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1. Introduction

In this paper I shal) explain how the reduction results of ‘Marsden and Weinstein {38]
can be used to study the space of solutions of relativistic field theories. Two of
the main examples that will be discussed are the Einstein equations and the Yang-Mills
equations. .

The basic paper on spaces of solutionsiis that of Segal [49]. That paper deals
unconstraingd systems and is primarily motivated by semilinear wave equations.

are mainly concerned here with systems with constraints in the sense of Dirac. Roughly
speaking, these are systems whose four dimensional Euler-Lagrange equations are not
all hyperbolic but rather split inta hyperbolic evolution equations and elliptic con-
straint equations.

The methods that have been used to study these problems are of two types. First,
there have been direct four dimensional attacks which, for example, put symplectic and
multi-symplectic structures on the space of all solutions. These procedures are geo-
metrically appealing since they are manifestly covariant. Since so many people have
worked in this area, we merely refer the reader to {27,29,34,52,53) and references
therein. Secondly, people have used the 3 + 1 or “geometrodynamic” approach. For the
latter, one selects appropriate projections of the four dimensional fields on each
spacelike hypersurface and imposes Hamiltonian evolution equations together with con-
straints. This procedure is generally called the “Dirac theory of constraints®. Two
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good references are {30] and [31]. For vacuum relativity the procedure is sometimes
called the "ADM formalism® after Arnowitt, Deser, Misner and Dirac (see [331). From
an analytical point of view, this second method is more powerful. It enables one to
prove that spaces of solutions are a2 manifold at most points and to precisely investi-
gate their symplectic structure. This paper will discuss this second method in the .
context of [38].

2. Some Additional Background and History.

Before embarking on a discussion of the mathematics we shall continue ts review some
of the background and history. ‘This review does not pretend to be exhaustive and does
omit a number of basic papers. However our intent is only to highlight some of the
papers that are basic to the point of view we wish to develop.

As we have already mentioned, Segal's paper [49] gives a framework for the unconstrai-
ned theory. This leads naturally to an abstract theory of infinite dimensional Hamil-
tonian systems, as in [36] and [113.

The first example with constraints whose solution space was seriously studied was
general relativity. In retrospect, general relativity is a harder example than Yang-
Mills fields. However, developments in perturbation theory and historical circum-
stances dictated that relativity be done first.

2a. General Relativity

The first thing to do is to set up an infinite dimensional symplectic manifold and to
realize the Einstein equations as Hamiltonian evolution equations together with con-
straints. An important point is that the constraints are the zero set of the conserved
quantity generated by the gauge group of general relativity, i.e. the group of diffeo-
morphisms of spacetime. This is a fairly routine procedure given the existing ADM
formalism and was carried out in [22]. (There were associated advances in the exis-
tence and uniquaness theorems; cf. [32,21,33,15] etc.).

The notation we shall use for this formalism is as follows. Let (V, (4)9) be a
given spacetime. Let a slicing be given that is based on a fixed 3 manifold M. By
restricting (4)9 to each hypersurface in the slicing, we get a curve g{A } of Rie-
mannian metrics on M. The basic symplectic space is T*M, the Lz-cotangent'bundle
of the space of Riemannian metrics on M. The conjugate variables 5t are symmetric
tensor densitiss related to the extrinsic curvature (second fundamental form) of the
hypersurface. The tangents to the parameter lines of the slicing decompose into
rormal and tangential parts determining the lapse function N and the shift vector

.
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field X of the slicing. The choice of a particular slicing is basically a choice of
gauge, '

Einstein's vacuum equations Ein((a)g) =0 (the Einstein tensor formed from (4)9) are
equivalent to the evolution equations in adjoint form .

0 1
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together with the constraints
@(Q,J‘[) = 0

where (ﬁ(g.n:) = (H(g,3¢), J(g,x)) is the ‘super energy-momentum. This quantity
® 1s the Noether conserved quantity generated by the group D of diffeomorphisms of
spacetime. {For asymptotically flat spacetimes, only diffeomorphisms that are spati-
ally asymptotic to the identity are needed to generate ®. As in [48], the Lorentz
group at infinity generates the total energy momentum tensor for the spacetime; see

[14]).

This machinery may now be used as a tool to inveétigate the structure of the Space of
solutions of Einstein's equations.

Let V be a fixed four manifold and let & be the set of all globally hyperbolic
Lorentz metrics g = (4}9 that satisfy the vacuum Einstein equations Ein{g) = 0 on
V (plus some additional technical smoothness conditions). Let 9y € t. be a given.
solution. We ask: what is the structure of £ in the neighbourhood of go?

