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' The space of solutions of Einstein’s vacuum equations is shown to have conical singularities

at each spacetime possessing a compact Cauchy surface of constant mean curvature and a
nontrivial set of Killing fields. Similar results are shown for the coupled Einstein-Yang—Mills
system. Combined with an appropriate slice theorem, the results show that the space of
geometrically equivalent solutions is a stratified manifold with each stratum being a
symplectic manifold characterized by the symmetry type of its members.

Contents. Introduction. 1. The Kuranishi map and its properties. 2. The momentum
constraints. 3. The Hamiltonian constraints. 4. The Einstein-Yang-Mills system. 5.
Discussion and examples.

INTRODUCTION

This paper is the second part of Fischer et al. (1980) and is a companion of Arms
et al. (1981). In Fischer et al. (1980) we studied the space & of solutions to
Einstein’s vacuum equations near a spacetime (V, ‘"’g,) which has a compact Cauchy
surface of constant mean curvature and with k= k(‘"’g,) = (dim of the space of
Killing fields of ‘“g,) = 1. Here we study the case k > 1 and extend the results to the
coupled Einstein—Yang-Mills equations by utilizing the present methods together with
known results for the pure Yang—Mills case from Moncrief (1977) and Arms (1981).
In Arms et al. (1981) it was shown how to deal with the case & > 1 in case all the
Killing fields are spacelike. The present paper builds on these techniques.
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If k=0, i.e., g, has only trivial Killing fields, then it has been known for some
time that & is a smooth manifold near “’g,. This was established in the period 1973-
1975 through the work of Fischer, Marsden and Moncrief—see Fischer et al. (1980)
for references. The analogous results for the pure Yang-Mills equations are due to
Moncrief (1977) and, for the Einstein-Yang—Mills equations, to Arms (1979).
Combined with an appropriate slice theorem (see Fischer et al. (1980), Isenberg and
Marsden (1982) and references therein) and the reduction methods of Marsden and
Weinstein (1974), one sees that &/(gauge transformations) is a smooth symplectic
manifold near such “’g;. For k > 1, which is usually regarded as the most interesting
case, & is no longer smooth and so &/(gauge transformations) is considerably more
complicated. In fact, it becomes a stratified symplectic manifold, as is explained in
Isenberg and Marsden (1982).

Briefly, Fischer et al. (1980) proved that for k = 1, & has a conical singularity at
“go; i, near “g,, & can be written in a suitable chart as the zero set of a
homogeneous quadratic function. The generators of this cone consist of those
symmetric two tensors ‘Y4 such that

(i) “h satisfies the linearized Einstein equations
D Ein(“g,) - “h =0,

where Ein(‘“g) is the Einstein tensor formed from a metric ‘“’g and D denotes the
Fréchet derivative and

(ii) the Taub conserved quantities vanish:

L Wy, |D? Ein(‘“g,) - (“h, “’h)] LWZ . dE =0,

where ‘X is a Killing field for “'g,, £ is a compact Cauchy surface and WZ, is its
forward pointing unit normal.

It follows that a necessary and sufficient condition for a solution “'h of the
linearized equations to be tangent to a curve of solutions to Einstein’s equations
passing through g, is that (i) holds.

The principal result of this paper is

THEOREM. The preceding statement for k(‘““g,)=1 also holds for k(g > 1
and similar results hold for the Einstein-Yang—-Mills system.

The precise function spaces employed in this theorem were detailed in Fischer er
al. (1980) and will be assumed implicitly here.

The case k(‘gy) > 1 includes more interesting examples than the case k(Mgy) = 1.
In particular, it includes the flat spacetime T° X R (with k=4) which was the
example which began the subject in the seminal paper of Brill and Deser (1973).

The proof of the above theorem occupies Sections 1-3 of the paper. A crucial tool
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required for £ > 1 that was not needed for k =1 is the “Kuranishi map,” a mapping
that was used originally by Kuranishi (1965) in studies of deformations of complex
structures and applied by Atiyah et al. (1978) to the study of Euclidean Yang—Mills
fields. As was shown by Arms ef al. (1981), this technique may be used to prove the
theorem in the case all the Killing fields are spacelike. The general plan of our proof
in the general case is to combine the Kuranishi approach, which is able to deal with
all the momentum constraints and a certain projection of the Hamiltonian constraint,
with a special Morse lemma-type argument for the Hamiltonian constraint.

Section 1 reviews the definition and some basic properties of the Kuranishi map. In
particular, we see that this map (restricted to a slice) is symplectic and that its
inverse was implicitly defined in Fischer et al. (1980).

Section 2 shows that the Kuranishi map enables one to solve all of the momentum
constraints and Section 3 then shows how to subsequently solve the Hamiltonian
constraint by a special argument. This last step relies on a suitable infinite dimen-
sional Morse lemma due to Tromba (1976) and Golubitsky and Marsden (1982).

Section 4 extends the results to the Einstein-Yang—Mills system, the Einstein-
Maxwell system being a special case. There is a peculiar difficulty posed by this
system. Namely, with the set up most natural from the bundle viewpoint, the super-
momentum constraint is a cubic function of the fields, a situation which causes havoc
with the Kuranishi method. This difficulty is overcome by a special parametrization
of the shift and gauge shift (X, V), which, in effect, transforms the constraint to an
equivalent quadratic one. When this is done, the methods proceed in a way similar to
the vacuum case.

The final section discusses the singularities and how symmetry is broken by means
of a collection of remarks and examples. The relationship to the work of Jantzen
(1979) is briefly mentioned. Finally, a mechanism for symplectically desingularizing
the solution space is discussed.

From our work in Fischer es al. (1980), it is enough to study the constraint
equations. We now recall some of the notation that will be used in this connection.
The reader should consult Fischer er al. (1980) for additional explanation and details.

Let M be a compact 3-manifold and .# the space of (W*? s>3/p+1)
Riemannian metrics on M and let P = T*.# denote the “natural” cotangent bundle of
A; ie., the fiber of T*.# over g € # consists of all symmetric 2-contravariant
tensor densities 7 (of class W*~'?), The constraint set of the vacuum Einstein
equations on a 4-dimensional spacetime in which M is embedded as a compact hyper-
surface, is the set

@ =o"\(0),

where @: T*.# — (densities on M) X (one-form densities on M) is defined by
®(g,n)=(#(g n), F (g n)) and # and & are given by

#(g m)={(n' - n' — (trace n')*) — R(g)} u(g)
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and
S (g, m)=—2n/,.

Here n=n' ® u(g), u(g) is the volume form of g, and R(g) is the scalar curvature
of g.

