can be
expressed as G ((x? + y?)/2) or, equivalently, in action-angle
coordinates as

GU) i=1p2, (4.1)
with
2U)= 221120 for1,>0 (4.22)
and
3G
2'(I) = —I;)#0 4.2b
() az,?( )# (4.2b)

[cf. Egs. (2.3) and condition (H2) of Sec. 2]. Elimination of
either I, or I, by reduction is then possible. For definiteness,
we shall assume that I, is removed. Qur assumption of the
form G ((x? + y?)/2) is merely for computational conve-
nience, since more “realistic”” anharmonic oscillators lead to
Hamiltonians G (7;) expressed in terms of, for example, ellip-
tic functions (cf. Greenspan and Holmes®).

The system to be studied has the Hamiltonian

H<¢=p*2 —cosq+ G(I,) + G(I,)
+ (€/2)[((21,)'* sin 8, — g)* + ((21,)'"* sin 6, — g)*].
(4.3)
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The unperturbed orbits in the homoclinic manifold are given

by

(@, P, 8, 0,5, I,, ,) = + 2 arctan(sinh ¢ ), + 2 sech ¢,
Q)+ 69,2 (L)t + 03.1,L), (4.4)

where 4 > 1 is the total energy and 4 = 1 the energy of the
homoclinic orbit, and G,(/,) = h,,G,(l,)=h — 1 — h,. As-
sumptions H(1) and H(2) of Theorem 3.1 are therefore satis-
fied and, in view of (4.2a) and (4.2b) we can pick 4 and A, so
that the nonresonance conditions necessary for application
of the KAM theorem are met. To check the final assumption
we compute the Poisson brackets {/,,H '} and { F,H '}. From
{4.3) we have

JoH'

{1, H'} = —w_—_ —((21,)"? sin 6, — g)(21,)"*cos 6,
1

and

) OF 3 OF 3H'

d p I P
=sin g0 — p[ — ((2,)"/*sin 8, — q,)
—((21,)""* sin 6, — q)] (4.5)
=pl(21,)"?sin 8, + (21,)sin 6, — 2¢q].
Thus, using (4.4) we have
M,(69,69,h,h))

= [~ e sin@ e+ 00

F 2 arctan(sinh 7 }]

X (21)"/% cos(£2 (1)t + 69)dt
and
M,(69,09,h,h))

=J + 2sech ¢ [(2/,)"? sin(€2 (/,)t + 69)

+ (21,)"/%sin(£2 (L)t + 69) T 4 arctan(sinh 7 ) ]dr.
(4.6)

Noting that the integrals of products of odd and even
functions vanish over the infinite domain and taking the
positive branch of the homoclinic manifold, these two func-
tions become

M, = 2(211)”2U arctan(sinh ¢ )sin(42 (/,)¢ )dt ]sin 09,
M, = 2(211)”2[J sech £ cos(f2 (/,)¢ )dt }sin 89
+ 2(20,)""? [f sech 7 cos({2 (1)t )dt ]sin 09.(4.7)

For brevity we write
2 =w, 2(0,)=0, (4.8)

To evaluate the first conditionally convergent integral
we choose, for computational convergence, the limits as
follows:
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N7/,

lim arctan(sinh # )sin w,z dt
N—oowo J Nr/w,

. 1 . Nr/w,
= lim { — — arctan(sinh ¢ Jcosw ¢
@,
+ 1 (M coswt ]
@y J—Nr/w, 1 + Sinhzt

L

N—oc

— Ni/w,

Wy J—

sech’f cos w,r dt

= i—(wwl)csch(ﬂ’—‘) (4.9)
@, 2

The final integral is obtained by the method of residues.
Similarly, we have

< TW;
f sech ¢ cos w;1 dt = 7w, sech( 2’ ), j=12, (4.10)
and thus

M, = 2m(21,)"? csch(”—‘z”‘—) sin 69,

M, = [(21.)'/2w, sech(%) sin 69

+ (21) 0, sech( ”;’2 )sin 69 ] (4.11)

One obtains a similar result (with an appropriate change of
sign) on the negative branch of the manifold.