There are two.bagic reasons why this question'is asked. First of all, it is relevant
to the probiem of finding solutions to the Einstein equations in the form of a pertur-
bation series: 2 . ' ’
A
g(A) = gg+ Ahy + G5 hy+ ...
where A is a small parameter. If g(A) is to solve Ein{g{A)) = 0 identically in
A then clearly h1 must satisfy the linearized Einstein equations:

DEin(g) - h1 = 0

where DEin{g) is the derivative of the mapping 9. — Ein{g). For such a perturbation
series to be possible, is it sufficient {hat h1 satisfy the linearized Einstein equa-
tions? i.e. is h1 necessarily a direction of linearization stability? We shall see that
in general the answer is no, unless additional conditions hold. The second reason
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why the structure of & {is of interest is in the problem of quantization of the Ein-
stein equations. Whether one quantizes by means of direct phase space techniques

(due to Dirac, Segal, Souriau and Kostant in various forms) or by Feynman path inte~
grals, there will be difficulties near places where the space of classical solutions

is such that the linearized theory is not a good approximation to the nonlinear theory.

The dynamical formulation mentioned above is crucial to the analysis of this problem.
Indeed, the essence of the problem reduces to the study of structure of the space of
solutions of the constraint equations ( (g,7x) =0 .

The final answer to these questions is this: & has a conical or quadratic singularity
at g, if and only if there is a nomn-trivial Killing field for 9o that belongs to the
gauge group generating &= 0 (thus, the flat metric on T3 x R has such Xilling fields,
but the Minkowski metric has none.) When & has such a singularity, we speak of a
bifurcation in the space of solutions. Whan & has no singularity, the symplectic form
fnduced on & has a kernel that equals the orbits of the gauge group, so & /D is a
smooth symplectic manifold. (See Theorem 3 below).

2b. Yang-Mills Equaticns

There is a similar situation for gauge field theorjes of Yang-Mills type, possibly
coupled to gravity. The final situation here is as follows. The space of solutions
is a smooth manifold near solutions with no gauge symmetries and this space, modulo
the gauge group, is a smooth symplectic manifold. HNear solutions with a symmetry,
the space of solutions has a conical singularity.

2c. History and References

The historical circumstances leading up to statements of this type are as follows:

(a} Brill and Deser [10] considered perturbations of the flat metric on 3 xR and
discovered the first example of trouble-in perturbation theory. They found, by going
to a second order perturbation analysis, that they had to readjust the first order
perturbations in order to avoid inconsistencies at second order. This was the first
hint of a conical structure for & near solutions with symmetry.

{b) Fischer and Marsden [23] found general sufficient conditions for & to be a mani-
fold in terms of the Cauchy data for vacuum spacetimes and coined the term "lineari-
zation stability". Related results were proved by 0'Murchadha and York [45].

{c) Choquet-Bruhat and Deser [12,13] proved that & is a manifald near Minkowski
space. (This was later improved by Choquet-Bruhat, Fischer and Marsden [13]).

(d) An abstract theory for systems with constraints was developed (and applied to 2
number of examples, including relativity) by Marsden and Weinstein [38]. They studiad
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the general problem of the structure of the level sets (and in particular the zero
sets) of conserved quantities, i.e. momentum maps, associated with a gauge qr symmetry
group and proved that the quotient of these level sets by the gauge group is a sym-
plectic manifold near nonsingular (i.e. non-symmetric) points. This theory will be

briefly described below with further indications of how it fits into the general
scheme of relativistic field theories with constraints,

(e) Moncrief [40] showed that the sufficient conditions derived by Fischer and
Marsden for the compact case where equivalent to the requirement that (v, go) have no
Killing fields. This then led to the link between symmetries and bifurcations.

(f) Moncrief [41] discovered the general splitting of gravitational perturbations
generalizing Deser's decomposition [19]. The further generalization to momentum maps
(general Noether currents) was found by Arms, Fischer and Marsden [4] in the context of
[38]. This then applies to other examples such as gauge theory and also gives York's
decomposition [56] as special cases. .

(g) D'Eath [18] obtained the basic linearization stability results for Robertson-
Walker universes. '

(h) Moncrief [42) discovered the spacetime significance of the second order conditions
that arise when one has a Killing field and identified them with_conserved quantities
of Taub [54]. (Arms and Marsden [5] showed that the second order conditions for com=-
pact spacelike hypersurfaces are nontrivial conditions.)

