4. The initial value problem and the dynamical
formulation of general relativity
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In this chapter we discuss some of the inter-relationships between the
initial value problem, the canonical formalism, linearization stability
and the space of gravitational degrees of freedom. In the last decade,
these topics have experienced a resurgence of interest as more advanced
mathematical methods and viewpoints have begun to show the intimate
relationships among these topics. At present, the literature regarding
these areas of general relativity is a rapidly expanding body of know-
ledge. '
Our purpose here is to present the current state of affairs from our
own point of view. We shall use geometric methods developed by the
authors to establish various connections between the above-mentioned
topics. The main tools we shall use to develop this material are
nonlinear functional analysis, an adjoint formalism for Hamiltonian field
theories, and infinite-dimensional symplectic geometry. As we shall see,
these tools and the topics we shall consider are naturally related.
For a more complete picture of the current state of affairs, the reader
is urged to consult Choquet-Bruhat (1962), Arnowitt, Deser and Misner
(1962), Hawking and Ellis (1973), Misner, Thorne and Wheeler (1973),
Hanson, Regge and Teitelboim (1976), Kuchat (1976, 1977), Miiller
zum Hagen and Seifert (1976) and Choquet-Bruhat and York (1979).
Section 4.1 develops the Hamiltonian formalism for the dynamics of
general relativity, usually called the ADM (Arnowitt, Deser and
Misner) formalism. This is done using invariant concepts and the adjoint
formalism developed by the authors. We show how to write the Einstein
dynamical system explicitly in the compact form
9%
aA

Evolution equations =J o [D®(g, m)J* - (N),
am X

a
Constraint equations ®(g, #)=0.
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The initial value problem

This form of the equations is useful in understanding linearization
stability and the space of gravitational degrees of freedom. We sketch
how this adjoint formalism can be extended to all field theories which
are minimally coupled to gravity. ‘

The adjoint formalism leads naturally to the study of the constraint
manifold in section 4.2; the main result in this section tells which points
are manifold (regular) points and which are bifurcation (singular) points.
We also show (using the adjoint formalism) that the constraint sub-
manifold is in involution under the dynamical equations. The equations
used to establish this result are equivalent to the Dirac canonical com-
mutation relations.

With the dynamical formalism in hand, we discuss existence, unique-
ness, and stability for the Cauchy problem in sections 4.3 and 4.4. In
section 4.3 we summarize the general theory of hyperbolic initial value
problems that we shall need for relativity. We give an abstract approach
which gives as special cases existence and uniqueness results for first-
order symmetric hyperbolic systems, second-order hyperbolic systems,
or combinations of these systems. The theorems we present yield the
sharpest known results with regard to differentiability. When applied in
section 4.5, these theorems give the sharpest results regarding the
existence and uniqueness theorems for the Cauchy problem of the
empty space field equations (theorems 4.23 and 4.27). Some remarks
are made to show how the abstract theory is applied to fields coupled to
gravity.

Although considerable progress in the initial value problem has been
made, the basic open problem of relating dynamical singularities (non-
existence of ‘all-time’ solutions to the evolution equations) to singulari-
ties in the Hawking—Penrose sense remains unsolved.

Section 4.5 combines sections 4.2 and 4.4 to give conditions under
which first-order perturbation theory is and is not valid and shows that
perturbation series must be readjusted to be made consistent whenever
a Killing vector is present. Necessary second-order conditions are given
for a perturbation to be integrable. These results are due to the joint
work of V. Moncrief and the authors.

Finally, section 4.6 discusses the elimination of gauges by a general
reduction procedure for Hamiltonian systems. An application of this
general procedure is then used to show that the space of gravitational
degrees of freedom is generically an infinite-dimensional symplectic
manifold. Thus, generically, the set of empty space geometries is an
infinite-dimensional gravitational phase space without singularities. Our
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Chapter 4. The initial value problem

general formalism is also applicable to fields minimally coupled to
gravity, and with little extra effort it can also be shown that the space of
degrees of freedom for fields and gravity is also generically a symplectic -
manifold.

For more information regarding the topics presented here, the reader
may consult Arms (1977a, b), Arms, Fischer and Marsden (1975),
Choquet-Bruhat, Fischer and Marsden (1978), Fischer and Marsden
(1978a, b, c¢), Fischer, Marsden and Moncrief (1978), Hughes, Kato and
Marsden (1976), Kato (1977), Marsden and Weinstein (1974), Moncrief
(1975a, b, ¢, 1976, 1977) and Weinstein (1977).

The authors thank J. ‘Arms, Y. Choquet-Bruhat, K. Kuchaf,
V. Moncrief, R. Palais, R. Sachs, and A. Taub for their helpful advice
and S. Hawking and W. Israel for their kind invitation to contribute this
chapter.

4.1 Canonical formalism

We begin by recalling the four-dimensional Lagrangian formalism in
classical field theory for fields coupled to gravity. Following this we treat
the ‘3+ 1’ or dynamical approach.

The notation is as follows: V, is a smooth 4-manifold with connected,
oriented, paracompact and Hausdorff included in the term ‘manifold’.
TV, denotes its tangent bundle. We also let

L(V,)=all smooth Lorentz metrics with signature (— + + +);

S,(V,4) = all smooth 2-covariant symmetric tensor fields on V.

Now let E be a vector bundle over V, with projection #: E - V4 and
let its C™ sections be denoted C*(E). Often we take E = T (V,), the
bundle of tensors with r contravariant indices and s covariant indices.
However, it is important not to restrict one’s attention merely to tensor
field theories or else important field theories, such as Yang-Mills fields,
will be excluded; see for example Hermann (1975), Arms (1977b), and
references therein. Strictly speaking, Yang-Mills fields require the use of
an affine bundle (bundle of connections on a principal bundle over V),
but this does not affect the formalism in any significant way.

In coordinates, we write the components of-¢ € C*(E) as ¢4 where A
denotes a set of multi-indices.

Let 9(V,) denote the (orientation-preserving) diffeomorphisms of
V. For ‘natural bundles’ any F € @(V,) extends functorially to a bundle
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Canonical formalism

diffeomorphism Fg: E » E covering F; i.e., the diagram

Fg
E——mE

Vs —F, v,

commutes and (F o G)g=Fgo° Gg. For E=T(V,), Fg is the usual
transformation of tensors under F. Then pull back by F is defined on
sections of E, and is given by

F*:C®(E)>C™(E); @—>Fg cpoF=F%p
and its inverse, push forward, is defined by
Fup=FgogoF .

For the bundles associated with Yang-Mills fields, one also has trans-
formation by an infinite-dimensional gauge group in addition to the
notion of pull back and push forward by (V).

Note that E may be a Whitney sum E,@E,®- - - E; for k types of
fields, so that our formalism is appropriate for interacting fields.

Let () denote the bundle of densities over V, (i.e., 4-forms) and write
E* for the dual bundle over V; whose fiber at x is

E;®Q,

where E¥ represents the vector space dual to E,. Thus E* is a bundle of
vector densities over V. For example, if E=T;(Vy), E*=T;(Vy)®Q

is the bundle of tensor densities of type (s)
r

We have a natural L,-pairing between C*(E) and C*(E*) given by
(o ¥@du.= | W(o)an,

where ¢ (¢p)du =Y (e)®du, and we are assuming ¢(p) is du-
integrable. We speak of C*(E¥) as the natural L, dual of C*(E).

Let E and F be two bundles over V, and A: C*(E)> C™(F) be a
linear operator. The natural adjoint of A is defined by

A®CO(F¥)> C*(E*),  (A*(Y), @)= (4 A@)L,.
for § € C*(F*), p € C*(E). We tacitly assume A* exists.

141



Chapter 4. The initial value problem

If A is a differential operator, A* will be computed in the usual way
by integration by parts to give the adjoint differential operator. In
general, A* can be interpreted in the sense of unbounded operators -
(Kato, 1966). .

For a bundle E over V, with dual bundle E*, we take E to be the dual
bundle of E* so that (E*)* = E. Thus, in the example of E = T (VL),
E*=T;(V)®Q, and (E*)* = T;(V,). Thus, with this convention, if

A: C*(E)-» C™(F*),
then ,
A*: C®(F)> C*(E*).

