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THE HAMILTONIAN STRUCTURE OF THE MAXWELL-VLASOV EQUATIONS
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Morrison [25] has observed that the Maxwell-Vlasov and Poisson—Vlasov equations for a collisionless plasma can be
written in Hamiltonian form relative to a certain Poisson bracket. We derive another Poisson structure for these
equations by using general methods of symplectic geometry. The main ingredients in our construction are the symplectic
structure on_the co-adjoint orbits for the group of canonical transformations, and the symplectic structure for the phase
space of the electromagnetic field regarded as a gauge theory. Our Poisson bracket satisfies the Jacobi identity, whereas
Morrison’s does not [37]. Our construction also shows where canonical variables can be found and can be applied to the
Yang-Mills—Vlasov equations and to electromagnetic fluid dynamics.

1. Introduction

In this paper we show how to construct a
Poisson structure for the Maxwell-Vlasov and
Poisson-Vlasov equations for collisionless
plasmas by using general methods of symplectic
geometry. We shall compare our structure to
that obtained by Morrison [25].

We consider a plasma consisting of particles
with charge e and mass m moving in Euclidean
space R* with positions x and velocities v. For
simplicity we consider only one species of par-
ticle; the general case is similar. Let f(x, v, t) be
the plasma density at time t, E(x, t) and B(x, t)
the electric and magnetic fields. The Maxwell-
Viasov equations are:

o, . 1( gX_B) Jof

3t+v ax+m E+ c av—O, (1.1)
10B _ )
T curl E, (1.22)
1 dE _ e

279? =curl B c J' of (x, v, t) dv, (1.2b)
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div E = py, where pr=e Jf(x, v, t) dv,

(1.3a)

divB =0. (1.3b)

Letting ¢ > leads to the Poisson-Viasov
equation:

of . of e ody of

Goypp L2009 .
at Y 9x m ax oo o (14)
where

Ads = —py, and A=V’ is the Laplacian.

(1.5)
In what follows we shall set e=m =c¢ = 1.

The Hamiltonian for the Maxwell-Vlasov
system is

H, E,B)=f%|u|2f(x, o, 1) dx do

+j%[|E(x, O+ |B(x, )} dx, (1.6)
while that for the Poisson—Vlasov equation is

H ()= [ H1oPf(e. v 1) dx do +3 [ dy(x)py(x) dx.
(1.7)

The Poisson bracket used by Morrison is
defined on functions F(f, E,B) of the fields
f, E, B by
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(1.8)

where in the first term { , } denotes the standard
Poisson bracket for functions of (x, v), given by

& (dh 9k oh ok
(k) = 2 (5 50~ o)

The functional derivatives, such as 8F/8f, are

defined in terms of the usual (Fréchet) deriva-
tive by

(DF)-f' = f f dx dv, etc..

For the Poisson-Vlasov equation, one keeps
only the first term of (1.8). The eqns. (1.1) and
(1.2) (or (1.4)) are then equivalent to

F ={{F HY, (1.9)

with H given by (1.6) (or (1.7) for the Poisson—
Vlasov equation).

Our purpose is to show how another Poisson
structure can be constructed by a general pro-
cedure involving reduction (Marsden and
Weinstein [22]) and coupling of Hamiltonian
systems to gaﬁge fields (Weinstein [36]). Our
Poisson bracket is written out in full in equation
(7.1) below. It differs from (1.8) in that the last
integral is replaced by

ffB <8av ?f: 860 %) d
5; glf) [B x%(%)] dx dv

5G of [Bx <f>}d dv.  (1.10)

8f av
Both structures yield the correct equations of
motion for the Hamiltonians we have specified;
however, Morrison’s does not satisfy the Jacobi

identity (Weinstein and Morrison [37]), while
this identity follows for our structure from the
general theory of reduction. In addition, the
equations divE=p; and divB =0 arise
naturally from the gauge symmetry of the prob-
lem and need not be postulated separately.