The vacuum Einstein equations for a metric g are equivalent to the constraint
equations @(g, n) =0 for the induced Cauchy data (g, 7) on a hypersurface ' and
the evolution equations

% (i )=—ch;Dd>(g,7z)* (z)

relative to a given spacetime slicing. Here J is the (almost) complex structure on
T*.# given by

-
Il
=
PN
o
~

u(g) 0

where I® and I* are the index lowering and raising operators relative to g. The adjoint
D®(g, m)* is taken relative to the L? metric on T*.# given by

sy @), (hyy @)D = [ {hy - by + @, - 3} (8).

In this formula, - denotes contraction using the base point g and the natural pairing
between (densities) X (one-form densities) and (functions) X (vector fields). Thus
D®(g, n)*: (functions X vector fields)— T, ,,(T*.#), and one can compute it
explicitly. (See Fischer e al. (1980) for the formula.)

The (weak) symplectic structure on T*.# is given by

Q((h,, w,), (b w,)) =fwz chy—w,y - hy= Iy, w)h,, ,))

which is independent of (g, 7). Note that J? = —I, J is symplectic, and is orthogonal

and skew adjoint with respect to {, ).

The Killing fields of “’g are in one-to-one correspondence with elements of
ker D&( g, 7)* by means of perpendicular and parallel projection: X — (X, X)).

The following fundamental decomposition of Moncrief (1975) will be used (Fischer
et al., 1980, Theorem 2.5):

T e.ny(T*.A) = range(—J o DP(g, n)*) @ range(DP(g, 7)*)
@ |ker(DP(g, n) o J) N ker DP(g, 7)). (M)
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Recall that range (—J o D®(g,n)*) represents the infinitesimal gauge transfor-
mations, range (D®(g,n)*) is the orthogonal complement to the linearized
constraints ker D®(g, n), and ker D®(g, 7) Nker(DP(g, n) o J) is the space of
linearized “true” degrees of freedom, a generalization of the usual “7T7T component.
The latter is a symplectic subspace of T, ,,(T*.#); this is a basic and easily verified
fact about Moncrief’s decomposition; cf. Arms et al. (1981, Lemma 13).

The orthogonal complement of the gauges plays the role of the slice for the action
of the diffeomorphism group of spacetime. Thus, we set S ., ={(&7)}+a
neighborhood of zero in ker(D®(g, 7)o J). This lies in T*.# since # is open in
S,(M), the covariant symmetric two tensors on M, and so T*.# is open in the linear
space S,(M) X S3(M), where Si(M) is the space of contravariant symmetric two
tensor densities. Note that S, ,, corresponds to S, ., N ¥, in Fischer et al. (1980).

As was shown in Fischer et al. (1980) (see also Marsden and Tipler, 1980), if a
nonstationary, vacuum spacetime has a compact Cauchy surface of constant mean
curvature, then any spacelike Killing field is tangent to it. If the metric has a timelike
Killing field, then the spacetime is flat and the Cauchy data are of the form (g,,0),
where g, is flat. In Arms er al. (1981) the case in which ‘g, has only spacelike
Killing fields was treated; this case will be spelled out in detail here, as well as the
case in which one of the Killing fields is timelike.

1. THE KURANISHI MAP AND ITS PROPERTIES

We now construct a local diffeomorphism F of T*.# to itself which we will refer
to as the “Kuranishi map.” First, let (g,, 1,) € @ ~'(0) be fixed and set

4 =DP(g,, my) o DP(&,, Mo)*.

Since D®(g,, 7,)* is an elliptic operator, 4 is an isomorphism of range(DP(g,, 7y))
to itself. Second, let P denote the orthogonal projection to range (D®(g,, 7,)) and set
G=A4""0P. Write (h, w) = (g, 7) — (& 7,) and let the remainder be given by

R (h, w)= (g, 1) — DP(go> 7o) * (h, @)-
Next, define F by
F(g,7)=(8 n)+ DP(gy,m)* ° G o #(h, w).

The basic properties of F are listed in a series of propositions. A number of these
are similar to those in Arms ef al. (1981) but are given here for completeness.

1.1 PROPOSITION. F is a diffeomorphism of a neighborhood of (g, m,) onto a
neighborhood of (g, 7o)-

Proof. Since @ is smooth, so is F and DF(g,, 7,) is the identity. The result thus
follows by the inverse function theorem. il
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1.2 PROPOSITION.  F maps S, ..., to itself.

Proof. Let (g, m)€ S, gong)? SO (A, w) E ker(DP(g,, my) o J). Then from the
identity DP( gy, m,) o J o DP(g,, m)* =0 we get

DP(gy, my) o J - (F(g, @) — (&o> ™))
= D&(gy, 1) 0 I|(h, ) + DB(gy, 70)* o G o Z(h, )] =0. 1

The projected constraint set is defined by
“eo={(g, n)| PP(g, n) = 0}

which is a smooth manifold in a neighborhood of (go»m,) with tangent space at
(80> 7o) given by ker DP(g,, m,); see Fischer et al. (1980, Proposition 3.2).

1.3 PROPOSITION. F maps a neighborhood of (80> my) in € onto a neighborhood
of (80» o) in {80, Mo)} + ker DD( gy, m,). Thus, F is a local chart for % .

Proof. Since DF(g,,n,)=1, it suffices to show that (g, m)EF implies
F(g )€ {(g, my)} + ker DD(g,, m,). Assume then, that (g M)EF,; ie,
Pd(g, 7)=0. Then

Dd(gy, o) - [F(g, 7) — (&, )|
=D®(go> ) - [(h, w) + DP(gy, mp)* 0 47" o P o Z((h, w))]
=DP(g,, my) - (h, w) + P o Z((h, w))

=P[¢(g, 7[)]=0. |

The manifolds €, and S, go.ng) INLErsect transversally at (g,, 7,) since their tangent
spaces are

ker Do(g,, 7,) and ker DP(g,, my) o J D range DP(g,, n,)*

and ker D®(g,, n,) ® range DP(g,, n,)* = T4pn(T*#). Thus €N S(go‘,,q, is a
smooth manifold near (g,,n,) whose tangent space at (gosmy) is the “TT
component. Thus, by our remarks in the introduction concerning Moncrief’s decom-
position, #, NS, ., is a symplectic submanifold. We now prove that F is a
symplectic chart for it.