Consider now a Lagrangian density for a field theory coupled to
gravity:

Z: L(V))x C*(E)~> C3 (Va),

where Cg (V4)={ is the bundle of scalar densities over V,. Write
L(g, ©) = Lorav(8)+ Lheras(g, ¢) where  Lyrai(g)=(1/167)R(g) du(g)
and where R(g) is the scalar curvature of g and du(g)=
(—det gog)/? dx°a dx'adx®adx’ is the volume element associated
with g € L(V,); later we shall designate such a g as “’g.

If we demand that the action integral

58 0)= | [Zur(e)+ Zrea(e, )} (@)

be stationary for any bounded open region & < V, with smooth boun-
dary and for any variation h of g and variation ¢ of ¢ vanishing on
the boundary, we get

0 = J; [’Dggrav(g) " h + Dggﬁelds(g7 (O) h h +D¢$ﬁelds(ga (D) * (//] d#’ (g)

for all A, ¢ vanishing on 99, where D, D,, D, denote the (Fréchet)
derivatives, and partial derivatives with respect to g and ¢, respectively.
Note that the variation A is in S»(V,), the space of symmetric 2-
covariant tensor fields on Vi, and ¢ is in C*(E).

In terms of natural adjoints, this condition becomes the Euler—-
Lagrange equations:

[Dggrav(g)]* -1+ [Dggﬁelds(g’ QD)]* -1=0
and
[DyFreras(g; P)N*-1=0
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Canonical formalism

where 1 is the constant function 1 in the space of real-valued functions,
the dual space to the densities Cg (V). These equations are equivalent
to the usual way of writing the Euler-Lagrange equations (if Fgeiqs are
assumed to depend on the k-jet of g, ¢):

8$ grav + 6$ fields

=0
og g ,
aefﬁelds - 0
op

Now, as in Lichnerowicz (1961), we have
DR(g)- h=Atr h+88h—h - Ric(g)
where
A = Laplace—Beltrami operator on scalars; Af = —f,.’*
tr=trace;tr h =h",
8h=—divh=—hr,
56h = double divergence = h*,, 4

Ric(g) = Ricci tensor of g= R,

and
D[du(g)] - h=13(tr k) du(g)-
Thus,
S |
DZira(g) h= E[A tr h +86h —Ein(g) - h] du(g),
where

Ein(g) = Ric(g)—22R (g)
is the Einstein tensor of g (i.e., G.s = Rag —384R). Since the integral of
A tr h +88h vanishes for variations 4 that vanish on 8%, it follows that
. 1 .
[DggraV(g)]* ‘1= —-——[Ein (g)]“ du(g)
167
where * means indices raised by g.
We let (see Hawking and Ellis, 1973, section 3.3)

8L, elds
7(g.0)= 225 2ID, Foa(g, O 1 SH(Va)
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Chapter 4. The initial value problem

where $3(V4)=S*(V,)®Q denotes the space of 2-contravariant sym-
metric tensor densities on V.

Let T(g, ¢)=9(g ¢)*, the dual tensor in S>(V,) induced by the-
metric. Thus, 7 =T*du(g) and T is the usual symmetric energy-
momentum tensor associated with Fyeias(g, ©)-

The field equations now read:

Ein (g)=8%T(g, ¢) (i.e., G =87T,,)
and

8L selas _
S

0.

If one wishes to obtain field theories which are well posed, there are
severe restrictions on the possible choices of Fgeas. For example, if we
have a tensor theory and %45 depends on derivatives of g, e.g. on the
covariant derivative Vo of ¢, then T in general will depend on second
derivatives of g and on second derivatives of the fields ¢. Likewise the
equations for the fields will depend on second derivatives of the metric as
well as second derivatives of the fields. In such circumstances, one may
not have a well-defined system of hyperbolic equations (see Kuchaf,
1976). Thus, one usually requires minimal coupling, i.e., Lsaqs depends
only on point values of g. For the scalar, electrodynamic, and Yang-Mills
fields, where Phogs=(1/167)F - Fdu(g) and F=dA+[A, A]=
{curvature of a connection field A}, this presents no difficulties, as these
systems are minimally coupled. For minimally coupled tensor field
theories, one is able to classify the natural differential operators that may
occur; see Palais (1959), Nijenhuis (1951) and Terng (1976).

Now we turn our attention to the Dirac-ADM dynamical formulation.
We develop this material using modern symplectic geometry and an
intrinsic version of the Dirac theory of constraints; see Abraham and
Marsden (1978). Since gravitation plays a distinguished role, we shall
discuss it first. Then we shall make some comments on the case of fields
coupled to gravity.

As above, let V, be a four-dimensional manifold with Lorentzian
metric ¥g which is oriented and time-oriented. We write ®g to avoid
confusion with Riemannian metrics g to be introduced later. Let M be a
compact oriented three-dimensional manifold,T and let i: M - V,be an

+ The Hamiltonian formalism for the non-compact case is rather different. See Regge and
Teitelboim (1974) and Choquet-Bruhat, Fischer and Marsden (1978). The existence and
uniqueness theory discussed in sections 4.3 and 4.4 is valid in either case.
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Canonical formalism

embedding of M such that the embedded manifold i(M)=X is space-
like; i.e., the pull back i*(“g)=g is a Riemannian metric on M. Let
C:m (M; V,®g) denote the set of all such spacelike embeddings. As in
Ebin and Marsden (1970), this is a smooth manifold. Let k denote the
second fundamental form of the embedding, defined at m e M, for X,
Y € T,.M, by the usual formula

kmr(X, Y)= —(4)g0i(m) (TWi- Y), (4)V(Tmi-X)(4)Z2°i(m))

where @Zs o (m) is the forward-pointing unit timelike normal to X at
i(m). Thus k; =—Z;; (where ;’ denotes covariant differentiation using
@g. covariant differentiation using g is denoted with a vertical bar).

Let 7 = 7' ®du(g) be a 2-contravariant tensor density, whose tensor
part 7' is defined by 7' = [(tr k)g—k]*, where * indicates the contravari-
ant form of a covariant tensor with indices raised by g; similarly, *
denotes the covariant form of a contravariant tensor. In the Hamil-
tonian formulation of Arnowitt, Deser and Misner, k plays the role of a
velocity variable and = is its canonical momentum. Note that 7" =
7*PMd%x. When we discuss the space of gravitational degrees of
freedom in section 4.6, it is useful to know that if (V, ®g) is globally
hyperbolic with a Cauchy surface diffeomorphic to M, then any space-
like embedding of M in V, is also a Cauchy surface (see Hawking and
Ellis, 1973; and Budic, Isenberg, Lindblom and Yasskin, 1978).

Now suppose we have a curve in Cepace (M; Vi, (4)g); i.e.,acurvei of
spacelike embeddings of M into (Vi, ®g). The A-derivative of this
curve defines a one-parameter family of vector fields (")XzA on the
embedded hypersurfaces by the equation

diy_
da "

(see figure 4.1). The normal and tangential projections of (“)XzA define a
curve of functions N, = ®x . M- R and vector fields (4)XH=X,‘: M-
TM on M by the equation

@xs, oix(m)=LX. (A, m)PZs, o ix(m)+ Tpiy - XA, m)

where “”Z;A is the forward-pointing unit timelike normal to X,. If
N, >0, then the map

F:IXM->Vy, (A, m)—~i(m)

is a diffeomorphism of I XM onto a tubular neighborhood of io(M)=
3o, if the interval I = (—8, B) is chosen small enough. In this case, we call
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Chapter 4. The initial value problem

M

Figure 4.1. Spacelike embeddin%s of M into V; with the normal and tangential
decomposition of the generator @ Xs,.

either the curve i, or the embedded spacelike hypersurfaces X, = i) (M)
a slicing of V,.

The functions N, and the vector fields X, are the lapse functions and
shift vector fields of Arnowitt, Deser and Misner (1962) and Wheeler
(1964).