We therefore find zeroes when 69 = km,89 = I for all
integers /,k and it is easy to check that
oM, dM, JM, M,
8¢ 36y 309 96°

det DM =

8y = km
9=l

+ 87%w,(1,1,)"? csch(z—zw—’—)sech( #;)2 )7&0. (4.12)
Thus the final assumption is satisfied for suitable choices of 4
and /4, and we have

Theorem 4.1: For ¢ sufficiently small the Hamiltonian
system (4.3) has a set of two-dimensional invariant tori of
positive measure each of whose unstable manifolds inter-
sects its stable manifold transversely. Moreover, a finite
transition chain of such tori T'!,...,T ™ can be chosen such
that W*(T) intersects W*(T<+* ") transversely and
WH(T%." ") intersects W*(TZ) transversely, j = 1,...,m — 1.
Thus, orbits can be found which pass from the neighborhood
of any torus 7% to the neighborhood of any other torus T'. in
the chain. This situation obtains on every energy level

He=h>1. R .
Remarks: 1. Arnold’s” example is similar to ours in

some respects, but he employed explicit external forcing,
taking a ¢-periodic two-degree-of-freedom system
H<(q,p,0,1,t) rather than a three-degree-of-freedom autono-
mous system. This perturbation was further chosen to van-
ish on the tori, so that the perturbed tori lie in the same
positions as the unperturbed tori. As we remarked in Sec. 3,
thisis not necessary since thebracketw(X, X, )= { L,L '}
vanishes on the unperturbed isotropic tori, and thus the inte-
gral of the Poisson bracket along the unperturbed orbits still
provides a good measure of the separation of the perturbed
manifolds.
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2. Although the theorem asserts that diffusion occurs
on every energy level 4 > 1, the latitude available for choice of
A, and hence for satisfaction of the nonresonance conditions
increases with A. Thus the “sufficiently small €” approaches
zero as A—1. ’

5. CONCLUSIONS

This paper and its companions (Holmes and Mars-
den'-"), address the general question of perturbations of inte-
grable multidimensional Hamiltonian systems. A particular
area of interest is the development of a method for investigat-
ing the integrability of the perturbed problem, and for pro-
viding a qualitative description of orbits in phase space.

In the present paper we have combined a reduction
technique with a vectorial version of Melnikov's'! method to
establish the existence of Arnold diffusion in Hamiltonian
systems with at least three degrees of freedom. This in turn
implies that the system is nonintegrable in the classical sense:
there are no analytic integrals other than the total energy.
The method is applied to the specific case of a pendulum
coupled to two nonlinear oscillators. It is shown that the
stable and unstable manifolds of nonresonant tori that sur-
vive under a small perturbation intersect transversely. We
briefly discuss how this enables points in phase space to
diffuse. ‘

ACKNOWLEDGMENTS

We thank Alan Weinstein for several helpful discus-
sions and Allan Kaufman for suggesting a stimulating phys-
ical example.

'P. J. Holmes and J. E. Marsden,“Horseshoes in perturbations of Hamil-
tonian systems with two degrees of freedom,” Comm. Math. Phys. 82, 524
(1982).

3V. Amold,"Instability of dynamical systems with several degrees of free-

Comments added August,1986

dom,” Dokl. Akad. Nauk. SSSR 156, 9 (1964).

35.N. Chow, J. K. Hale, and J. Mallet-Paret, “An example of bifurcation to
homoclinic orbits,” 3. Diff. Equations 37, 351 (1980).

“P. Holmes, “Averaging and chaotic motions in forced oscillations,”
SIAM J. Appl. Math. 38, 68 (1980); 40, 167 (1980},

3B. Greenspan and P. J. Holmes, “Homoclinic Orbits, Subbarmonics and
Global Bifurcations in Forced Oscillators,” in Non-linear Dynamics and
Turbulence, edited by G. Barenbiatt, G. Jooss, and D. D. Joseph (Pitman,
New York, to appear).

*P. J. Holmes and J. E. Marsden, “A partial differential equation with
infinitely many periodic orbits: chaotic oscillations of a forced beam,”
Arch. Rat. Mech. Anal. 76, 135 (1981).