(i) A Hamiltonian formalism for pure gauge theories of Yang-Mills type was well-known
by about 1975; see [31,17,43] and references therein. This implied that the abstract
results in [38] on the space of solutions can be applied directly as is explained in
§3 below (once the ellipticity of the adjoint of the derivative of the constraint map
is known; this simple calculation was noted in [43]). Similar facts for the pure
Yang-Mills case were obtained independently by Segal [50,51] and Garcia [28].

(i) Case (i) deals with points where the space of solutions is ‘nonsingular. The
singular case was studied by Moncrief [43]. A comp1ete proof that the sxngular1t1es
are conical was given by Arms [3].

(k) Ccoll [16] and Arms [1] carried out a study of both the singular and nonsingular
points for the Einstein-Maxwell equations. In [2] the general coupled Einstein-Yang-
Mills system was studied. ’

(1) Moncrief [44] investigated the quantum analogues of linearization stabilities.
Using T3 x IR, he shows that unless such conditions are imposed, the correspondence
principle is violated.

{m) For general relativity a detailed description of the conical singularity in &

near a spacetime with symmetries is due to Fischer, Marsden and Moncrief [26] for one
Killing field and to Arms, Marsden and Moncrief [7] in the general case.
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(n) An abstraction of the results in the singular case to the general context of [38]
was obtained by Arms, Marsden and Moncrief [6]. They showed quite generally that zero
sets of momentum maps have conical singularities near a point with symmetry.
(o) Pilati [47] developed a Hamiltonian formalism for supergravity. This is used

by Bao [9] to study the space of solutions.

3. Spaces of Solutions Near Reqular Points.

To study the space of solutions of a relativistic field theory and its symplectic
structure, one can carry out the following steps:

1, A "3+l procedure" of Dirac is carried out. A symplectic manifold for the dyna-
mics s found and the constraint equations @ {fields = ¢, conjugate momentum N"Cq))
= () are isolated.

2. The constraints {b are identified with the momentum map J for the action of an
appropriate gauge group; i.e. one proves that @ = J.

3. One checks that DJ ™ = D™ is elliptic (in the sense of Douglis and Nirenberg
for mixed systems). ’

4, Invoke [38] near generic {regular) points.

5. Invoke [6] near singular points; i.e. solutions with gauge symmetry.

Let us comment a 1ittle further on points 1 to 4. Step 1 is the classical Dirac pro-
cedure; we have already referred to [31] and [30] for it.

So far, Step 2 has been checked by hand for each example. The general philosophy that
the constraint set can be identified with the zero set of a momentum mapping seems to
be true in a remarkably large number of cases. Another example is the Einstein-Dirac
equations; see [45]. Several people (Gotay, Isenmberg, Marsden, Sniatycki and Yasskin)
are currently investigating general contexts in which this can be proved.

Step 3 is generally a simple calculation. However, it is essential so one can justify
the splitting theorems of Moncrief. This abstract theorem (see [4]) generalizes the
usual decompositions of gravitational perturbations and'decompositions of the Maxwell
field etc. It is analogous to a Hodge-type decomposition in a symplectic context and
i{s stated below. '

Next we recall a few of the features of Step 4. To do this, we first nead a bit of
notation. Let M be a given manifold (possibly infinite dimensional) and let a Lie
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35 .
group G act on M. In examples, G will ‘be infinite dimensional, such as the group of
diffeomorphisms of a manifold or bundle automorphisms. (The proper sense in which
these are Lie groups is discussed in [20]).. Associated to each element & in the Lie
algebra ¢y of G, we have a vector field EM naturally induced on M. We shall dgnote
the action by Q : 6 x M — M and we shall write @g : M —*M for the trans-
formation of M associated with the group element.g € G. Thus

d
Enx) = gt Pexprer) ) | eag-

Now let (P,o>) be a symplectic manifold, so <> is a closed (weakl}) non-degenerate .
two-form on P and let & be an action of a Lie group G on P. Assume the action is
symplectic: i.e. d);w= «w for all g € G. A momentum mapping is a smooth mapping
J:P — g™ such that

{a)x) v, L ED> = o, (gp(x).v )

for all £ € ¥, VETP where dJ(x) is the derivative of J at x, regarded as 2
linear map of TP to g* and < 2> is the natural pairing between ¢y and q“ .

A momentum map is Ad *-equivapiant when the following diagram commutes for each

'gGG:

where Ad;-1 denotes the co-adjoint action of G on g" . IfJis Ad™ equivariant,
we call {P,w,G,)) a Hamiltonian G-space.

Momentum maps Eepresent the (Noether) conserved quantities associated with symmetry
groups acting on phase space. This topic is of course a very old one, but it is only
with more recent work of Souriau and Kostant that a deeper understanding has been
achieved.