Using F:I XM - V, as a coordinate system for a tubular neighbor-
hood of 3 in Vi, coordinates (x'), i=1, 2, 3 on M, and (x*)= (A, x%),
a=0,1,2,3 as coordinates on I XM, the pulled back metric F *“”g is

(F*®Pg)ag dx® dx® = —(N? - X:X') dA*+2X; dx’ dA +g; dx’ dx

where g; = (g )i and g, = i¥ “g.

Let k, be the curve of second fundamental forms for the embedded
hypersﬁrfaces 3, =i (M), ‘and let 7, be their associated canonical
momenta.

The following theorem contains the basic geometrodynamical equa-
tions due to Lichnerowicz (1944), Choquet-Bruhat (1952), Dirac (1959,
1964), and Arnowitt, Deser and Misner (1962).

Theorem 4.1

Let the vacuum Einstein field equations Ein (¥'g)=0 hold on V.. Then
for each one-parameter family of spacelike embeddings {i\} of Va, the
induced metrics g, and momentum 1w, on 3, satisfy the following
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Canonical formalism

equations:

ag — ' 1 ’

or 2N —2g(tr m)]+ L,
Evolution equations

9

= —2N[a'x7'~}(tr )] due)

+3Ng* 7' - 7' —3(tr ') du(g)
—N[Ric (g)—-3R(g)g]" du(g)
+(Hess N + gAN)* du(g)+ Ly,

H(g, m)=[n"- ='~3(tr ')’ ~ R(g)] du(g) =0,

Constraint equations { )
F(g, w)=2(8gm)=—2m")=0.

, Conversely, if iy is a slicing of (Vs, ©g) such that the above evolution
and constraint equations hold, then “g satisfies the (empty space) field
equations.

‘ Our notation in the theorem is as follows: (' ) = (=Y (7");

i a o' =(7")(7");; Hess N=Ny;; AN=-g"'Ny;; and Lxw=

‘ (Lxw'ydu(g)+ #'(div X)du(g) is the Lie derivative of the tensor
density 7= 7" du(g); note, Ly du(g)= (div X)du(g). The Ricci tensor
R,, of ¥g is denoted Ric(“g) and that of g by Ric(g); R(g) is the
scalar curvature of g. We write Ein (g)= Ric (g)—3R (g)g, the Einstein
tensor of g.

A sketch of the proof of theorem 4.1 is given after theorem 4.3.

The twelve first-order evolution equations for (g, #) correspond to
the six second-order equations ’G;; =0, while the other four Einstein
equations ““G% =0 and “G°; =0 appear as the constraint equations.

| More explicitly, in coordinates determined by a slicing i), ®Zs has
components “Z, = (=N, 0). If we define the ‘perpendicular—perpendi-
cular’ and ‘perpendicular-parallel’ projections of the Einstein tensor by

(4)G_L_L — ZaZB(4)Gal3 — N2 (4)000
and

(4)G¢i - _Zu(4)Gai =N (4)GO,-,
then
(g, m)=—2 (4)GLL du(g)

147



Chapter 4. The initial value problem

and

F(g m)i=2YG* du(g).

The evolution equations of this theorem are well posed, as is shown
in section 4.4.

In the formulation of theorem 4.1, the lapse and shift are regarded as
freely specifiable. In the ‘thin sandwich’ formulation, one regards g and
g as Cauchy data, expresses 7 as a function of (g, N, X ) and solves for N
and X from the constraint equations

H(g, m(g N, X)) =0
H(g (g N, X)=0;

see Misner, Thorne and Wheeler (1974). Upon linearizing, it is easy to
see that this is not an elliptic system, so even if it is solvable, there will be
some technical problems; in particular, regularity must fail. Thus, the
thin sandwich formulation is rejected by most workers. For other
difficulties with the thin sandwich formulation, see Christodoulou and
Francaviglia (1978).

It is important to recognize various combinations of terms in the
ADM evolution equations as Lie derivatives, and we have done so in the
way theorem 4.1 is written. It is also useful to write the quadratic
algebraic part of d7/9A as

Se(m, m)=—2{m'% ' —(tr 7))’} du(g)+3g™ar’ - o' —3(tr ')} du(g).

This is the spray of the DeWitt metric, i.e., the terms in the evolution
equation quadratic in 7’ (see below, and Fischer and Marsden, 1972a).
Thus the terms in the evolution equation for 7 may be interpreted as
follows:

d
a—;r = NS, (m, 7)— N Ein (g)* duu(g)+ (Hess N +g AN)" du(g)+ Lx.

geodesic forcing term of ‘tilt” term due ‘shift’ term
spray of the scalar to non-constant due to

the DeWitt curvature N nonzero $hift
metric potential

See DeWitt (1967), Fischer and Marsden (1972a), and Kuchaf (1976)
for more information regarding the geometric interpretation of this
equation.

In order to understand these equations in terms of a symplectic
structure on a cotangent bundle, we must introduce the following
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. Canonical formalism
spaces. Let £ denote the space of C™ Riemannian metrics on M, and
2 =PD(M) the diffeomorphism group of M. We let .#*" with s>n/p
denote the Riemannian metrics of Sobolev class W*?; the diffeomor-
phisms and other maps and tensors of class W*” being denoted
similarly. For ease of notation, however, we shall restrict to the C™ case
in this section.

Let TAHM =~ M X S, denote the tangent bundle of ., where, as above, S,
is the space of C™ 2-covariant symmetric tensor fields on M, and S2 is
the space of C™ 2-contravariant symmetric tensor densities on M.
Define T*4# ~ 4 X S5 ={(g, mgeM, we S3}. We shall refer to T*# as
the ‘L,-cotangent bundle to #’. For ke T,/ = S,, m e T; M =~ S3, there
is a natural L,-pairing

(7, k), = JMﬂ - k,

as explained above. Thus T*/# as defined is a subbundle of the ‘true’
contangént bundle. Since T*# is open in S, §3, the tangent space of
T*M at (g, w)e T*M is Tig(T* M)~ S, X S3.

We now show that T*/# carries a natural symplectic structure in
which the evolution equations of the theorem are Hamiltonian. In order
to include the lapse function and shift vector field into this scheme, it is
necessary to develop the notion of a generalized Hamiltonian system.

On T* A we define the globally constant symplectic structure

0= Q(g,-n—): T(g’.,,-)(T*‘/%)X T(gm_)(T*‘/”)e R
as follows: for (hy1, w1), (ha, w2)€ T n(T*M)= S, X S3,
Qegmy((h1, ©1), (h2, w2)) = J w2 hi—w1 - hy.
M
Let

0 I
T=(_} o) SixSi>s:xs3

be defined by

wirer2)-( ).

so that

[0 I
J 1=( ): S2x %> S2% Sy, (h, @) (~w, h).
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Then

Q(h, 1), (b, @)= JM <J“(Z’l), (hs, w2)>.

We shall return to J shortly.

Let C* = C™(M, R) denote the smooth real-valued functions on M;
C¢ = smooth scalar densities on M ;

Z = smooth vector fields on M ;

and
Aé = smooth one-form densities on M.

Consider the functions

%#: T*M>CT; (g m)—>¥H(g m)=[n"- o' ~3(tr w')’— R(g)] dn(g);
F=28:T*M~>Ay; (g 7)—>2(8,m)=—2m/;

and A

=%, F):T*M~>CT X Ag; (g m)—> (H(g, ), F(g ™).

At this point it is necessary to compute the derivatives of 7, #, and ®
and their natural adjoints. The results are collected in the following.