Our Poisson structure fits into a pattern, spe-
cial cases of which have been found by others.
For example, Arnold [4] showed that the Euler
equations for a perfect incompressible fluid are a
Hamiltonian system in the canonical Poisson
structure associated with the group of volume
preserving diffeomorphisms of a region in R>.
Using Arnold’s methods, one can also see that
the compressible equations are associated to the
semidirect product of the group of diffeomor-
phisms and the additive group of densities on
R3. (This fits into the schemes of Guillemin and
Sternberg [15] and Ratiu [31].) It is easy to
check that this approach yields the same Poisson
structure found for perfect fluids by Morrison
and Greene [27] and ought to be extendible to
the MHD equations by the methods of this
paper. The KdV equation is associated with the
Lie algebra of the group of canonical trans-
formations in the work of, for example, Adler
[2]. (See Davidson [11] for a link between the
Maxwell-Vlasov equations and the KdV equa-
tion.) In Ebin and Marsden [12], the functional
analytic machinery required to fully justify
Arnold’s approach was given. It was proved, for
example, that the volume preserving
diffeomorphisms form a C” infinite-dimensional
manifold which is, in an appropriate sense, a Lie
group. It was also shown that the group of
canonical transformations is a Lie group as well,
but no physical interpretation was given. The
Vlasov equation provides one.

In this paper we shall not deal with the
delicate functional analytic issues needed to
make precise all the infinite-dimensional
geometry behind the Vlasov equations, nor shall
we deal with equations of existence and
uniqueness (cf. Braun and Hepp [10], Batt [6],
Ukai—-Okabe [33], Horst [18,19], Wollman
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[38, 39] and references therein). We expect that
this gap can be filled by using techniques of
Ebin and Marsden {12] and Ratiu and Schmid
[32].

All of the clues above suggest that it is fruit-

ful to find a more geometric and group-theoretic
framework for the basic equations of plasma
physics. Such a framework is provided here.

The subject matter of this paper requires
considerable background material. A more
leisurely exposition is planned for the near
future in Marsden, Weinstein, Schmid and
Spencer [23].

A Poisson bracket for special relativistic
plasmas which agrees with ours in the non-
relativistic limit has been recently obtained by
Bialynicki-Birula and Hubbard [8]. They also
point out that the brackets for electrodynamics
go back to Pauli {28] and Born and Infeld [9],
and that Pauli also gives brackets for interacting
discrete particles and electromagnetic fields. A
canonical formulation of relativistic hydro-
dynamics was given by Bialynicki-Birula and
Iwiriski [7]. In none of these references are the
Poisson brackets derived from canonical
brackets as we do.

2. Poisson structures for Lie algebras

We begin by reviewing the Poisson structure
on the dual of a Lie algebra. This material is
largely available in Guillemin and Sternberg [15]
so will be only quickly treated, but in notation
suitable for this paper.

Let G be a Lie group, g its Lie algebra, and g*
the dual space to 4. The pairing between a* and
g is denoted {( , ). We wish to define a bracket
{{F, G}} on functions from g* to R. There are
three ways to do this:

Method 1 (Direct). We just write down a for-
mula for {{F, G}} due to Berezin [40]; closely
related formulas were used by Kirillov and
Arnold - see [4], [5]. The formula depends on the

/

J. B. Marsden and /; Weinstein[ Maxwell-Vlasov equations .

notation of “functional” derivative defined as
follows: For F:g9*—>R, define 8F/6p€g (n
denotes the variable in g*) by

DF(p)-v= <V, %>, forall veEg*, Q.1

i.e. we identify g** with g so that DF(p) € ¢**

becomes an element of g. Then the bracket is
defined by

(0 en = - (w3525 ) 22)
where [ , ] is the Lie algebra operation on 4. )
The bracket (2.2) defines a Poisson structure;
i.e. {{F, G}} is bilinear, antisymmetric, satisfies
Jacobi’s identity, and is a derivation in each
argument. This can be proved directly or by
noting the equivalence of (2.2) to the other
formulas (2.3) and (2.4) below, from which it is
obvious that one obtains a Poisson structure.

Method 2. (Restriction). The Kirillov—-Kostant-
Souriau theorem asserts that the orbits of the
co-adjoint representation in ¢* are symplectic
manifolds. (See, for instance Arnold [5] or
Abraham and Marsden [1] for the proof).
Thus, 9* is a disjoint union of symplectic mani-
folds. For F, G :9* >R a Poisson bracket is thus
defined by

{{F, GIHn) = {F|0,, G| Ou}u(p),

where u € g%, 0, is the orbit through p, F ‘ 0, is
the restriction of F to 0, and {, }, is the
bracket on O,

Method 2 shows that the bracket {{ , }} is
degenerate; however it determines a symplectic
foliation, on each leaf of which it is nonde-
generate. The leaves are just the co-adjoint
orbits.