1.4 PROPOSITION. F is a local symplectic diffeomorphism of €N Sizpnp 10
{(80» o)} + ker DD( gy, 7p) M kF" DP(gy, my) 0 J.
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Proof. From 1.2 and 1.3 it follows that F is a local diffeomorphism between the
stated spaces. To see that it is symplectic, note first that
DF(g,7)- (W', w')= (W', ') +

DP(go,Me)* 0 47" o P(DP(g, ) - (h', ') — DP(gy, 7o) - (A', ")),

from the definition of F. Letting £ be the symplectic form 2((h,, w,),(h,, w,)) =
(d(hy, w,), (hy, w,))), we have
Q(DF(g,m)- (h',w'), DF(g, m) - (h", w"))
= «J(h” w'), (", w")»
+ (A", 0" ), DP(go, 1) * 047! o P(DP(g, 1)« (h", ") — DP(ggs ) - (A", "))
+ (o DP(go,m)* o4 o P(DP(g. 1) (h',w')— DP(goy70) - (H', ")), (B", "))
+ {J o DP(go, mp)* 0 47" o P(DP(g, m)(h', w') — DP(&y, 7o) - (R, ")),

D®(gy, mp)* 04~ c P(DD(g, 7) - (h", ") — DP(go, o) + (A", @"))).

The last term vanishes by virtue of the identity D®(g,, o) © J o DP(gy, 7)* =0

and the second and third terms vanish because (h’, w’) € ker D®(g,,n,) o J and
(h", w") € ker DP(g,, 7,) © J, by construction of S, ,,. Thus

Q(DF(g,m)- (h',w"), DF(g, 1) - (", ")) = 2((H', '), (", "))

so F is symplectic.

This same proof works in the context of bifurcations of momentum mappings in
Arms et al. (1981).

Next we study the relationship between the Kuranishi map and solutions of the
projected constraints obtained via the inverse function theorem. Since % p is tangent
to ker DD(g,, 7,) at (g, 7,), there is a unique smooth map

V: ker DP(g,, n,) - range DP( gy, 7,)*

defined on a neighborhood of zero such that ¥(0, 0) = (0, 0), D¥(0, 0) = 0 and such
that %, is the graph of ¥: i.e, locally,

o= {(8 1) = (80> o) + (h, ) + ¥(h, w)| (h, w) € ker DP(&y, Mo)}-

If we write ¥(h, w) = DP(g,, 1,)* (C(h, ), Y(h, w)) then C and Y are determined
by the nonlinear elliptic system

PP((go» 7o) + (h, ) + DP(80, me)* (C, Y))=0.
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The derivative of the left hand side with respect to (G, Y)at (h,w)=0and (C, Y)=0
and in the direction (C’, Y’) is

A(C', Y')=Dd(g,, m,) o DP(gy, me)* (C, Y')

and we know that 4 is an isomorphism of range D®(g,, n,) to itself. Thus, if we
demand that (C, Y) € range D®(g,, m,y), we can uniquely solve the above system for
(C, Y) as functions of (h, w) and thereby determine .

1.5 PROPOSITION. The map of |{(g,, mo)} + ket DD(g,, my) to &y given by
(80s M) + (B, w) > (g4, 7o) + (h, w) + ¥(h, w) is the inverse of the Kuranishi map
restricted to % .

Proof. Let (g m)=/(gy,,)+ (h, w)+ ¥(h,w) for (h, w)E ker Do(g,, n,), so
(& =) satisfies P@(g, 7) = 0. By definition,

F(g.m)= (g 7) + D®(gy, 1)* o' d~"
o P{@(g, 1) — DD(gy, 7,) - ((h, ) + ¥(h, w))]
= (87) — DP(go, M)* o 4~ o DD( gy, m,) - [(h, ) + ¥(h, w)].

Now D®(gy,my)* o d~" o DB(g,, m))(h,, w,)=P*(h,,w,), where P* s the
projection to range D®(g,, n,)*. Thus

F(g )= (&) — P*|(h, w) + ¥(h, w)]
= (80> M) + (h, w) + Y(h, w) — P*(h, w) — ¥(h, w)
since ¥(h, w) lies in range DP(g,, 7,)* by construction. It follows that
F(8 )= (g0, m) + (I — P*)(h, w)
= (80> 7o) + (h, w)
since P =7~ P* is the projection to ker D®( g,, 7,) and (h, w) lies in this space.

Remark. In the original Kuranishi work, this inverse map was constructed by a
power series. See Morrow and Kodaira (1971), p. 165-167.

For g, flat and 7, =0, we remark that the relationship between ¥ and (C,Y) is
particularly simple:

Y=Dd(g,,0)* (C,7Y)
= (—Hess C —g,4C, (L, g,)* u( g,))

(see Fischer er al., 1980, p. 157 for the explicit formula for Dd(g, m)*). This will be
important in Section 3.

The above study of % solves the part of the constraint equations that can be dealt
with by the inverse function theorem, namely, P&(g, n)=0. We now split the
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remaining equations (/ — P) ®(g, n) =0 into timelike and spacelike ones. We recall
from Fischer e al. (1980) that if M is embedded as a hypersurface of constant mean
curvature in the spacetime generated by (g,, 7,), then in a suitably chosen basis for
the space of Killing fields any spacelike Killing field is tangent to M, so induces an
element of ker D®(g,, 7,)* of the form (0, X). Let (0, X,), (0, X3),.... (0, X;) be an L?
orthonormal basis of elements of ker D®(g,, 7,)*. We have from Fischer et al
(1980):
Ly 8=0 and Lym,=0, i=1,.,1

If there are no timelike Killing fields, these span all of ker D®( g,, m,)*. If there is a
timelike Killing field then g, is flat, 7, = 0 and (1, 0) is the other basis element of this

kernel.
Let P - be the L? orthogonal projection onto the span of (0, X)), i = 1,...,/, and P
that onto (1, 0) if there is a timelike Killing field. Thus,

I—P =P, ifthereis no timelike Killing field

and
I—-P=P,®P, if there is a timelike Killing field.

Thus, identifying the span of (0, X,) with R/,

P, (g 7)= (J:" Xy T8 | Xy (8, n))

- (| €x® - 7| i) 7)

and
'pl'(p(g’ 7‘) =J f(g’ 7[).
M

Thus, we set @, = {(g,7)|P ,P(g,m)=0} and &, = {(g,7)|P»P(8,7)=0]
SO

C=FpNE , if there are no timelike Killing fields

and

C=F.NE ,NE ,» if there is a timelike Killing field.

2. THE MOMENTUM CONSTRAINTS

In this section we prove that the Kuranishi map takes €M% ;N S, ,, to the
cone
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Cr =180 M)} + {(h, @) € ker DD(g,, 7,) N ker(DP(go, 75) o J) |

[ @) 0=0,i=1,2,.1 f

If there are no timelike Killing fields, this gives the structure of NS e
removing the gauges as described in Fischer et al. (1980, pp. 184, 191) and in
Isenberg and Marsden (1982, Theorem 8.1), gives the desired structure of #Z.