Proposition 4.2

Letting (g, m)e T*M, (h,w)e Ty (T*M)=5,%S3 and (N, X)e
C* X &, the derivatives of ¥, §, ®

D3(g, 7): $2xSa~>Cq,
D#(g, m): $2% S5~ A,
D®(g, 7): SaX S5-> CaxX Ad
and their natural adjoints
[DI(g, m)]*: C* >S5 XS,,
[DF(g, m)*:Z>Sa %S>,
[DO(g, m)]*: COX X > SiXS,
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are given as follows:
D(g, ) (h, w)=—S(m, ) - h+[Ein(g)  h—(88h +Atr )] du(g)
| +2[(m) =3 7l w;
[D¥(g, m)]* - N ={[-NS,(m, )+ (N Ein (g)~ (Hess N +g AN))’]
®du(g), 2N[(7') —3(tr m')gl};
D4(g, m) - (h, ©)=—2[w/ |+ haer; + 7" (b~ 3]
[DF(g, m)I* - X = (—Lxm, Lxg);
D®(g, m) - (h, ) =(D%¥(g, ) (h, @), DE(g m)" (h, ®));
and
[Dd(g, m)I* . (N, X)=[D3(g, m)I* - N +[DF(g, m)I* - X
={[=NS,(m, 7)+ (N Ein (g)— (Hess N + g AN)?]
®du(g)—Lxm, 2N[(7') —3(tr =')g + Lxg]}.
The proof is a slightly long, but straightforward, computation.
As is shown in Arnowitt, Deser and Misner (1962), the evolution

equations of theorem 4.1 are Hamilton’s equations with Hamiltonian
N¥+X -4 ie.,

ag &
—=—(N¥#+X -

oA 577( x &
o é
—=—(N#K+X - ¥).
Py 6g( H+X - F)

Using the symplectic structure on T*4 defined by

0 I 2
J= (—1 0)’ S5 %8282 %S5, (o h)»—»J(Z’) = (~w>’

and the correspondence
é é N
- +X - , — +X - = g * ., ( )’
(5o +X - 9). 3o+ X - 9) <D I - (

the Hamiltonian equations in theorem 4.1 can be written in a very
compact way.
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Theorem 4.3

The Einstein system, defined by the evolution equations and constraint
equations of theorem 4.1 can be written as

. . /(8 N
1 t —( ) =Jo[D s *. ( ),
Evolution equations Ao [Dd(g, 7)] x
Constraint equations (g, 7)=(#(g, 7), F(g, M)=0,

where (N, X) are the lapse function and shift vector field associated with

the slicing, and where [D®(g, m)]* - ()]\9 is given by proposition 4.2.

Sketch of proof of theorems 4.1 and 4.3. The Lagrangian density
which generates the empty space Einstein equations is

Lo V)= R(“’g) du(“g)

where du(@g)=(—det ¥g)"*d*x = N(det g)"/* d’x dA =N dA du(g).
A computational part of the proof, which we shall not do, is to show that
Lorav can be written in the following (3+1)-dimensional form (see
equation 7-3.13 in Arnowitt, Deser and Misner, 1962, and equations
21-90 in Misner, Thorne and Wheeler, 1974)

167T$grav((4)g) =NR ((4)8) d/J' (g) dA
=[5 Nat(g, )X - S(s w)] dx

—2[7Tinj —%Xi tr 7 + (grad N)i du (8)]: da

- (i tr 77) da.
dA

Here i, is a slicing of V4 so that V, can be identified with I X M. Note
that our 7= du(g)= ='(det g)*d’x= #*PM@x contains the d’x
term to complete (det g) 12 5 a volume element on M. Similarly, the
volume element du(“’g) conains d*x = d%x dA, explaining the overall
multiplicative factor dA.

. Set B=pB'=—2[#' X —3X"tr m+(grad N) du(g)], a vector density
on M; note that B°; = g/ = div B. The action for gravity can be written as
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Canonical formalism

167Sgan(Vg) =167 j Lo @g)

\

=167 Ld)t J‘M[W . %—N%(g, m)—X - $(g, 77')]

. d
+ 1677J'Id/\ JM<d1v B-otr W).

Integrating the div 8 term to zero on M, and dropping the total time
derivative term

d
j d)\J —tr77=j (trﬂ');\=b—J‘ (tr mh=a
I=[a,b] M OA M M

as a constant that will not enter into the variation of S,,,, we have

167Sgran(g) = 1677J’ dA J (77 28 Nwe-x - J)
1 M oA

csoe o ][ 2ot - (3)]

Varying the action with respect to (4)g in the direction “h which
vanishes on {a}xM and {b}xX M induces a variation (h, w) of (g, 7)
which also vanishes on each end manifold {a} XM and {6} x M. Thus,
taking the extremum of the action for an arbitrary variation (h, @)
vanishing on the end manifolds {a} X M and {b} X M gives

og ah
4) 4)

= rav . = dAJ’ ( . . )
0=167 dS,rav( g)- "l 167TJ; w 3 +a p

—16m Ld/\ jM<D<I>(g, ™) (b, @), (;»

= 167rJ’Id/\ JM(w . j—f—z—:- h) + 1677“M(w )\ —J’M(w . h),\=a]

- 167TJ;d/\ JM<(”, ), [DD(g, m)]* - (;»

oo ] o [(-22.2) -0 - ()

where the term involving the total time derivative [;dA [ar (3/0A)(m - h)
integrates to zero in the A -variable by virtue of the vanishing of 4 on the
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Chapter 4. The initial value problem

end manifolds. Since the variation (k, @) was arbitrary, we conclude that

( r ﬁg) = [D®(g, m)I* - ()A(’)

T A’ BA
so that
—am a_g
oA dA N
J =| =7 Do, *( )
g o [Dd(g, )] x n
dA JA

We now give a few additional details on the Hamiltonian structure of
the adjoint equation in theorem 4.3.

Let F: T*# - R be a real-valued function on T*/ that comes from a
density &: T*# > C3 ;i.e.,

Fgm=| #em.
Then the Hamiltonian vector field of F,

Xe: T*M > T(T* M)
is defined by

dF(g9 77) ) (h’ (l))= Q(XF(g’ 77')7 (h’ w))

where Q is the symplectic structure on T*/.

Proposition 4.4

The Hamiltonian vector field Xr is given by
Xr(g, w)=J o [DF(g, m)]* - 1.

Proof.  O(Xi(g, m), (h, @) =~ | Xeg, m), T\ ),
and so

dF (g, m): (h,w)= J D%(g, 7): (h,w)
- j (DF(g, ) 1, (h, @)
- —j (Jo[DF(g, mI* 1,7 (hy @)y (T*=—J)

=J[DF(g, m)]* -1, (h, )} ]
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Canonical formalism

In particular, if F=[N#+X - #=[((N, X), ®), then
Xr(g, m)=J - [DIN¥+X - F)]* -1
N
=7 > [Do(g, I - ( )

[Do(e, mI* -
showing that the Einstein evolution equations are Hamilton’s equations
on the symplectic manifold T*.# with Hamiltonian density N3¢+ X - #.
Now suppose F;, Fo: T*#l >R are real-valued functions on T*.#

that arise from densities %; and %,, respectively. Then their Poisson
bracket,

{F19 FZ}: T*'ﬂ _)R,
is defined by

{Fly FZ}(g, 77) = Q(XFl(g’ 77)’ XFz(g’ 77'))’

where X is the Hamiltonian vector field for F.

Proposition 4.5

The Poisson bracket {F,, F,} defined above is given by

{Fl’ FZ}(g5 77):' J <[Dg‘0}1(g’ 77')]* -1, [D-n—g;Z(g’ 77')]* ' 1)

- f (D F (g, MI* -1,D,Fslg, m)- 1).

Proof.

{F1, F2}(g, m)= QU(XE, (8, 7), Xk,(8, 7))
=~ [ Xne m, T e Xt )
[ e DF (g M1 1,77 eI [DFslg m* )
- ‘J ([DF(g, m]* -1,0*[DFy(g, m)]* 1)

= [@pFie I 1Dl WD)
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Chapter 4. The initial value problem

- [ {016 w1 1, [D.Filg w1 1)

(e ™)

- [ (DFi( M LDl D)

- [ (D M 1.1D,Falg, m)* 1)

This result may be written in ‘physics notation’ as

LR =

29,39, 37, 5%
8g 6w Om &g/

Now consider the case when F, =[N3 + X - #. Then, from the proof
above,

{F,Not+X - $}(g m)= | ((DF(g, m)]* -1, J[D(N#+X - H)*-1)

.