P. J. Holmes and J. E. Mansden, “Horseshoes and Arnold diffusion for
Hamiltonian systems on Lie groups,” Indiana U. Math. J. (10 appear).

V. Arnold, Mathematical methods of classical mechanics, Springer Gradu-
ate Texts in Mathematics, No. 60 (Springer, New York, 1978).

3. Moser, “Stable and random motions in dynamical systems, with special
emphasis on celestial mechanics,” in Ann. Marh. Studies, No. 77 (Prince-
ton U. P,, Princeton, N. J., 1973).

1] A. Sanders, “Note on the validity of Melnikov's method and averag-
ing," Report # 139, Wiskundig Seminarium, Vrije Universiteit Amster-
dam (1980) (preprint). )

1y, K. Melnikov, “On the stability of the center for time-periodic perturba-
tions,” Trans. Moscow Math. Soc. 12, 1 {1963).

23 Gruendler, Thesis, University of North Carolina (1981).

V. 1. Amold, “Sur une propiéié topologique des applications globelement
canonique de la mécanique classique,” C. R. Acad. Sci. Panis 26, 3719
{1963).

14A. Weinstein, Lagrangian submanifolds and Hamiltonian systems. Ann.
Math. 98, 377 (1973).

R. McGehee and K. Meyer, “Homoclinic points of area preserving diffeo-
morphism,” Am. J. Math 96, 409 (1974).

R. W. Easton and R. McGehee, “Homoclinic phenomena for obits doubly
asymptotic to an invariant three sphere,” Indiana Univ. Math. J. 28, 21)
(1979).

175, Moser, “A fixed point theorem in symplectic geometry,” Acta Math.
141, 17 {1978).

183, Palis, “On Morse-Smale dynamical systems,” Topology 8, 385 (1969).

195. Newhouse, “Lectures on dynamical systems,” in Dynamical Systems,
edited by J. Moser (Birkhauser, Boston, 1980), pp. 1-114.

0B, V. Chirikov, “A universal instability of many dimensional oscillator
systems,” Phys. Rep. 52, 265 (1979).

2IM. A. Licberman, Arnold diffusion in Hamiltonian systems with three
degrees of freedom,” Ann. N. Y. Acad. Sci. 357, 119 (1980).

1. Reference 7 is 32(1983) 273-309 and reference 10 is Celestial Mechanics 28(1982)

171-181.

2. The question of conditional convergence of the Melnikov integrals, such as M, is further
discussed in F.A. Salam, J.E. Marsden, and P.P. Varaiya, Chaos and Arnold Diffusion in
Dynamical Systems, IEEE Transactions on Circuits and Systems, 30(1983)697-708,
Arnold Diffusion in the Swing Equations of a Power System, ibid, 31(1984)673-688, and a
preprint of C. Robinson to appear in Ergodic Theory and Dynamical Systems.

3. More discussion and information on the transverse intersections of the invariant manifolds and
its dynamical implications may be found in the following papers of R. W. Easton: Homoclinic
Phenomena in Hamiltonian Systems with Several Degrees of Freedom, Journa) of
Differential Equations, 29(1978)241-252, and Orbir Structure Near Trajectories
Biasymptotic to Invarians Tori, in Classical Mechanics and Dynamical Systems, ed.
by R. Devany and Z. Nitecki, Marcel Dekker, N.Y. (1981) and in the (1986) Cal Tech
preprints of S. Wiggins, The Orbit Structure in the Neighborhood of a Transverse Homoclinic
Torus, end A Generalization of the Method of Melnikov for Detecting Chaotic Invarians Sets.

4. For further references and discussion, the books of Guckenheimer and Holmes, Nonlinear

Osclllations, Dynamical Systems,

and Bifurcation of Vectorfields,

Springer, 1983, and Lichienberg and Lieberman, Regular and Stochastic Motlon,
Springer, 1983, and Sanders and Verhulst, Averaging Methods in Nonlinear

Dynamical Systems, Springer, 1985 should be useful.
e7s J. Math. Phys., Vol. 23, No. 4, April 1982

P. J. Hoimes and J. E. Marsden 475