2.1 THEOREM. The map F takes a neighborhood of (80,My) In FpoN¥ N
S (eo.ny 11 and onto a neighborhood of (g,, n,) in C .

Proof. By 1.4, it suffices to show that for (g, 1) EZ,N S

(Boi7mg)?
P,rd(g,n)=0 if and 6nly if O(F(g n)— (g, 7)) =0,
where

2, w)ER!

is given by

0h @)= ([ u)- )

i=1...., !

Letting, as above, P =7 — P* be the orthogonal projection onto ker D&(g,, 7,), we
have -

F(8,7)— (20, M0) = P(F(g, 1) — (20, 7)) (by 1.3)
= P((h, ) + DP(gy, 15)* o 4~" o P 0 R (h, w),

where (h, w) = (g, n) — (&, 7,), by definition of F.
Thus, we have the identity

F(g, m)— (g M) = 'f)(h’ w)
for (g, n) € #y; cf. 1.5. Therefore,
O(F(g& m) — (&o» M) = Q(P(h, w)).

2.2 LemMA.  Q(P(h, w)) = O(h, w).
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Proof. Let P*(h, w) = (h*, w*) so P(h, w) = (h, @) — (h*, @*). Thus
Q(P(h )) = Q(h — h*, w — w*)

=[ @yt —h*) - (@ =¥

=J (Lyh) - @ —J' (Ly,h) - 0* — J (Ly,h*) - w +J’ (Ly,h*) - *.

Since (8 7)€ Sigpngs DP(&r 7)o J(h,w)=0; e, DP(gy,7,)- (—w/ug,
*1,) =0, where u,=u(g,) is the volume element of g,. Also, (h*,w*)E
range DP(g,, my)*, so (—w*/uy, h**u,) € range J o Dd’(go, me)*; ie., (—w*%u,,
*1,) is a gauge transformation. By gauge invariance of D*@(g,, 7:0) (see Fischer et
aI., 1980, Proposition 1.12),

b kb
P, D8 1) ( (s Ho ) (—oms ¥i) ) =0,

0 0

i.e.,

L B N R P BGAE
Since X, is a killing field, b and Ly, commute, so we get
J' (Ly,w) - h* + J (Ly,@*) - h=0.
Integrating by parts,

J' (Lyh*) -+ J (Ly, k) - 0*=0.

Since range J o D®(g,, n,)* < ker DP( g,, 7,), the same argument may be applied to
(h*, w*) in place of (h, w) to give the identity

J' (Ly h*) - w*=0.

Therefore the last three terms in the identity for Q(P(A, w)) above drop out, leaving

o(h, w). 1

2.3 LemmA. P (g, n) = Q(h, w).
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Proof. P, ®(g )= (Ly,g) n Since L, g,=0and L, 7, =0, we get
Pro(gm)=|(Ly(e~g0)) 7
=~ (g—g0) Ly
= | (& —80) Ly (7 —7,)
= —J. h-Lyw

=[ @) 0 B

Thus we get the identity

Q(F(g ) — (80, 7o) =P - P(g, )
which proves the theorem. [

There is another “bare hands” proof of Theorem 2.1 for the case g, flat and 7, =0
that is instructive. It uses the inverse of the Kuranishi map in terms of Y(k, w) and
C(h, w) as was discussed in 1.5. This more computational proof will also be useful to
us in the next section, so we give two lemmas relevant to this case. Thus, for the
remainder of this section and the following one, we assume g, is flat and 7, = 0.

2.4 LEMMA. ker DP(g,, 0)Nker(DP(g,,0) o J) consists of pairs (h*'*" + 3ag,,
W' + 38ghu,), where h'*'" and w'" are arbitrary transverse traceless symmetric
two tensors (i.e., divergence zero and trace zero) a and f are real constants and
Uy = u(8,) is the volume element of g,.

Proof. See Moncrief (1975). N

Recall from Section 1 that we can obtain elements of ¥, S|, _,, by writing
g8=8+h""" + jag, + (—Hess C — g,4C)

and
=" 4+ %ﬂgf#o + (Ly 80)* Uo»

where C and Y are solved for as functions of 4'''', a, w'"'* and B. This follows from
1.5. These equations parameterize solutions of the projected constraints (within
S (s,.0) by the variables #'"*', @, w'"""" and B. The essence of Theorem 2.1 is that this
correspondence also maps %, to C,. In the present case this is implied by the
following identity.
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2.5 LEMMA. If L, g,=0 then
J. (LX g) . 7[=J' (Lxh"") . wlrtr.

Important remark. Notice that the quadratic form Q in (A, w) in this case is
independent of a and §.

Proof of 2.5.
fo(go +h'"Y + Lag, — Hess C — g,dC) - (""" + 18g%1te + (L, 80)" ko)
= j Ly(h'"'" — Hess C — gydC) - (w""" + 5Bgqo + (Ly 80)” #0)
== j(hnu — Hess C —g,4C) - Ly(w"""" + 38g3uo + (Ly 80)" o)
=— [ (A" — Hess C — g, 4C) - Ly(@"""" + (Ly 20)" o)
since L, g, =0. Expanding this, and integrating by parts, we get

J(Lxh"") W J‘ (Hess C + g,4C) L'
+ J (Lxh"")ij (Y'Y + YNy p, + f Ly(—Hess C — g,4C);; (Y + Yy,
=I(Lthr) ot +J’_VC S(L, ') + AC - (L, trace w''tr)

- 2j Y O(Ly k") uy + 2 j Y - 6L (Hess C + g,4C) t,.

Now trw"'" =0 and §(L,k)=0 if 6k =0 and X is a Killing field, so all the terms
drop out except the first. I

3. THE HAMILTONIAN CONSTRAINT

We now consider the case of g, flat and n, = 0. The Kuranishi map F takes €M
# M S0 to the cone C,. To study the Hamiltonian constraint, i.e., the inter-

section

FN S0 =F+NECoNE O S0
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it will be necessary to do some explicit calculations and make use of the fact that the
cone C - does not depend on the variables a and f§ (see 2.4 and 2.5). To carry this
out, it will be more convenient to use the inverse Kuranishi map.

From 1.5 and 2.4 we have smooth mappings

Y(h"", a, (D" Ir, ﬁ) and C(hlr,lr, a, wlr tr’ B)

which, together with their first derivatives, vanish at zero, and have the following
property: for any a and § and any (4''", w'""") satisfying

J' Ly h" 0" =0,  i=1l,.,k 3.1

where X,...., X, are the Killing fields of g,, the data

g=g,+h"" +lag, — Hess C — £,4C,
m=w'"" + 38g5us + (Ly go)* 1o (3.2)

liein ¥, N& NS, o Thus, the mappings (Y, C) parametrize a full neighborhood
of (£0,0) in ®oN¥ NS ,,.0) in terms of solutions (A", w'"*") of (3.1) and (a, B).
Note that cone (3.1) restricts (h'"", w''") but leaves (a, 8) unrestricted.