- [{Ip#s M1 1,50 M1 )

9g
r oA
=| D%(g, 7)-
’ om
oA
rd
=| —%
|y (g ™)
d
=—F(g, 7).
m (g m)

What this means is the following. Let (g(A), (1)) be a solution of the
Einstein evolution equations with lapse and shift N(A), X(A). Let
F(A)=Fg(@), w(A)). Then

dF
—={F,N¥+X - #}.
Sl #

Thus, as expected, a Poisson bracket with the Hamiltonian [ N9t +
X - # generates A -derivatives of F(g(A), w(1)) where (g(A), w(A)) is the
flow with initial data (g(0), 7(0)) and lapse and shift (N(A), X(1)).

Actually, the form of the Einstein equations as they appear in
theorem 4.3 can be extended to include field theories coupled to gravity.
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Canonical formalism

This extended form is at the basis of a covariant formulation of Hamil-
tonian systems (Kuchaf, 19764, b, c; Fischer and Marsden, 1976,
1978a, b). For example, the canonical formulation of the covariant scalar
wave equation (] ¢ =m’¢ +F'(¢) on a spacetime (V,=IxM, ¥g) in
terms of a general lapse and shift is as follows.

Consider the Hamiltonian

(g5 &, )= Bl(m Y + IV +m¢*]+ F(¢)} du(g)

for the scalar field (the background metric is considered as implicitly
given for this example). We can construct a 2-contravariant symmetric
tensor density J obtained by varying #(g; ¢, w4 ) with respect to g:

T = _2[Dg%(g; ¢’ 7Td>)]* ° 1’

and a one-form density #(¢, ) from the relationship

[ % 9@, man = tre, Lo

so that £ (¢, m4)= 7y + d. This condition expresses £ as the conserved
quantity for the coordinate invariance group on M (Fischer and
Marsden, 1972). If we set ® = (¥, #), then the Hamiltonian equations of
motion for ¢ in a general slicing of the spacetime with lapse N and shift
X are

0 ( ¢

('3_){774,

) =7J ° [DD(g; ¢, m)]* - (;)

exactly as for general relativity. A computation shows that this system is
equivalent to the covariant scalar wave equation given above. Here
D®(g; ¢, m,) is the derivative of ® with respect to the scalar field and its
canonical momentum 7.

If we couple the scalar field with gravity by regarding the scalar field
as a source, the equation for the gravitational momentum d#/dA in
theorems 4.1 and 4.3 is altered by the addition of the term 1N, and the
equation for 4g/aA is unchanged. The constraint equations become

%grav(gy 7T)+ %scalar(g; ¢’ 7T¢) = 0 and fgrav(ga 7T)+fscalar(¢s 77'¢) = 0

More generally, if one considers the total Hamiltonian 1=
Hgrav+ Hreras and a total universal flux tensor Fr= Fgrav+ Fricias,. and
= (¥, Fr), and if the non-gravitational fields are non-derivatively
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Chapter 4. The initial value problem

(minimally) coupled to the gravitational fields, the general form of the
coupled equations is

8
i T
A\ ba

A
w

N
- JO[D(I)T(ga 5 ¢A’ WA)]* X ’
¥

q)(g9 us ¢A7 7‘TA)Z ((DT(g’ 5 ¢A’ 7TA)7 q)deg(& w5 (bA’ WA)):- O

Here, ¢ represents all non-gravitational dynamical fields, o™ their
conjugate momenta, and P4, = O represents additional constraints due to
degeneracies in %, and ¢ are the corresponding non-dynamical
(degenerate) fields. These results provide a unified covariant Hamil-
tonian formulation of general relativity coupled to other Lagrangian field
theories and in fact allow the empty space case to be extended formally to
the non-derivative coupling case. The proof that the description of fields
coupled to gravity can be given in the ‘L,-adjoint formulation’ as above is
based on the work of Kuchaft (19764, b, ¢; 1977), who, in his milestone
series of papers, gives in detail the canonical formulation for covariant
field theories, a study initiated by Dirac (see Dirac, 1964, and the
references therein). We refer to Arms (19774, b) for the realization of
this formulation for Yang—Mills fields.

The formalism of this section can be extended to the case where M is
non-compact. This case has many technical problems, but there is one
basic difference: the fall-off rate for asymptotically flat metrics is not fast
enough to allow integration by parts. This has led Regge and Teitelboim
(1974) to conclude that the proper Hamiltonian actually generating the
evolution equations contains an additional surface integral term cor-
responding to the mass. Thus, in the asymptotically flat case, the mass
can be interpreted as the ‘true’ generator of the evolution equation after
the constraints ®=0 are imposed. These ideas are discussed in
Choquet-Bruhat, Fischer and Marsden (1978).

4.2 The constraint manifold

Let Cy =1{(g, m)e T*#|%#(g, m)=0} denote the set of solutions of the
Hamiltonian constraint and let C; = {(g, 7)€ T*#|$(g, w)=—2m'; =0}
denote the set of solutions of the divergence constraint. Thus € =
@5 N €5 < T*M is the constraint set for the vacuum Einstein system.
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The constraint manifold

Two important facts about $s (1 45 are that the constraints are main-
tained by the evolution equations for any choice of lapse function and
shift vector field, and that generically, €9 M €5 is a smooth submanifold
of T* .

From the spacetime point of view, maintenance of the constraints is
equivalent to the contracted Bianchi identities, differential identities
generated by the covariance of the four-dimensional field equations.
This maintenance in time of the constraints is necessary for the consist-
ency of the evolution and constraint equations.

The manifold nature of €3 N €5, while of intrinsic interest, is the key
to understanding the linearization stability of the field equations, as we
shall see.

We begin by noting that the Hamiltonian and momentum functions
are covariant with respect to the infinite-dimensional gauge group
(M) of diffeomorphisms of M. That is, for any n € (M) and (g, 7)<
T*AM,

H(n*g n¥*m)=n*¥(g, m),
and
Fn*g n*m)=n*F(g 7),

and hence

O(n*g, n*m)=n*d(g, 7).

Here n* denotes the usual pull back of tensors.
If n, is a curve in @ (M) with 7, = identity, and we define the vector
field X by

d
(i),
dx ™/ 2o
then differentiating the relations above in A and evaluating at A =0 gives
the infinitesimal version of covariance:

D%(g’ 77') . (Lng LX7T)= LX [%(g’ 77.)];
and

D#(g, m) - (Lxg, Lxm)=Lx[$(g, 7)],
and hence

D®(g, 7) - (Lxg, Lxm)= Lx[®(g, m)].

Similar identities are generated by the gauge invariance of Yang-
Mills fields.
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Chapter 4. The initial value problem

The next theorem computes the rate of change of # and # along a
solution of the evolution equations for a general lapse and shift. The
infinitesimal covariance accounts for the Lie derivatives in the resulting:
formulae.

Theorem 4.6

For an arbitrary lapse N (A) and shift X (1), let (g(1), w(1)) be a solution
of the Einstein evolution equations

i) =¥ ().

Then (#(1), $(A\)={#(g(r), m(A)), £(g(r), w(A))} satisfies the follow-
ing system of equations:

d% 1
and

df _

o = @N)F+LxS.

If, for some Ao in the domain of existence of the solution,
(g()\()), 7T()\())) - (g(), 7T0)€ (gg( N Ca (that iS, (I)(go, ’7T0) = O), then
(g(A), m(A)) € €5 N €5 for all A for which the solution exists.

Remark. It follows (from uniqueness theorems in the next section) that
if a solution of the evolution equations intersects €3 €5, it must lie
wholly within €g 1 €.

Proof. The infinitesimal covariance of 5 is used as follows:

og 677)
oA 9A

d# (g, m)

a_P¥em): (

~Dte,m)- {71006 1" )}

=D3#(g, m) - {J - [(D¥H(g, 7))* - N+(DF(g, m))* - X}
=D3¥(g, m) - {J[(DI¥(g, m))* - N +(~Lxm, Lxg)]}
=D (g, m) - {{D3 (g, m)I* - N}
—D. 5(g, ) - {[DH(g, m)I* - N}+Lx(g, 7).
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The constraint manifold

The first two terms in the expression for 8#/dr involve a rather
tedious computation. The results are

D - [(D.#)* - N]-D,% - [(D )" - N]= _1%5[N25(21T)].