(2.3)

Method 3 (Extension). Given F,G:9*—R,
extend them to maps F, G:T*G —R by left in-
variance. Then, using the canonical bracket
structure on T*G, form {F, G}. Finally, regard-
ing a* as T*G C T*G, restrict to g*:
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{(F, G}} = {E, G} | o*. | @2.4)

Methods 2 and 3 are related by reduction; i.e.
the reduced symplectic manifolds for the action
of G on T*G by left translation are the co-
adjoint orbits (Marsden and Weinstein [22]).

2.1. Proposition. The formulas (2.2), (2.3) and
(2.4) all define the same Poisson structure on ¢*.

This result is implicit in the literature cited, so
we omit the proof; however additional details in
the case that concerns us will be given in the
next section.

3. The Poisson structure for the density variables

We are now ready to explain the geometric
meaning of the term [ f{(8F/8f), (8F/8f)}dx dv
in (1.8). In the following sections, we shall
explain the term for Maxwell’s equations (the
second integral in (1.8)), and then finally the
coupling terms (the remaining two integrals).

In the absence of a magnetic field, by nor-
malizing mass, we can identify velocity with
momentum; hence we let R® denote the usual
position-momentum phase space with coor-
dinates  (xy, x5, X3, P1, P2, p3) and  symplectic
structure ¥ dx; A dp;. (See Abraham and Mars-
den [1] or Arnold [5].) Let © denote the group
of canonical transformations of R® which have
polynomial growth at infinity in the momentum
directions. The Lie algebra 8§ of & consists of
the Hamiltonian vector fields on R® with poly-
nomial growth in the momentum directions. We
can identify elements of ¢ with their generating
functions,* so that ¢ consists of the C” functions
on R®.and the (right) Lie algebra structure is
given by [f, g]l=—{f, g}, the negative of the

*The generating function of a Hamiltonian vector field is
determined only up to an additive constant. The “correct”
group & is really the group of transformations of R®xR
preserving the 1-form Z p; dgi + dr (Van Hove [34]), but we
can ignore this technical point here without encountering
any essential difficulties.

usual Poisson bracket on phase space. (This
follows from Exercise 4.1G and Corollary 3.3.18
of Abraham and Marsden [1]).

The dual space $* can be identified with the
distribution densities on R® which are rapidly
decreasing in the momentum directions; the
pairing between h €#¢ and f €6* is given by
integration:

(h,f):J'hf dx dp.

(The “‘density” is really f dx dp, but we denote
it simply by f.) Now as for any Lie algebra, the
dual space 8* carries a natural Poisson structure
which is non-degenerate on the co-adjoint orbits
(see Section 2 above). In our case the orbit
through f € 6* is

;= {n*f | n € S}. 3.1

It follows that a tangent vector to 05 at f has the
form {f, h} for h €ét. The Kirillov-Kostant
symplectic form o on O is given at f by the
bilinear pairing ws defined by

wp {f, k1 AS, kD =(f, {h, k}). (3.2)

(See p. 303 of Abraham and Marsden [1]—two
minus signs have cancelled here.) The Hamil-
tonian vector field X; on O; determined by a
smooth function F:$* >R satisfies the defining
relation

wi({f, h}, {f, k}) =dF () - {f, k}, (3.3)
for all k € 8.

3.1. Lemma. We have

oF } (3.4)

Xe(f) = _{f’ﬁ

Proof. By (3.3) and (3.2) we need only check
that

1By {f, h}, we mean the Lie derivative of the density f by

the Hamiltonian vector field of h. This is the “infinitesimal
co-adjoint representation’”. We are implicitly identifying $*
with 8 via the integration pairing.
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(o Yy =or = 0)
(3.5)

But (3.5) follows by integration by parts. It is a
special case of the following useful identity:

(f.{k, h}) = {f, k}, h),

i.e.
Jf{k, h}dx dp = J’ {f, k}h dx dp. (3.6)

Thus, the Poisson bracket on $* is given by

{{F, GH(f) = wxXr(f), X6(f))

orl {57} 57 )

= (-5 57)

We have thus proved the equivalence of (2.2)
and (2.3) in the present case:

(by definition)

It

(by (3.4))

(by 3.2).

3.2. Proposition. The natural Poisson structure
on the dual of the Lie algebra of the group of
canonical transformations is given by

3F 5G

57 of 3.7

iF 6pn = 1} dx dp.