Consider now the following affine submanifold of 7% #:

F={(g + h,0) € T* # | h is covariant constant with respect to g, }.

Basic properties of F are described in Fischer er al. (1980, p. 179fT).

Now regard (g, 7) as functions of """, a, w''", B by Eqs. (3.2). Without imposing
Egs. (3.1) yet, we substitute (3.2) into the expression for [ #/(g, x). Thus | #(g, )
is a smooth function of '™, a, w''"", § and we can consider its Taylor expansion in
these variables. Just as in Fischer er al. (1980, Sect.6), we find that F is a
nondegenerate critical manifold for IA"’ (g, m). Summarizing, we have

3.1 LEMMA. In a neighborhood of (g,,0) we have

trir tetr

W

[#em=] = — B2 Vo) + [ VAU A,
M Ky 6 4 Jy .

+ G(h"", wtrlr’ a,ﬂ), (3.3) .

where the first and second derivatives of G vanish at zero. Moreover, each point of F
is a critical point of [ #(g,n) and | #(g, n) vanishes on F; G vanishes on F as do
its first and second derivatives. Finally, F is a nondegenerate critical manifold for
[ #(g, 7) in the sense of Fischer et al. (1980, Sect. 6).
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Leaving (3.1) unimposed, we make a further simplifying change of coordinates. We
use the parametrized Morse lemma, as in Fischer et al. (1980, Sect. 6) (see also
Golubitsky and Marsden, 1982) to eliminate the higher order terms. This proves the
following:

3.2 LEMMA. There is a smooth change of coordinates
0: (htr(r a. o tr, ﬂ) I—’ (I;u(r, a (Dtrtr, ﬁ")

in a neighborhood of (0, 0, 0, 0) which leaves F invariant, whose derivative at F is the
identity and is such that (3.3) becomes

=trtr rd T
. o'

—_ w ___l_ a2 i Lurtr | ghtrur
IMX(g, ) = L T B Vol(M) + fM VAT VAT (3.4)
We shall use this change of coordinates ‘to show that when (3.3) is set equal to
zero, it can be solved for a double-valued function S =, (A", a, w''"). This will
show that the solution set is tangent and diffeomorphic to the cone on which the
Taub conserved quantity associated to the timelike killing field vanishes; i.e., to the
cone C, defined to be the set of (A", @, w'""", B) such that

trtr trtr
w -

i, 1
——B*Vol(M) +— | VA" .Va' Ty, =0. 3.5
R & B Vo) + o | o (3:5)
Thus, we can solve (3.1) for A'"' and "' and (3.3) for f independently, showing
that the simultaneous solution set is diffeomorphic to the cone C - M C 4.
The function f is constructed as follows: Let

u-)tr:r . a-Jtrtr 3 1/2

B,=2 (6 L,_u—_—J’? v v;?"“yo) Vol(M)~'2.  (3.6)
0 !

Note that (3.6) defines two functions of (', @' "), each of which is smooth away
from (0, 0). Let

(hlir", a,, “’:"’/31) — (p—l(};trtr, a, a-)utr’ B-t) (37)
This defines B, as a function of (A'"Y,& @"") and mappings v,:
(A", @ @) - (BY, a, , w'I*7). From the fact that ¢ and ¢~' have derivative the
identity on F, we see formally from the chain rule that y, are C ' maps with
derivative the identity on F. This is proved rigorously using some straightforward
Sobolev estimates on the terms involving ﬂ_ , which we omit. Thus, by the C' inverse
function theorem, w, have local C' inverses, thereby defining B, as functions of
('Y, @, @***") such that [ #(g, n) = 0. The following main theorem is now a conse-

quence of this work.

a5



96 ARMS, MARSDEN, AND MONCRIEF

3.3 THEOREM. The association
(hll’ tf’ a’ w(l’(l" ﬁ) H (g’ 7t)’

where (g,m) are given by (3.2) with =B, (h"", a, w"") defined by (3.6) and
Lemma 3.2, with + depending on the sign of B, is a one-to-one correspondence
between the cone C M C 4 defined by (3.1) and (3.5) and the nonlinear constraint set
% N S,,.0) in a neighborhood of (g,,0). This correspondence maps straight lines in
the cone through (g,,0) (i.e., a solution of the linearized equations satisfying the
second order conditions) to smooth curves in € NS, o, with the same tangent at

(80, 0).

The theorem says that the second order conditions on linearized perturbations are
sufficient for the existence of an exact perturbation curve. This, of course, was the
main goal.

Finally, one needs to remove the gauge condition by eliminating S, _o,- However,
this can be done as described in Fischer et al. (1980) and Isenberg and Marsden
(1982), so need not be repeated here.

4. THE EINSTEIN-YANG—-MILLS EQUATIONS

The results proved above for gravity alone will now be generalized to the case of
coupled gravitational and gauge fields. Similar results are expected to hold for other
coupled systems such as the Einstein-scalar field equations (see Saraykar and Joshi,
1981 and 1982). The connection between linearization stability and symmetry holds
for the Einstein—Dirac equations (see Bao et al., 1982), but there could be difficulties
with the analogue of Theorem 3.3 because of negative energy problems.

The program for proving that the solution set for coupled equations has conical
singularities is as follows. The matter (additional field) equations must bew
Hamiltonian, possibly with additional (first class) constraints. (This requirement
might preclude the study of certain fluid models.) Several technical details must be
checked, such as ellipticity of the adjoint of the (generalized) constraint operator @
and existence of a slice for the gauge transformations. The constraint map ¢ must be
split into an energy function (corresponding to timelike transformations) and a
spacelike momentum, and for technical reasons it must be possible to parametrize the
shift and gauge shift so the latter is quadratic and elliptic. Then the arguments of
Section 2 may be generalized. If there is a timelike symmetry, a decomposition like
Lemma 2.4 is needed so that the spacelike and Hamiltonian constraints may be
separated as in Lemma 2.5. Then if the matter fields have positive energy in the sense
of adding only positive quadratic terms to expansion (3.3) in Lemma 3.1, the
quadratic structure of the singularities follows. Conservation laws, such as those
proved for coupled gravitational and gauge fields by Anderson and Arms (1982), can
be used to show that the second order conditions for linearization stability are
independent of gauge and linearized gauge.