Let Sxo = (the component of the identity of) { g € Glgxo = xo} , called the symmetry
group of Xg- Its Lie algebra is denoted 5y SO

S {Eeg | g0 - o).
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Let {P,w,G,J) be a Hamiltonian G-space. If X0 € P, Ko = J(xo) and if
. %®
dJ(xo) : TxP—>g
is surjective (with split kernel), then locally J 1(,tc.o) is a manifold and
[J () | p € o * 1 forms a regular local foliation of a neighbourhcod of xg-

Thus, when dJ(xo) fails to be surjective, the set of solutions of J(x) = 0 could fail
to be a manifold.

Theorem 1. dJ(xO) 18 surjective if and only if dim S,(0 = 0; z.e. ’5*0 = (0}
Proof. dJ(xo) fails to be surjective if there is a § # O such that

<dJ(xq) * Vegr £2= 0 forall vy € TxP- From the definition of momentum map,
this is equivalent to oy (gp(xo), vxo) = 0 for all on . Since Uxo is non-
degenerate, this is, in turn equivalent to ’gp(xo) = 03 i.e. zsxo P 0.D

This theorem assumes implicitly that there is a splitting

‘5, = Range dJ(xo) ® Kernel dJ(xo)*.

In the finite dimensional case this is automatic. In the infinite dimensional case

it holds if dJ(xo)x‘ is an elliptic operator. In this case one also has the splitting

*
TXOP = Ker dd(xg) @ Range dJ(xo)
These splittings are usually called fche Fredholm alternative.

A corollary of theorem 1 is that J'l(}«.) is a smooth manifold near points LI with no
symmetries.

Theorem 2. The kermel of the symplectic form restricted to ker dJ(xo) equala the
tangent space to the Gy orbit of xg at xg. Here 6p = [ g €6 | Ad 1‘ ﬂ.}
and o = J{xg). :

Thus, near those points with no symmetry, P = J'l()c..) / G i8 a smcoth syTplec—

tioc mantfold.

We call P, the reduced symplectic manifold.

This result is proved in [38], but it also follows from Moncrief's decomr'osttion which,

for M E 0 reads
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Ty P = Range dd(x) ¥ @ Ker dd(xg) N Ker(dd(xy) o T )

@ Range IodJ(xo)* .

where B is a.complex,structure associated with the symplectic form. The middie sum-
mand represents the tangent space to Py . The proof of Moncrief's decomposition is
conveniently available in a number of places, such as [24,25] and [37].

As has already been indicated, for relativistic field theories, the four dimensional
equations usually split into hyperbolic evolution equations and the constraint equa-
tions J = 0. If the gauge group includes time translations, the evolution equations
take the abstract form

»*
o x(A) = - Tena(x(AN*E
vhere E(A) € ¢y represents a gauge choice. The space of solutions is thus repre-
sented by the set J = 0 in Cauchy-data space. ’

The symplectic structure one gets on the space of solutions by this procedure coin-
cides with the one obtajned by direct four dimensional methods (although this is not
established in complete generality, it can be checked directly for a class of examples
that includes all of those of interest to us).

4. A Simple Example: Electromagnetism.*

We now give a simple example of how the reduction procedure in the previous section
works. We give it for electromagnetism for simplicity; the construction easily gene-
ralizes to Yang-Milis fields.

- The four dimensional set-up consists of the usual Kaluza-Klein formalism. One has a

circle bundie over spacetime whose connections represent electromagnetic potentials.
A 3+ analysis gives a circle bundle 35 : B—— M over a three manifold M repre-
senting a spacelike hypersurface.

Let CM be the bundle over M whose sections A are connections for the bundle B. The
bundle CM is, in a canonical way, a symplectic manifold which is constructed via

¥ The point>of view developed in this example was obtained jointly with Alan Wein-
stein. ‘
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reduction as follows (cf. [55]): the group S! acts on B and hence on T*B. 1t pro-
duces a momentummap J : T"B — R, The reduced manifold J'l(l) /S is
then CM . (The choice of 1 & R represents a normalization for a unit charge).

Let Oidenote all} sections of CM and et & denote the group of all automorphisms of
the bundle B. Then via reduction, & acts on O,

Elements of T™ O1 represent pairs (A-E), where A is the potential and E is the elec-
tric field. He put on T ¥ 0t the canonical symplectic structure.

Maxwell's vacuum equations in terms of A and E may be summarized as

1. Hamiltonian evolution equations in T *¥Q{ for the Hamiltonian

W=} I[Ez + (@n?] ax
A

an& 2. the constraint equation J = divE = 0.

Here J is the momentum map for the action of & on T*(r. This is a straightforward
calculation. (For sources, use J = g or, better, couple Maxwell's equations to a
source and the full momentum map will be div E - g.)