Remarks. 1. Notice that (3.7) coincides with the
first term for the Poisson structure (1.8) if p is
replaced by v.

2. The bracket (3.7) automatically satisfies
the Jacobi identity since it coincides with the
Poisson bracket on each of the symplectic
manifolds O;.

3. (a) If f is a delta density, 0y *‘coincides”
with R®. (In a similar way, every symplectic
manifold is a co-adjoint orbit.) For f a sum of n
delta functions, @; is the phase space for n
particles. For continuous plasmas, f is taken to
be a continuous density, in which case 0y can be
shown to be a smooth infinite dimensional
manifold.

(b) If f is a density concentrated along a
curve, then O is identifiable with all curves

&

having a fixed action integral. This is a reduced
form of the loop space, a symplectic manifold
used in the variational principle of Weinstein
[35]. If f is concentrated on a lagrangian torus,

-then O; consists of lagrangian tori with fixed

action integrals. This is related to a variational
principle of Percival {29].

4. By using an appropriate Darboux theorem,
(see Marsden [21], lecture 1), one can show that
O; admits canonically conjugate coordinates.

5. The Vlasov-Poisson equation is a Hamil-
tonian system on $* with energy function given
by (1.7). If f evolves according to (1.4) then (1.9)
is true. This is a simple direct calculation, al-
ready noted by Morrison [25] and Gibbons [41].
More can be learned from our derivation of the
Poisson structure: the vector field in eq. (1.4) is
tangent to each orbit 0;, so it defines a Hamil-
tonian system on each orbit. The preservation of

" 0y and the validity of (1.9) can be seen by noting

that (1.4) can be written in terms of ordinary
Poisson brackets as

af ,
L— i, %0, (1.4)

where
H(F) = 3ol + b1(x).

In view of (3.4), (1.4)' is equivalent to. saying
that f evolves by f=Xu(f), where %(f)=
8H/8f, the “‘self-consistent Hamiltonian”. Thus
the evolution of f can be described by

ft = T'"t‘fo,

where fo is the initial value of f, f, is its value at
time t, and 1, € S. In particular, if % is a
function of a single real variable, we get the
well-known conservation laws

J’ F(f,) dx dp = constant in time,
by the change of variables formula and the fact

that each n €& is volume preserving. (These
conservation laws are useful in proving exis-
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tence and uniqueness theorems since, as in the
case of two-dimensional ideal incompressible
flow, they lead to a priori LP-estimates.)

6. In Ebin' and Marsden [12] the convective
term v - Vo in fluid mechanics led to a crucial
difference between working spatially (in the Lie
algebra—the» “Euler” picture) or materially (on
the group... the ‘“Lagrange” picture). Here
there is no such term, since it would be given by
{f, f}, which vanishes.

7. Analogies with fluid mechanics raise
several inter¢sting analytical problems: (A) if 8
times a dissipation term associated with col-
lisions is added, do the solutions converge to
those of the Vlasov equation as § - 0? (Analo-
gous to the limit of zero viscosity). Standard
techniques (Ebin and Marsden [12], Kato [20])
can probably be used to answer this affirma-
tively for short time.

(B) Can the Hamiltonian structure be used to
study chaotic or turbulent dynamics, as was
done in, for example, Holmes and Marsden
[17]?

(C) Is the time-t map for the Poisson-Vlasov
or Maxwell-Vlasov equations smooth? See
Ratiu [30] for a discussion of why this question
is of interest for the KdV equation.

4. Maxwell’s equations and reduction

Before coupling the Vlasov equation to the
electromagnetic field equations, we shall review
the Hamiltonian description of Maxwell’s equa-
tions. The appropriate Poisson bracket for the E
and B fields (the second term in (1.8)) will be
constructed by reduction (Marsden and Wein-
stein [22]).