EWM
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The first few steps of this program have been carried out in previous papers for
gravity coupled to gauge fields (Arms, 1979) and to certain massless scalar fields
(Saraykar and Joshi, 1981 and 1982). Thus it is already known in these cases that
the solution set can have singularities only at symmetric fields. In this section we
complete the program for the gauge field case.'

As in the case of gravity alone, it suffices to study the constraint equations. We
follow the notation of Arms (1979) except for some modifications noted below;
calculations that appear in that reference are omitted.

Let U be the set of (W*?, s> 3/p + 1) gauge field potentials on a Cauchy surface
M in spacetime, i.e.,, connections on a fixed principal fiber bundle B over M. An
element of A will be represented by a Lie algebra-valued pseudotensorial one-form A
on a neighborhood in M; 4 = o*w, where o is a local cross section of the bundle B
and w is the connection. We assume that the Lie algebra admits an adjoint action
invariant, positive definite inner product, denoted below by *. Let T*U be the (L?)
cotangent bundle of U; thus 7 € TTU is a tensorial dual Lie algebra-valued vector
density, the “negative electric field density,” and 7*U is the phase space for the
Yang-Mills field. Initial data for the coupled Einstein—Yang—Mills system are
elements (g, 4, n, n) € P=T*(# X W), where .#, g, and 7 are as for gravity alone.

The constraint equations as given in Arms (1979) will not work in the program
outlined above. The spacelike momentum comes in two pieces, the total super-
momentum . and a constraint .7 on the Yang-Mills initial data which generalizes
Gauss’ law. As stated in Arms (1979), (#,.%) is not quadratic in (g, 4, 7, 17), and
this creates technical difficulties, as mentioned above. Fortunately, the situation is
remedied by using, in essence, the old trick of adding a multiple of one constraint (in
Dirac’s language, a “weakly zero™ quantity) to another. In terms of the momentum
mapping, this corresponds to choosing a different embedding of & 3, the
diffeomorphism group on M, into the group .2’ of bundle automorphisms (i.e.,
combined coordinate and gauge transformations) on B.

In the notation of Arms (1979) this procedure may be described as follows. The
spacelike momentum (¥ ,.#) gives a contribution

Hg= jM X JF+Vi¥= jM (Xi(=2n), + ni(42, — A2, 4 CE.AAS))

+ Vil + CapAinl))
to the total superhamiltonian. Here Cj. are the structure constant of the Lie algebra
in a suitable basis. Integrating by parts one can re-express H as

HS=J' X.-F+V.x,

M

' The case of the massless scalar field seems to be somewhat simpler than the present case, since there
are no additional constraint equations. (The massive scalar field violates the strong energy condition,
and several important steps in the program fail; see Saraykar and Joshi (1981) and especially (1982).)
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where
*i; = _2”{|j + ’I{zAf.i - ("{;A;’),j
= —2”{|j + 'I{zAfu - ('?:jzAia)lj
and
Ve =y 4+ X'49,

The new supermomentum (#°,.%") is now quadratic and the constraints (7, %) =
(0, 0) are equivalent to (#7,.7") = (0, 0). We shall give a more intrinsic description of
this procedure below. To simplify the notation we write (S, 2 for the new
(quadratic) spacelike momentum and (X, V) for the new generalized shift.

The pair @ = (7, %) is the momentum map for the action of .#° on P (via

pullback). Now .#° is a semi-direct product of the diffeomorphism group 2° and the,

gauge transformation group £ (bundle automorphisms that cover the identity). The
group & sits naturally in .#°, and has the momentum map % =¥ . 5, where ©-
indicates the doubly covariant divergence. On the other hand 2° has no natural copy
in .#°. There is an action of @Z°* on P, used in Arms (1979), which is most easily
described in terms of its infinitesimal generators. An element of the Lie algebra of ¢*
is a vector field X on M. For each point (g, 4, 7, n) € P, lift X horizontally to B,
using the connection 4. Let X indicate this lifted vector field, and let 7 be the
tensorial object on B corresponding to 5. The infinitesimal generator at (g, A, z, ) of
the .%° action on P is then given by (L, g, 6*Lyw, Lyn, 6*Lyi7). (For a more
concrete description, see Arms (1979), at the end of Section IIIB.) However, the
momentum map for this action (/~ in the refefence), is cubic in 4 and #.

To eliminate the cubic term, we proceed as follows. Choose a point (gg,4,,
Tos Me) € P, and lift X horizontally with respect to A,. This lifted field generates an
action on B which in turn gives rise via pullback to an action on P. The momentum
map .# for this action is the new .7 given above; in invariant notation, it is given by

T ==2n+0x B+ V- n)Ad-4,),

where § is the “magnetic field density” and X indicates the ordinary cross product in
an orthonormal frame. (For more details on notation, see Arms (1979)).
The Hamiltonian .# for the coupled fields is given by

K=" -n —3(rn') =R+ 0’ + 5 1 5)} u(e),

where 7’ is the tensor part of 7, and * indicates contraction using both metrics (g and
the Lie algebra metric). Let ¢ = (#,.7,.%). This modification does not change the
principal part of the operator D@, so the calculations in Arms (1979) show that
D@* is elliptic. The coupled constraint equations are given by

=0

A
‘},;
-£
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and the evolution equations are

g N
| A
9 =_JJOD¢*[X], (4.1)
a | = v

n

where N and X are the lapse and shift of the spacelike slicing and V specifies the
evolution of the Yang—Mills gauge. (Here J again represents the almost complex
structure associated with the natural symplectic structure on the cotangent bundle P
and the obvious L’metric.) From Eq. (4.1) one sees that a simultaneous symmetry of
the fields is an element (N, X, V) € ker D®*, where N and X are the components of a
Killing field (as for gravity alone) and ¥ is the (infinitesimal) gauge transformation
needed to preserve the gauge field potential under the Killing field flow.

Many of the arguments in the introduction, and section one follow verbatim with
the new @ and obvious notational changes such as replacing (g, 7), by (g, 4,7, 1)
and (N,X) by (N,X,V). The fundamental decomposition, its interpretation, the
orthogonal slice, the construction of the Kuranishi map F, and Propositions 1.1
through 1.5 all hold for the coupled case with no essential change in the proof.

The arguments of sections 2 and 3, dealing with spacelike and timelike constraints
corresponding to particular symmetries, require a fairly explicit characterization of
those symmetries on a constant mean curvature hypersurface M. By the arguments of
Arms (1979, Sect. IVB) it follows that on M a symmetry (N, X, V)€ ker D@P*
satisfies either (a) N =0 (i.e., all symmetries are tangent to M), or (b) N is constant
and the initial data is trivial (i.e., g and 4 are flat and z and # are zero). In case (a),
the “spacelike” case, there is a basis of ker D@* of -the form {(0, X}, V))|i= 1,....},
Lyg=0,Lyn=0,Lyn=n V| and Ly A=DV}; in case (b), there is a basis with
(1,0, 0) as one element and the rest of the basis like that in case (a).