How ére Maxwell’s vacuum equations in terms of E and B obtained? One merely reduces
T ¥t by the gauge group & at the value 0; i.e. we form the symplectic manifold
J'l(O) /% . If M is simply connected, say ﬂ?a, the reduced space is iscmorphic to
the space of pairs (B,E) where B and E are divergence free. By Theorem 2 above, this
reduced space is naturally a symplectic manifold. The Poisson bracket on it may be
computed to be

{F.G} =j[8—£cur‘l _8_(; - —g——cur'l —%—g] dx

where F and G are real valued functions of € and B and the functional derivatives are
defined in terms of the Frechet derivative by

DF (E,B) « (E',B') =f[—§—§--£' + —g-g--n'] dx .

The usual decompositions of electromagnetic fields are seen to be a special case of
poncrief's decomposition.

Moy

This example is linear so the spaces of solutions are always manifolds. However it
does demonstrate nicely how the constraint equations are the zero set of a momentum
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For other Yang-Mills fields however, the space of solutions is not a manifold, as was
already pointed out in [43]. We will briefly discuss the singular case next. *

5. Spaces of Solutions near SinguIaé Points.

In general the space of solutions of a nonlinear relativistic field theory with con-
straints will have singularities at solutions with symmetries. As we have pointed
out already, this was first hinted at in relativity by Brill and Deser [10]. For both
relativity and Yang-Mills fields these singularities are known to be conical. (See
the references in §2). This is especially surprising for relativity in view of the
complexity of the field equations. However, from [6] there is good reason to think
that this is fairly general, independent of how badly nonlinear the field theory is.
On the other hand, it requires a somewhat special and complex argument for relativity.
For vacuum gravity, let us state one of the main results in the cosmological case:
suppose (V, go) is a vacuum spacetime that has a compact spacelike hypersurface ¥ C V.
(Actually we also;require the existence of at least one of constant mean curvature
for technical reaéons). Let Sgo be the Lie group of isometries of gy and let k be
its dimension.

Theorem 3.

1. ([23,40]) k =0, then & is a smooth manifold in a neighbourhood of gy with tan-
‘gent space at gg given by the solutions of the linearized Einstein equations. The
symplectic form inherited naturally from T*M has kernel on & equal to the infini-
tesima'l+gauge transformations, so the space &/ is a symplectic manifold near such
points. ’

2. ((42,26,6,7]) If k > O then & is 7ot a smooth manifold at gg- A solution hy
of the 1inearized equations is tangent to a curve in & if and only if hl is such that
Taub conserved quantities vanish; i.e. for every Killing field X for 9y

- 2 i . . =
_[" X [ o%ein(gg) - (ny, b)) ] zax = 0

where Z is the unit normal to the hypersurface M and " . " denotes contraction with
respect to the metric 99-

R .
The proof of a technical, but important item, namely that near points with no sym-
metry, & /D is a manifold has not yet appeared in the literature. It will appear

in a forthcoming publication of Isenberg and Marsden.
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A1l explicitly known solutions possess symmetries, so while 1. is "generic”, 2. is
what occurs in examples. This theorem gives a complete answer to the perturbation
question: a perturbation series is possible if and only if all the Taub quantities
vanish. Thus, the second order conditions of Taub tell us the tangents to the conical
singularity. There is a similar theorem for Yang-Mills fields [6,3].

Let us give a brief abstract indication of why such second order conditions should
come in. Suppose X and Y are Banach spaces and F : X — Y is a smooth map. In our
examples, F will be a momentum map. Suppose F(Xo) =0 and x(A) is a curve with

x(0) = Xq and F(x(A)) = 0. Let hy = %" {(0) so by the chain rule DF(xO) +h; = 0.

Now suppose DF(xO) is not surjective and in fact suppose there is a linear functional
2 € Y" orthogonal to its range: <2, DF(xo)-u) = 0 for all u € X. (Recall
from Theorem 1 that dJ fails to be surjective at points with symmetry.) B8y differen-
tiating F(x(A)) = 0 twice at A = 0, we get

D%F(xg) + (hy, hy) + DF(xg) « x"(0) = O .

Applying ¢ gives :
<€, 0%F(xg) » (b, b)Y = 0

which are necessary second order conditions that must be satisfied by hl'

It is by this general method that one arrives at the Taub conditions. The issue of
whether or not these conditions are sufficient is much deeper requiring extensive
analysis and bifurcation theory (for k = 1, the Morse lemma is used, while for k > 1
the Kuranishi deformation theory is needed; see [35,8,6] ).
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