Thus we arrive at
d#

~ _Lsin?
o= N OINTS@m)+ Lxdt

= % div (N2 $)+ Lx.

The evolution equation for #(g, 7) follows from infinitesimal covari-

ance of ®(g, 7) as follows:
Let Y € Z be any vector fidld on M (independent of A). Then

(r24)

st (5)

= [ (v, 96, m-|

v, D(g ) {7 D2 M (3)])

Do =) UeDFE M vh(Y))  0*=-D

(v
(
|
— - [ (D®(g, ) (Lyg, Lym), (N, X
J(LYCI)(g, 7), (N, X)) (infinitesimal covariance of ®)
j NLy3#(g, m)+(X, Ly# (g, 7))
(LyN)3¢ + J {(LyX, ¥) (integration by parts)

Y(dN)%—j (LxY, )

il
-___.v___,t._,

Y(dN)%’+I (Y, Lx%).

Since Y is arbitrary,

df_
G = AN+ LcF, .

In terms of the Poisson brackets introduced in the previous section,
we can rewrite theorem 4.6 as follows.
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Chapter 4. The initial value problem

Theorem 4.7
Given N, Ny M > R, X1, X2: M > TM, and

Fl:j (N]f‘*’Xl 'ﬂ): T*./”_)R

F2=J (N2%+X2 f) T*‘/ﬂ—)R,

then
{F1, Fo} = j (Lx, Na— LiyN1)
+ J (N grad Na— Na grad N1), )+ (L X, 5,
and, in particular,
{ IM%, J N3t = j (N grad N, — N, grad N, $)
(- ]=-fao
(205 5},

The verification that these relations are equivalent to theorem 4.6 is
straightforward. We refer to these relationships as the Dirac canonical
commutation relations.

The following infinitesimal version of theorem 4.1 will be important
in understanding and interpreting a splitting due to Moncrief (1976),
and in understanding the construction leading to the space of gravita-
tional degrees of freedom (section 4.6).

Proposition 4.8
Let (g, m)e €% €5. Then
range {J o [D®(g, 7)]*} < ker D®(g, 7).

Proof. Let (h, w)erange {J o [D®(g, 7)]*}, and (N, X)e C* X Z be such
that (b, @)=J o [D®(g, 7)]* - (N, X). Let (N(A), X(1)) be an arbitrary
lapse and shift such that (N(0), X (0)) = (N, X). Let (g(A), w(A)) be the
solution to the evolution equations with lapse and shift (N (1), X (1))
and with initial data (g, 7)€ €5 N %s. Since ®(g, ) =0, by theorem 4.6,

162



The constraint manifold

d(g(r), w(A)) =0 for all A for which the solution exists. Hence,

ag@d) 377(/\)),

d
0= 1706 7)), =DOE(), 7(h) - (L7

=D®(g(A), m(A))

{JﬂD@@mxwam*(Zgﬁhpo

=Dd(g, 7)- {J o [DD(g, m)]* - (;)}

=Dd®(g, ) (h, ).

Hence, (h, w)e ker D®(g, ). ]
We now examine the manifold structure of the constraint set €5 1 €s.
We introduce the following conditions on (g, 7w)e T* /4 :

Cye: If =0, then g is not flat;
Cs: If for X e (M), Lxg =0 and Lxw =0, then X =0;
Cy: tr 7’ is a constant on M.

We consider the constraints one at a time; first, the Hamiltonian
constraint.

Proposition 4.9

Let (g, w)e G satisfy condition Cy. Then €3 is a C™ submanifold of
T*M in a neighborhood of (g, m) with tangent space

T (o€ =ker DH(g, ).

The proof relies on some facts about elliptic operators and Sobolev
spaces. We briefly recall the relevant facts (see Palais, 1965; Berger and
Ebin, 1969, for proofs).

Let Q be an open bounded region of R with smooth boundary. For
any C” function f from 8" to R™, we define the W**(Q), R™) norm of f
to be

It

we= 3 |D*flL@

O=a=<s

where D” is the total derivative of f of order a and || || ) denotes the
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usual L, norm on Q: |gllc,=(alg(®)” dx)"/?. By definition,
W*P(Q, R™) is the completion of C*(Q, R™)={restrictions of C
functions on R" to Q} with respect to this norm.
We shall shorten W*?(Q), R™) and similar expressions to W*? when
there is little chance of confusion.

" For a compact manifold M with no boundary and a vector bundle E
over M, W*?(E) shall denote the space of all sections of E that are of
class W* in some (and hence every) covering of M by charts. For
real-valued functions we shall just write W*? but for other tensor
bundles we shall make up special notations for W*?(E), such as #*" for
the W*P space of Riemannian metrics.

In case p =2 the spaces W*” are denoted H°. In this case, and only in
this case, do we get Hilbert spaces.

Now suppose we have two vector bundles E and F, over the same
manifold M, and a linear differential operator D of order k,

D:C™(E)~ C*(F).

A linear differential operator of order k is a map such that for given
charts on E and F (and hence for all charts), the operator takes the form
D =3 ,j<k 8a(x)D?, where D% = 6'“|/ax1“‘, ..., 0x," is a partial deriva-
tive in a chart U for M, @ = (ay, ..., a,), || =Y -1 a; and a,(x) is a
linear function from the model space for the fiber E, to the model space
for the fiber F, over x € U. We can regard D as a map between Sobolev
spaces:

D: WP 5> WP,

D has an L,-adjoint D* defined as usual by the equation

(Df, ). = (f, D*)u thats, | (D, @) = [ (£, D%8)

where du is some preferred volume element such as that associated with
a metric: du(g)=[det(g,)]"* dx'Ar---rdx", and (,) is an inner
product on the fibers. This structure is not needed if one uses natural
adjoints.

A differential operator D is elliptic if it has injective (principal)
symbol. For each x in M and for each £€ T*M =the fiber of the
cotangent bundle, the symbol o:(D) is a linear map from the fiber E, to
the fiber F,. In the expression of D in charts, g.(D) is obtained by
substituting the components of £ € THM for the corresponding partial
derivatives in the terms involving the highest-order derivatives. Thus,
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for each coordinate on F,, g:(x) is a homogeneous kth degree poly-
nomial in the components of £ For example, the symbol of the ordinary
Laplacian V?=Y2_, 8°/ax? is 0:(V*)=||¢|".

For elliptic operators we have the following basic splitting theorem.

Fredholm alternative: Theorem 4.10

If either D or D¥ is elliptic, then W**(F)=range D@®ker D*, where the
sum is an L, orthogonal direct sum.

Proof of proposition 4.9. Consider the map #: T*# > C3 ; (g, w)—
(g, w). We shall show that under condition Cg,

D¥#(g, w): Tigm(T*M)=S,%X 85> ToeemCa = Cq

is surjective with splitting kernel so that 9 is a submersion at (g, 7).
Using Sobolev spaces and the implicit function theorem, and then
passing to the C™ case via a regularity argument, it follows that € =
%~'(0) is a smooth submanifold in a neighborhood of (g, 7).

From theorem 4.10 it follows that D(g, 7) is surjective provided
that its L,-adjoint

[D¥(g, m)]*: C*>SaxS,
[DH(g, 7)]* - N ={~NS,(m, 7)+[N Ein (g)—Hess N —g ANT* du(g),
2N[('y —3(tr 7')gl}

is injective and has injective symbol.
The symbol of [DH(g, =)]* is

o [DH (g, mI* = [(—£® £+ gllElP)* du(g), 0]:
R - (TEM @T*M)gym du(g), (TM® T,M )y

for ée TEM. Forse R, £ #0, (—£®¢ + g||¢l)s = 0 implies, by taking the
trace, 2[|£[>s = 0 so s = 0, so that the symbol is injective.

Any N eker [D#(g, m)]* satisfies

(i) —~NS,(m, w)+[N Ein (g)~Hess N—g ANT* du(g)=0

(i) 2N[(7")~3(tr 7")g] =0.

Taking the trace of (ii) gives N(tr #')=0 and so from (ii) again
Nz =0. Thus, from (i),

(iii) N Ein (g)—Hess N—g AN =0.
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From the trace of (iii)
2 AN +3R(g)N =0.