Let Pg be the L? orthogonal projection onto the span of {(0, X;, V})} and P , the
projection onto (1, 0, 0). Thus the ith component of Pg o @ is given by

[MEEEERAre
M

and

’p,°¢= f.

M

It follows that if %> = {(g, 4,7, 7)|Po ® =0}, o= {(g 4,7, 7n): Pgo @ =0}, and
Cr=1{(8A4,7,1)|Pyo ®=0} then

& =% NE, in case (a)
=% N%N%, incase (b),‘

where I —P=P,® P ,.

A
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We first consider %, N %, analogous to %.N%, as in Section 2. For the
Einstein—Yang—Mills case, we need something playing the role of a slice for the .#*
action. The mapping playing the role of the momentum map for this action is
D = (#, @), where © = (7, %"). Thus, range J o DP* plays the role of the tangent
space to the .#* orbit at (g, 4,, 71y, 1,)). As in Moncrief’s decomposition ((M) in
the introduction),

ker D® o J =ker(DS o J)Nker(D.# o J)Nker(DA o J)

is the orthogonal complement to the orbit. Thus, as in Fischer et al. (1980, Sect. 5.5),
So=1{(80s40> s M)} + #,

where # is a suitably small ball in ker D® o J (in a suitable W*'? metric), plays the
role of a slice for the .2* action.
Now we have, analogous to Theorem 2.1,

4.1 THEOREM. The map F maps €, NEgMN S0 locally 1-1 onto the cone

Co = {(80:Mo» Ao o)}
+ {(h, b, w, 0) € ker D@ N ker DP o J | Q(h, b, w, ) =0},

where Q = Pg(O@ — DO) =P g(® — DP).

The proof is a straightforward generalization (by modification of notation) of the
proof of Theorem 2.1.
In case (a), removing the gauges as in. Fischer et al. (1980) completes the main
~~results."For case'(b), an analog to the decomposition in Lemma 2.4 is needed to
separate the timelike (Hamiltonian) and spacelike constraints. Such a decomposition
follows from Proposition 1.5 generalized to the coupled case and computations in
Arms (1979): points (g, 4,7, n) E %NS, near (g,,A4,, Ty, Mp) satisfying case (b)
may be expressed as
g=g,+h""" + jag, — Hess C — 4Cg,,

A=A,+b", : .
n=w'"" + (38gF + (Ly 8)*) U,
n=6"— (DU)u,,

(4.2)

where (C, Y, U) € domain of D@*, is a function of A", b, w''"", 8, a, and § given
by the (generalized) ¥ map of Proposition 1.5, and b'" and 6'" have vanishing gauge
covariant divergence.

Note that g and 7 in Eq. (4.2) are unchanged from Section 2. Thus Lemma 2.5
remains valid in the coupled case, and Lemma 3.1 is unchanged except for the
addition of a positive quadratic term

[ @in+ BB ko
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Then the rest of the proof of the conical structure of €M & M &y follows exactly
as before.
Thus we obtain the following when g, and 4, are flat and 7, =0, 1, =0.

4.2 THEOREM. There is a 1-1 correspondence between a neighborhood of
(8> Ag» 0, 0) in the cone CaNC NS, and a neighborhood of (&g, Ao, 0, 0) in the

- nonlinear constraint set € NS, which maps straight lines in the cone through

(86> 40> 0,0) 10 a smooth curve in &€ M S, with the same tangent at (g,,4,,0,0).

This result has the same interpretation as for gravity: solutions of the linearized
constraint equations are nonspurious, i.e., are linearization stable, if and only if the
second  order  conditions 0= [, (N, X, V) - D*®(gqg, 4os To» No)((hs b, , 6),
(h, b, w, 8)) are satisfied on the hypersurface. As we have already mentioned, these
second order conditions are actually hypersurface and gauge invariant, using the
conservation laws of Anderson and Arms (1982).

5. DiscussION

This paper completes our study of linearization stability and the local structure of
the space of solutions for the ‘Einstein and Einstein Yang-Mills equations on
spacetimes possessing a compact Cauchy surface with constant mean curvature. We
have shown that the space of solutions has a quadratic singularity at every solution
possessing a group of symmetries of dimension at least one. Using second order
conditions, we have identified those linearized solutions which can be used in an
honest perturbation expansion. This section discusses a few miscellancous issues
relevant to our results. '

The Second Order Conditions

For vacuum gravity, the necessary and sufficient conditions that a linearized
solution “’4 at 'g, be tangent to a curve ‘Vg(1) of exact vacuum solutions satisfying
g = Wg(0) is that the Taub conserved quantities vanish identically,

| @x.[D?Ein(“gy) - (Vh, )] - 02, d*Z=0
¥

for all killing fields ‘X of the metric ‘“’g,. These quantities comprise the momentum
map for the isometry group of “g acting on the linearized theory. (For purely
spacelike symmetries one can show this directly. For a timelike symmetry this is the
known fact that 3 [, (1,0) - D*®(g, 0)((h, w), (h, w)) d’Z is a Hamiltonian for the
perturbations—this is the second variation method.)

The proofs in Fischer ef al. (1980) and the present paper on the space of solutions
worked with the constraint equations directly. The role of the Taub quantities is to
show that the order conditions are hypersurface independent and gauge invariant.

In Section4 we treated the Einstein—Yang-Mills equations by studying the
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Anderson and Arms (1982).

The Symplectic Space of True Degrees of Freedom

If one wishes to divide out by the gauge group (diffeomorphisms of spacetime fo:
gravity, bundle automorphisms over the identity for Yang-Mills and bundl
automorphisms over diffeomorphisms for the Einstein~Yang-Mills equations), then :
suitable slice theorem is needed. For the pure Yang-Mills equations (with a compac.
group), such a slice theorem is relatively routine (see, for example, Singer, 1978.
Babelon and Vialett, 1981, and Kondracki and Rogulski, 1981). For vacuum gravity.
see Isenberg and Marsden (1982). Using a combination of the methods from these
papers should enable one to prove a slice theorem for the Einstein—-Yang-Mills
equations.