As the configuration space for Maxwell’s
equations, we take the space U of vector fields A
on R3. (These are the “‘vector potentials”, In
more general situations, one should replace A
by the set of connections on a principal bundle
over configuration space.) The corresponding
phase space is then the cotangent bundle T*¥I,

with the canonical symplectic structure. Ele-
ments of T*Y may be identified with pairs
(A, Y), where Y is a vector field density on R*.
(As usual, we do not distinguish Y and Y dx.)
The pairing between A’s and Y’s is given by
integration, so that the canonical symplectic
structure w on T*% is given by

w((A, Y1), (A2, Y2)) = J(Yz cA— Y- Ay dx,

(.1)
with associated Poisson bracket

_ [ (3 3G _5F G
{F. G} = <8A 3Y oY 8A> dx. 4.2)

With the Hamiltonian
H(A, Y)=%J|Y|2dx+%f|curm|2dx, 4.3)

Hamilton’s equations are easily computed to be

Y JdA
FTin curl curl A and T

Y. 4.4)
If we write B for curl A and E for —-Y, the
Hamiltonian becomes the usual field energy

%f |E[ dx +%J |B|* dx (4.5)

and the equations (4.4) imply Maxwell’s equa-
tions

JE _ B _
5 curl B and T curl E. 4.6)

The remaining two Maxwell equations will
appear as a consequence of gauge invariance.
The gauge group & consists of real valued
functions on R*; the group operation is addition.
An element ¢ € & acts on U by the rulet

tNotice that we work directly with three-dimensional fields.
Four dimensionally, one has an extra ‘degree” of gauge
freedom associated with the time derivative 3,4 We have
already eliminated this freedom and the corresponding non-
dynamical field A4 (whose conjugate momentum vanishes).
This is the standard Dirac procedure for a relativistic field
theory such as Maxwell’s equations. In the context of prin-
cipal bundles, & is defined to be the group of bundle
automorphisms (covering the identity).
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A A+ 47

This ‘“‘translation”” of A extends in the usual
way to a canonical transformation (“extended
point transformation’) of T*% given by

(A, Y)>(A+Vy, Y). (4.8)

Notice that the Hamiltonian (4.3) is invariant
under the transformations (4.8). This means that
we can use the gauge symmetries to reduce the
degrees of freedom of our system. The action of
& on T*YA has a momentum map J: T*A > g*,
where ¢, the Lie algebra of &, is identified with
the real valued functions on R’. This map may
be determined by a standard formula (Abraham
and Marsden [1], Corollary 4.2.11): for ¢ €,

J(A,Y), ¢)= f (Y -Vo¢)dx = —J'(div Y) ¢ dx.
(4.9)

Thus we may write

J(A, Y)= —divY. (4.10)

If p is an element of ¢* (the densities on RY),
T (p)={(A, Y)ET*UA|divY = —p}. In terms
of E, the condition divY = —p becomes the
Maxwell equation div E =p, so we may inter-
pret the elements of g* as charge densities.

By a general theorem on reduction (Marsden
and Weinstein [22]), the manifold J '(p)/® has a
naturally induced symplectic structure.

4.1. Proposition. The reduced manifold
J7p)/® can be identified with Maa=
{(E, B) | div E = p, div B = 0}, so that the Poisson
bracket on Max is given in terms of E and B
byt

_[(F _,8G 8G _ &F
{F,G}} = J <——8E curl 5B 3E curl 8B) dx.
“4.11)

equations with an ambient charge density p are
Hamilton’s equations for

tSince E and B are constrained in #Mae, the functional
derivatives in (4.11) must be defined by extension of F and
G to all E and B, followed by restriction.

H(E B) =5 [ (IBP+1BF) dx (4.12)

on the space Max.

l Proof. To each (A, Y) in J '(p) we associate the

pair (B,E)=(curl A,-Y) in Mac. Since two
vector fields A, and A, on R* have the same curl
if and only if they differ by a gradient, and
every divergence-free B is a curl this asso-
ciation gives a 1-1 correspondence between
I (p)I® and Maci.

Now let F and G be functionals on Maz. To -
compute their Poisson bracket {{F, G}}, we must
pull them back to J '(p), extend them to T*¥,
take the canonical Poisson bracket in T*, res-
trict to J '(p), and “push down” the resulting
®&-invariant function to Maex. The result does
not depend upon the choice of extension made,
and in fact we can do the computation without
mentioning the extension again. Given F(B, E),
we define the pull back F(A, Y) by

F(A,Y)=F(curl A, -Y). 4.13)
Using the canonical bracket (4.2) on T*¥, we
have

HF, Gh ={F, G} = f (SA 5Y 8A SY) dx

_ _[(8F8G _5G oF
= j(sA 5E  0A 5E>dx' (4.14)

The chain rule, the definition of functional
derivatives, and integration by parts give the
identity

8F ., . [8F ,
aA-Adx— SB curl A’ dx
§F
=|A-cun 1
JA curl 5B dx. (4.15)

Substitution of (4.15) in (4.14) gives (4.11). The
rest of the proposition follows by direct cal-
culation or from the general theory of reduc-
tion. W

+If R is replaced by a Riemannian manifold, B is replaced
by the divergence-free part of A (also called the transverse
component) in the Hodge decomposition.