However, from #(g, 7)=0 and N7 =0, it follows that NR(g)=0.
Hence

AN =0
and so N = constant.

If w#0, then N7 =0 implies N =0, since N is constant. Thus
[D(g, w)I* is injective and hence D (g, ) is surjective.

If w=0, then from (iii), N Ein (g)=0 since N is constant and so
N Ric (g)=0. Thus, if N # 0, then Ric (g)=0 and hence g is flat, since
dim M =3. But a flat g and # =0 is ruled out by condition Cy Hence
N =0, and again D3 (g, =) is surjective. |

Proposition 4.11

If (g, m)e €5 ={(g w)|F(g 7)=0} < T* M satisfies condition Cs, then €s is
a smooth submanifold of T*M in a neighborhood of (g, ) with tangent
space

T(e.m€s =ker [DF(g, 7)].

Proof. The adjoint of the derivative of #(g, 7) is given by
[DF(g, m)I* - X = (—Lxm, Lxg).

The symbol is injective (from its injectivity in the second component
alone). The kernel of [D#(g, 7)]* is {X|Lxm =0, Lxg=0} so that
injectivity of [D #(g, m)]* is exactly condition Cs. The result then follows
by the implicit function theorem as in proposition 4.9. |

To show that the intersection € = €5 €5 is a submanifold of T*#,
we need additional restrictions because there may be points at which the
intersection is not transversal. At this point it is necessary to assume that
(g, m) satisfies the condition tr 7' = constant.

Theorem 4.12

Let (g, w)e 6% N €5 satisfy the conditions Cyx, Cs, and C,.. Then the
constraint set € = €5 N €5 is a C* submanifold of T*M in a neighbor-
hood of (g, w) with tangent space

- Tem$=ker DO(g, m)
where © = (¥, #).
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Proof. We want to show D®(g, 7)=(D#(g, 7), D#(g, 7)) is surjective
for (g, m)e € and satisfying the given conditions. The adjoint is

[DP(g, m)]*: CX X > S5%S,,

(N, X)—[D®(g, m)I* - (N, X)=[D¥(g, m)]* - N+[DF(g, m)I* - X,
For ¢ TEM, £ #0, the symbol of this map, o:[D®(g, 7)]*, £ T*M,
may be shown to be injective, as above (see, however, remarks on
various types of ellipticity in Fischer and Marsden, 1975b). Thus it

remains to show that [D®(g, #)]* is injective. Let (N, X)e
ker [D®(g, w)]*. Then, from the formula for [D®(g, 7 )]*, we have

(i) —NS,(m, w)+[N Ein (g)—(Hess N +g AN)]* du(g)~ Lxw =0
and .
(i) 2N[(w")—3(tr 7")g]+Lxg =0.
Taking the trace of (i) and (ii), we get:

(iii) —g%’(g, m)+2(AN)du(g)+tr Lxmr =0

and
(iv) —Ntr#'+2divX=0.

Now trLym=X- -dtra—m- Lxg+(divX)(trs), since Lxm=
(Lx' )®du &)+ 7r’®(d1v X)du(g) (in coordinates, (qu-r)” Xt —

th]Ik 7! X|k +X KT I)

Since # (g, w)=0, (iii) reduces to

v) 2(AN)du(g)+X -dtr m—7 - Lxg + (div X)(tr #)=0.

Using (ii) and (iv) to eliminate Lxg and div X, respectively, in (v) gives
(vi) 2(AN)+X -dtrm'—a' - Lxg+(div X){tr 7')

N
=2 AN +2Nz' - [(a'} = 5(tr 7')g] +o ) m)+ X - dir 71"

=2 AN +2Nn'- 1T’+—1;—,(tr Y+ X -dtra’
=2AN+2N[n' - 7' —itr#'V]+X -dtr o' =0.

‘"Now note that the coefficient of N, namely P(«', )=
' =t 7' =[#'—5(tr 7')g] - [#' —3(tr ')g], is positive-definite.
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Thus, if tr 7' is a constant, (vi) becomes
2AN +2P(w', w')N =0

which implies N =0 unless 7' =0, in which case N = constant. In this
case, from (i), Ein (g)=0 and so Ric (g)=0, i.e., g is flat since dim M =
3. However, the case (gr, 0), where gg is flat, is excluded by condition
Cg. Thus, 7' #0 and N =0. Then, by (i) and (ii), Lxg =0 and Lx7 =0,
which, by condition C8, implies X =0. Thus (N, X)=(0,0) and so
[DP(g, m)]* is injective, under conditions Cy, Cs, and C,. The result of
the theorem then follows by the implicit function theorem. |

Remark. That one must impose the condition tr 7' is a constant to show
that the intersection €3 [ €5 is a manifold is an annoying feature of the
analysis. One might suspect that under conditions Cy and C; alone, the
system (i) and (ii) is injective. The difficulty is that in the system, say (vi)
and (ii) for (N, X), the X - d tr 7’ coupling term seems to be sufficient to
prevent one from showing uniqueness for this system. The results of
Moncrief, discussed in section 4.5, will shed light on this point.

In Choquet-Bruhat, Fischer and Marsden (1978), and Marsden and
Tipler (1979) the existence of hypersurfaces with tr 7’ equal to a constant
is discussed. Thus these preferred hypersurfaces will be the place to check
conditions Cs and Cs.

4.3 The abstract Canchy problem and hyperbolic equations

This section summarizes the general theory for hyperbolic initial-value
problems that we shall need for relativity. The complete proofs are
technical and lengthy, so only the ideas will be given. The papers of
Kato (1975a, b, 1977) and Hughes, Kato and Marsden (1977) can be
consulted for details. The present abstract approach is preferred since it
gives as special cases both first-order symmetric and second-order
hyperbolic, or combinations of these systems. Moreover, it yields the
sharpest known results with regard to differentiability.

We shall begin with the linear case, then treat the nonlinear. We give
a result on differentiability of the time ¢ map for later use and then
explain how the results apply to hyperbolic systems.

It is necessary to assume the reader is familiar with linear semigroup
theory; see, for example, Hille and Phillips (1967), Yosida (1974), or
Marsden and Hughes (1978).
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The abstract Cauchy problem and hyperbolic equations

If X is a Banach space, G(X, M, 8) denotes the set of generators A of
C, semigroups e “* = U(f) on X satisfying

lU@|<Me®, t=0;

i.e., by the Hille-Yosida theorem, A — A is one-to-one and onto X and

A —AY "= n=1,2,...,A>8.

_M_
(a-8)
If M =1, we say A is quasi-accretive or U (t) is quasi-contractive. This is
the class of linear semigroups of importance to us. We recall that for
@€ D(A), the domain of A, U(t)¢ = ¢(¢) lies in D(A) as well and
satisfies the evolution equation

L o)=A00) @D

where ¢(+) is regarded as a map of [0,) to X for purposes of
computing the time derivative.

Let X, Y be Banach spaces, Y = X with the inclusion continuous and
dense. Let U(z, s5) be a family of bounded operators on X defined for
0=s=t=T;here [0, T]is a conveniently chosen time interval; T could
be arbitrarily large. Let A(#) be a family of linear generators on X,
YcD(A(t), 0t<T. We call U(t,s) a family of (strong) evolution
operators for A if

(i) U(s,s)=1and (¢, s)— U(t, s) is strongly continuous in X;

) U@, s)U@,nN=U@r),0srss=st=<T;

(iii) U(s, s) is a bounded operator of Y to Y and is strongly continu-
ous in (¢, 5);

@iv) 3/0)U(t, s)e =AU, 5)p, ¢ € Y (forward differential equa-
tion) and each side is strongly continuous in (¢, s) with values in
B(Y, X) (the bounded operators from Y to X) and a/a¢ is taken
in the X -norm.