Using such a slice theorem, the results of Fischer er al. (1980), this paper and

Arms et al. (1981) (especially Lemma 18), one can show that the space of solutjons
modulo gauge transformations is a stratified symplectic manifold, i.e., a stratified
manifold, each stratum of which js symplectic. The procedure for vacuum gravity is
spelled out in Isenberg and Marsden (1982). It is also shown there, using the slice
theorem and York parametrization, that the generic points consisting of spacetimes
with no symmetries is an open dense set. Thus the generic symplectic stratum in the
reduced space is also open and dense.
---For pure Yang~Mills fields, the results of Arms (1981) can similarly be used to
establish the analogous results in that case.”For the Einstein—Yang-Mills equations
the symplectic stratification follows from the results of Section 4, this paper, and an
Einstein-Yang—Mills slice theorem.

Respecting Symmetry Types
In the context of general momentum mappings, Arms et al. ( 1981) Theorem 4’

showed that the Kuranishi map preserves the symmetry type for any Lie subalgebra
5} C 5., the symmetry (= isotropy) algebra of x,. That is, solutions of the nonlinear
problem with symmetry type $ are mapped to those elements in the cone consisting
of the linearized solutions satisfying the second order conditions and having the same
Ssymmetry type $.

For the momentum constraints and for the Yang-Mills constraints, this remains
true by essentially the same methods. This is also basically true for the full
constraints as well, but the Hamiltonian constraint must be treated by a separate
argument. If “g_ has a timelike Killing field, then g, is flat and we may choose X
so that tr k= 0. If we are looking for nearby solutions which also have a timelike
Killing field, then this amounts to studying the space of flat 3-metrics which can be
done as in Fischer and Marsden (1975). If  does not include time translations then
the result can be dealt with by the Kuranishi method.
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We note that with X fixed, 7 =0 and g flat, g can change its spacelike isometry
group; i.e., there can be branching within the flat metrics. However, this cannot

(W\ ' happen for £ = T°; this follows from Proposition 8.1 of Fischer e al. (1980).

' Bianchi Types and Symmetry Breaking

Jantzen (1979) studied the space of solutions within various Bianchi types. He

‘ noted that one could find conical singularities near, for example, the Taub solution
within Bianchi IX. For the full Einstein equations one can break the symmetry,
encountering a bifurcation at each step, by several paths in the lattice of subgroups

for a given symmetry group. For example, one-can branch from the Taub solution on

' S3 as follows:

‘ S? Gowdy — S* Moncrief
‘ /ST T,

Spacetime:  Taub . Generic
solution
Symmetry group: SU(2) X S 7]
N
Generic
Bianchi IX - ?
SU(2) T,

{W* & For the three torus (T°) topology one can branch as follows:

... .Spacetime: T flat — Kasner - Gowdy — Moncrief — Generic
- - e solution
Symmetry group: 7° X R T3 T T 7]

For a discussion of Gowdy spacetimes with T° symmetry see Moncrief (1981).
Recently Moncrief has used similar methods to construct Gowdy-like solutions with

T' symmetry (Moncrief (1982)).

Analysis of the Second Order Conditions

‘ To analyze, in detail, the second order condition for a given background solution

would involve considerable computation using tensorial harmonics, as in Jantzen
(1980). To illustrate what is involved, we show how to treat a scalar model equation
which captures the essence of the quadratic conditions for the 7° Kasner solution.

On T? consider the space of pairs (¢, ) where ¢ is a scalar field and = is a scalar
density. Let the coordinate basis fields 8/0x’ play the role of Killing fields and
consider the “second order conditions” [, 7%,,,,6 d°x = 0. Now Fourier transform ¢

and @ by writing '

¢ — Z (q;‘r) + lq;“)) elk-x’
k
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and
—+ " (r) + (i) tk-
n=i) (p +ipi") e %,
k

where k ranges over the appropriate discrete lattice for T°. The linear reality
conditions g}” = ¢} and p{” = —p'"), etc., that restrict the ¢’s and p’s are assumed
satisfied.

The second order conditions take the form

0=, 7hou$ =S lal'pL" + 4l

Changing variables according to ¢\ =(1/V2)(Q\ +P{), pY=(1/V2)
(P{" — @), etc., and restricting the sum to range only over the independent &’s (note
that & and —k give the same contribution), we get

0= k(P - 0 + P - 0]
1k)

Now choose three independent lattice vectors such as e'"’ = (1,0, 0), e* = (0, 1,0)
and e® = (0,0, 1) and rewrite the second order conditions as

(P9 — QW) =RA(Q,P), Jj=1,23.

The crucial point is that R, does not depend upon {P{7),, Q7),, PQ,, QW,, P, '\

Q:%:), and similarly for R, and-R,. This can be seen by inspection from the above
expressions. Thus we can choose the variables in the set complementary to
{QU), PYD)} arbitrarily and then solve the three independent “cone” equations

(PD) — (@) = R(Q, P)=r,.

Thus the singularity structure is that of P? — Q% = r with r a variable parameter. See
Fig. 1.

The divergence constraint in relativity for the T° Kasner solution is similar; indeed"
the tensor indices decouple and do not materially affect the above arguments.

Resolving Singularities*

The question of resolving the singularities in the space of solutions. may be
important for quantization or other purposes (cf. Sniatycki, 1982). What we seek is
to include our solution space into the solution space for a modified problem with no
singularities. We describe the idea in a general symplectic context, as in Arms et al.-
(1981).

2 We thank R. Bryarit for remarks on “marked surfaces” which motivated the discussion here.



EINSTEIN’S EQUATIONS 105

FIGURE |

Let P be a symplectic manifold, G a Lie group acting on P by canonical transfor-
mations and J: P— G* an Ad*-equivariant momentum map. Let x, € P, J(x,) =
and G, be the isotropy group of x,. We know from Arms et al. (1981) that when
dimG, >l and certain technical conditions are satisfied J~'(0) has a conical
smgulanty at x,.

We want to embed the set J = 0 naturally into a set J~'(0) without singularities.
We can enlarge P to P X T*G with the, obvnous actlon of G, but this uses more extra
variables than is necessary. o

Instead, assume the G-action admits a slice S, at x, and let %5 be the projected
constraints (obtained by the Liapunov-Schmidt procedure). By Arms et al. (1981),
S, N p is a symplectic manifold. Now G, acts on it with a momentum map j,, =/
restncted to S, N&,. Now consider (‘%r'\S ) X T*G and let G, act on it by
the obvious product action. The momentum map now is J(x, a,)= J(x)+R*ag,
where R, is right translation by g € G, . Then J~'(0) has no singularity at (x,, 0)
and J~ |(0) N (%N S,,) naturally embeds in J~'(0). These extra symplectic variables
T*G, (dim =2 X dim of symmetry group) thus are exactly the right number to
symplectncally “resolve” the singularity.
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