J. B. Marsden and A. Weinstein| Maxwell-Vlasov equations 401

This formalism generalizes readily to Yang—
Mills fields and to these fields coupled to
gravity; see Arms [3].

5. The Maxweli-Vlasov equations before reduc-
tion

The Hamiltonian structure for the Maxwell-
Vlasov system is very simple if we choose as
our variables densities on (x, p) space (rather
than (x, v) space) and elements (A, Y) of T*.
To avoid confusion with densities f on (x,v)
space, we shall use the notation fnem for den-
sities on (x, p) space.

The Poisson structure on 8* X T*9 is just the
sum of those on #* and T*¥: for functions F
and G of fmoms A, and Y, set

HF, G}(fmom AL Y)

B oF &G
= f fmom {afm’ afmom} dx dp

8F 8G &G SF
+J<§XW‘§W) dx (5.1

and the Hamiltonian is just (1.6) written in terms
of these variables. Using the classical relation
p = v + A between momentum and velocity:

H(fmom A, Y) = %J’ [p = AP from(x, p) dx dp
+%f(m2+ lcurl AP dx.  (5.2)

Notice that there is no coupling in the sym-
plectic structure (5.1) between 8* and T*9, but
there is coupling in the first term of (5.2).

5.1 Theorem. The evolution equations F =
{{F, H}} for a function F on #* x T*Y with H
given by (5.2) and {{ }} by (5.1) are the egs.
(1.1) and (1.2) with (1.2a) replaced by dA/dt = Y.

The proof of this theorem is a straightforward
verification. The constraints (1.3) are, as in
Morrison [25], subsidiary (constraint) equations
which are consistent with the evolution equa-
tions. Eq. (1.3b) holds since B =curl A. Eq.

(1.3a) expresses the fact that we are on the zero
level of the momentum map generated by the
gauge transformations. The corresponding
reduced space decouples the energy, while
coupling the symplectic structure. We turn to
this in the next two sections.

6. A general construction for reduction of inter-
acting systems

The work of Weinstein [36] on the equations
of motion for a particle in a Yang-Mills field
uses the following general set-up. Let w: B — M
be a principal G-bundle and Q a Hamiltonian
G-space (or a Poisson manifold which is a union
of Hamiltonian G-spaces). Then G acts on T*%®
and on Q, so it acts on QxT*% (with the
product symplectic structure). This action has a
momentum map J and so may be reduced at 0:

(Q X T*B)o=1'(0)/G.

The reduced manifold carries a symplectic (or
Poisson, if Q was a Poisson manifold) structure
naturally induced from those of Q and T*%.

To obtain the phase space for an elementary
particle in a Yang-Mills field one chooses % to
be a G-bundle over 3-space M and Q a co-
adjoint orbit for G (the internal variables). The
Hamiltonian is constructed using a connection
(i.e. a Yang-Mills field) for %. In the special
case of electromagnetism, G = S' and Q = {e} is
a point.

For the Vlasov-Maxwell system we choose
our gauge bundle to be

B=U->M,

where M ={B|divB =0}, with G=6 the
gauge group described in the previous section.
As in Section 3, let © denote the group of
canonical transformations of T*M(=R®. We
can let Q be either the symplectic manifold
T*S or the Poisson manifold 8*. It is a little
more direct to work with 8*, so we shall do this.

We wish to specify an action of & on $*
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sy

which, when combined with the action (4.7) on

T*¥, will leave the Hamiltonian (5.2) invariant.
The natural choice is to let y €% act by the
(linear) map

fmom — fmomo TV (6'1)

where 7.y,:R®*>R® is the “momentum trans-

lation map”’ defined by
(x, p — Vi(x)). (6.2)

It is easy to verify that 7_g, is a canonical
transformation, so it preserves the ordinary
Poisson bracket on R®. It follows that the map
(6.1) preserves the Poisson structure on $*. A
simple calculation gives:

T—-vdt(xy p) =

6.1. Lemma. The action of & on #* defined by
(6.1) and (6.2) has a momentum map J:é* - g*
given by

T (From)s b) = — f faom (5, P)O(x) dx dp,  (63)
i.e.

T (From) = — f fnom(x, p) dp. (6.4)

The right-hand side of (6.4) is a density on R*
which we may denote by p;_ .

Now we define the action of & on the product
$* x T*U by combining (6.1) and (4.7),i.e. y €
maps

(fmoma A, Y) I'__)(fmom °T-9ys A+ Vll’, Y) (65)

Combining eq. (4.10) and (6.4) gives

6.2. Lemma. The momentum map J:8*X
T*A — g* for the action (6.5) is given by

I fnoms A V) = = [ fren(x. ) dp = div Y. (6.6
We may now describe the reduced Poisson
manifold in terms of densities f(x, v) defined on

position-velocity space.

6.3. Proposition. The reduced manifold (8* x

T*A),=J"'(0)/& may be identified with the

Maxwell-Vlasov phase space

= {(f,B,E)|divB =0
and

divE = jf(x, v) dv.}

Proof. To each (fumom A, Y) in J'(0) we asso-
ciate the triple (f, B, E) in MV, where

f(x’ U) = fmom(xs v+ A(x)), B = curl A,

and E=-Y. (6.7)

The condition J (fuom, A, Y) =0 is equivalent, by‘
(6.6), to the Maxwell equation divE=
[ f(x, v) dv in the definition of MYV It is easy to
check that elements of J '(0) are associated to
the same (f, B, E) if and only if they are related
by a gauge transformation (6.5), so our asso-
ciation gives a 1-1 correspondence between
J7'0)/& and MY. A

By the general theory of reduction, #% in-
herits a Poisson structure from the one on $* X
T*N. Since the Hamiltonian (5.2) is invariant
under &, it follows from Theorem 5.1 that the
Maxwell-Vlasov equations (1.1) and (1.2) are a
Hamiltonian system on #% with respect to this
structure. In the next section, we shall compute
the explicit form of the inherited Poisson struc-
ture in the variables (f, B, E).

Remark. The action of & on é* preserves the
co-adjoint orbits, which are symplectic mani-
folds. It follows that the Poisson manifold MV
can be written as a union of symplectic mani-
folds, one for each co-adjoint orbit. These orbits
are in the space of fnom(x,p)’s rather than
f(x,v)’s, so the co-adjoint orbit decomposition
is not readily visible in the space MV

It is possible to describe J '(0)/® in terms of
position-momentum densities, at the expense of
having to choose a gauge. For example, the
gauge condition div A =0 determines a slice for
the action of & on #*x T*A which then
produces an identification of J~'(0)/® with
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- MV mom {(fmom, B, E) | div E = pf mom}- 6.8) condition, and so the map

Specifically, if we let ¢, = —A '(div A), then the From A, ¥) > (From © T-a4,.» Curl A, =Y)

map (fiom A, Y) > (fmom© T-9y,, A+ Vs, Y) gives a 1-1 correspondence between J '(0)/&
projects onto the space satisfying the gauge and MUV mom.

7. Computation of the Poisson structure on /47

7.1. Theorem. For two functionals F, G of the fields (f, E, B) we have

{{F,G}}U,E,B>=jf{5F 501 dx do + [ (2 cunt 55 — 05 curt 31 dx

5f * of SE“"" 5B SE
8F of 8G 3G of 8F J 8 6F a 8G
oft df o oL + — dx d (7.1
j<8E dv 6f OF " v 8f>dx do /B 8v Bf f) v
Proof. Given F(f, E, B) on M7, define F (fmom» A, Y) by
F(fmom: A, Y) = F(f, B, E), (7.2)

where (fnom, A, Y) is determined by (6.7).

As in the proof of Proposition 4.1 {{F, G}} is given by computing {{F, G}} using (5.1) and expressing
the answer in terms of F, G, f, E, and B. The first term of (5.1) is dealt with by a straightforward
computation leading to the ‘‘minimal coupling formula’:

7.2. Lemma. Let B =curl A, h(x, v) = hnon(x, v + A(x)), and k(x, v) = kmom(x, v + A(x)). Then

dh 6k> (7.3)

{hmom, mom} {h k}+B <—X%

The first term of (5.1) now becomes

oF 8G
of > of

+ j fmom(x, v + A(x))B * (

ffmom(xs v+ A(x)){ }(x, v+ A(x)) dx do

9 5F 4 5G
A b )(x, v+ A(x)) dx do, (7.4)
since 8F/8f wom = SF8f.

Thus, changing variables, the first term of (5.1) becomes the first and last terms of (7.1). As for the
second term of (5.1), we use

7.3. Lemma. We have

3F 8F  8F of 5F 8F
8F _ 8F S8Fof  8F _ 8F K
oA YSET 5 v’ 85Y  oF (7-3)
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Proof. By the chain rule and definition of the,fﬁﬁctional derivative,

DiF (fmoms A, Y) » A" = %A’dx*
) , S8F of
DiF(f,B,E) - Dsf - A'+ DygF(f,B,E) -curl A' = ﬁa A dx + | — curlA dx
EQL. ! J‘ _F !
5f av A'dx + | curl SB A' dx. [ |

Substitution of (7.5) into the second term of (5.1) yields the second and third terms of (7.1). Thus,
Theorem 7.1 is proved. W
7.4. Theorem. The equations of motion 1.1 and 1.2 may be written
F={{F, H}}
where {{ , }} is given by (7.1) and H by (1.6).
This follows directly from Theorem 5.1 by reduction, and can also be checked directly by a

straightforward calculation.
One can also compute the Poisson structure on #¥ non (see (6.8)). We just state the result:

{F,G}=ffm0m{6F BG}d dp+f(8F 1§—& 1E>dx

8fmom” 8f mom SE 5B 3B
3 oF 1 SG f 3 8G> < | 8F> ]
l:f fmom ap 6f> le dx dp fmom ap 8f A7 div 5E dx dp . (76)

Recall that muv,,., is defined relative to the gauge condition div A = 0. The Hamiltonian becomes
2
H Foom B E) = [ - fuon(e p) dx ap +} [ (874 B9 ax, a7

where v = p+ A" curl B, and again the equations of motion read F = {{F, H}}.

8. Additional remarks SB = J' —>< v) £+ dv — curl E*, 3.1)

(A) Poisson structures may be viewed as
bundle maps taking covectors to vectors. (This
is the form most convenient for determining
equations of motion.t) Viewed this way, Mor-

BEzf g'gf* dv + curl B*,

while our cosymplectic structure (7.1) is given

rison’s bracket is the map by
- w_ O px gy af*
(f*, B*, E*) = (8f, 5B, SE), of = —{ff* =5, - E \Bxo -
given by 8B = —curl E*, 8.2
- _ * f * _ Bf X B* af
8f = —{f.f*1---E (v X B¥), SE = f F* dv + curl B*.

tSign conventions are such that on symplectic manifolds,
dH = Xy, the Hamiltonian vector field of H. (B) A *“‘cold plasma’” may be defined as one



J. B. Marsden and A. Weinstein| Maxwell-Vlasov equations 405

for which f is a & measure supported on the
graph of a vector field p = 8(x). This property
persists as f evolves by composition with a
canonical transformation. In fact, the property
that ¢ is curl-free is also maintained, since this
corresponds to the graph’s being a Lagrangian
submanifold. After a long time, the submanifold
may no longer be a graph. This is the “shock”
phenomenon, leading to multiple streaming
(Davidson [11].) We remark that Maslov ([24], p.
44) has already noticed this evolution of
Lagrangian ‘submanifolds for the Poisson-
Vlasov equation.

(C) We would like to understand in general
terms the contraction of one Hamiltonian sys-
tem to another. Examples are the passage to the
restricted three body problem from the full
three body problem, the limit ¢ >~ to get the
Poisson—Vlasov equation, and the limit of
infinite conductivity (among other things) to get
the equations of magnetohydrodynamics from
the Euler-Maxwell equations. It would also be
of interest to realize both the Maxwell-
Vlasov and the Euler-Maxwell equations as
limiting cases of a grand Hamiltonian system
related to the Boltzmann equation.

(D) We have remarked that our formalism
generalizes to give a Poisson structure for the
Yang-Mills-Vlasov equations. Is such a struc-
ture useful in nuclear physics for Yang—Mills
plasmas?

(E) Holm [16] and Morrison [26] have shown,
formally, how to introduce ‘‘Clebsch variables”
(called *‘Schutz potentials” relativistically)
which bring the bracket into canonical form. It
would be interesting to prove rigorously that
these provide Darboux coordinates for the
symplectic leaves of the reduced spaces.
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Note added in proof. By using methods analogous
to those of this paper, the Poisson structure for
two-fluid plasma dynamics has been derived in
[42].
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