If we differentiate (ii) with respect to s at s=r, and use (iv), we

formally get the backwards differential equation:

S UG s)e=-Ult DA

for ¢ € Y. If we write (iv) as an integral equation in time, this is easy to
prove; write

Ut s)p= ¢+JtA(T)U(T, s)p dr
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Chapter 4. The initial value problem
and use the identity

1

RV s+he—U s)e]

e—U(s+h)e

- ]‘+%[U(s+h, )¢ — o]

= U(t,s+h)[

s+h
—;1!—‘[ A@@)YU(r, s+ h)p dr.

A family A(t)e G(X, M, B) (for M, B fixed) is called stable if for any
siz0and 0=sty< .- s <T,

exp [skA ()] exp [sk-1A(f-1)] - . . exp [s1A(11)]
sMexp[B(si+ ... +s)]

or, equivalently,

IA=A@)" - A -A@) <

M \sg
(A-B) '

If A(t)e G(X, 1, B), then A(¢) is clearly stable. If we let X, denote X
with a new norm || ||, depending on ¢ in an exponential fashion:

lelle<llells e, s, ze[0, T

and if A(t)e G(X,, 1, B), then A(¢) is stable in X, with M =e*>™; see
Kato (1970, Proposition 3.4). The same reference, Proposition 3.5,
shows that a bounded perturbation of a stable family is stable.

In the following theorem, LZ([0,T]; B(Y,X)) denotes the
(equivalence class of) strongly measurable essentially bounded functions
from [0, T] to B(Y, X) and Lip,([0, T]; B(Y, X)) denotes the strong
indefinite integrals of functions in Ly ([0, T); B(Y, X)).

Theorem 4.13 (Kato, 1973)

Assume
(i) A(t) is a stable family of generators in X, 0<t<T;
(ii) Y < X, with continuous dense inclusion and D(A)> Y,
(iil) there is a family S(t): Y - X of isomorphisms (onto) such that
SMA@®S) ' =A@)+B(),
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where B(t)e B(X), a bounded operator on X, and
(a) t—8(t) lies in Lip.([0, T]; B(Y, X))
(b) t—>B(t) liesin LY ([0, T]; B(X));
(iv) t— A(t)e B(Y, X) is norm continuous.
Then there is a unique family of strong evolution operators for A.

See Kato (1973) for the proof.

The case where the domain of A(#) is constant in time is much
simpler. Here we assume D(A(#))=Y and that A eLip,(0, T];
B(Y, X)). Then (iii) will hold with B =0 and

Sty=A—-A(t), A>8.

However, for the hyperbolic problems we wish to consider, the domains
need not be constant. The constant domain case was the subject of the
original work of Kato (1966); see also Yosida (1974).

The inhomogeneous problem

H_ A+, O)=p

ar
can be treated by a clever trick of Kato (1977). Namely, we suspend the
equation on X X R and consider the equivalent homogeneous problem

9
ot

<Z) - A(’)(Z)’ u(0)= ¢, k(0)=1

where

A® )

Am:( 0o 0

Then the theorem above may be applied to A.

In many nonlinear problems it is often convenient to consider asso-
ciated (time-dependent) linear Cauchy problems and for these, the
theorem above is applicable.

To illustrate how the theorem applies we consider the two cases that
mainly concern us, namely first-order symmetric hyperbolic and second-
order hyperbolic systems. We shall treat these on ™, but due to the
hyperbolicity of the equations, the results can be localized and therefore
applied to compact manifolds as well; see Hawking and Ellis (1973).

We first consider first-order symmetric hyperbolic systems of
Friedrichs (1954); see also Fischer and Marsden (1972b) and Kato
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Chapter 4. The initial value problem
(1975a, b, 1977). The form is

ou m ou .
Z= % g, x)—+ .
ao(t, x) ot ]';1 a; (t’ x)ax] a(t! x)u9 (4 2)

N
where u(t, x)e R", a;, a are real. We assume
(i) there are constant matrices a;, a* such that

ai—ay,a—aeC([0, T], H®™NL™(0, T], H*(R™)),
j=0,1,...,m

ao—ay €Lip ([0, T, H* ' (R™)).

Here H°(R™) is the usual Sobolev space on RB™ (with range
unspecified) and s > (m/2)+ 1.

(ii) a; are symmetric matrices;

(iii) ao(t, x)=cI for some ¢ > 0.

Theorem 4.14

Under these conditions, the hypotheses of theorem 4.13 are satisfied with
X=L*R™)=H(R™)
Y=H R™), 1<s'<s
S(ty=(1-4)y"
& 2
AO=aolt, )| £ a6 )5+at )
i=1 ox
(the closure of this operator on Cy ), i.e., (4.2) generates a strong evolution
system in L* which maps H® to H* (regularity).

Warning. The domain of A(¢) need not be H'(R™); e.g., the a; may

vanish.
The idea of the proof is as follows. If we put on X the energy norm

lolf = _lao(t x)e0)]- o(x) d,

. we find that

ANeG(X, 1,B)
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with

1m aa,-
=supla(, x)~5 ¥ —(,x),
B sup a(t, x) 2leax,( x)

which is finite by the Sobolev inequalities. The key idea here is the
estimate

Ix —A® =

(- B)
which, by the Schwarz inequality, is implied by

I-AW®le, @)= -Blel

The latter is readily proved using integration by parts and the symmetry
of a;. The stability of A(f) results from the fact that the norms ||,
depend exponentially on ¢. The hardest part is to prove that

B()=[S, A()]S!

is a bounded operator in X, where [,] is the commutator. One writes
the commutator out explicitly; the key estimate boils down to an esti-
mate on the commutator
[3¢]
Tox' T

The required estimates on this commutator use a lengthy but relatively
straightforward series of Sobolev-type estimates. Details may be found
in Kato (1975b) for s’ = 1, the general case being similar.

Remark. Results of this type for (4.2) already appear in early work of
Friedrichs (1954) and Courant and Hilbert (1962). However, sharp
differentiability hypotheses, which are crucial for nonlinear problems,
were never clearly spelled out. An intermediate attempt was given in
Fischer and Marsden (19725b) and the formulation was then sharpened
and clarified by Kato (1975a). The present unified scheme, suggested by
Hughes, Kato, and Marsden (1977) is due to Kato.
Next, we consider second-order hyperbolic systems. The form is

2 2
ool x)g S s x) 2 z aoilt XY= o u e aols x)

ij=1
m u )

+ Y ait, x)—=+a(t, x)u 4.3)
i=1 ox
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Chapter 4. The initial value problem
where, again, u(t, x)e RN, Qag, Ao, a are N X N matrix functions and we
assume: s >3m +1 and
(i) there are constant matrices aqp, aa, a” such that
Gup — aug, a—a”eLip ([0, T}; H(R™)= L*([0, T|; H*(R™));

(ii) a.p is symmetric;
(iii) aoo(t, x)=cI for some ¢ > 0;
(iv) strong ellipticity; there is an & >0 such that

L at 0ol £ &)

111

(a matrix inequality) for all €= (&5, ..., &n)ER™.

Theorem 4.15
Under these conditions, the hypotheses of theorem 4.13 are satisfied with
X=H'(R™)xH"(R™),
Y=H""'(R™xH R™), 1<s'<s,
S=(1-AF"x(1-Ay",
0 I
7+ a,—é—+a] a&}[Z Y ao,;g;+ao]

2

A()= . [Z -

ox’

(the closure of this operator on C3 ), i.e., (4.3) generates a strong evolution
system in X which maps Yto Y.

Here we have written (4.3) in the usual way as a system in (u, i), first

order in time.
One uses the norm

o =] [ £ anenh- Fvco- o+ aumtex)e - o] s
ox

where the constant c¢ is chosen sufficiently large. By Gardings inequality,
this gives an equivalent norm on X (this uses strong ellipticity). It is then
straightforward to get the estimate

Iix ~AESH =

1
(A-8)
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by showing, as before, that ,
A —AO]w, u) = —B)ully.

One can also show, as in Yosida (1974) that A — A(¢) is one-to-one and
onto X, so A(t)e G(X, 1, B), and, as above, || - ||, varies exponentially
with £, so A(t) is a stable family.

Again, the proof of boundedness of B(t) requires estimates on com-
mutators; for details see Hughes, Kato and Marsden (1977).

For later use in the nonlinear problem (and in lemma 4.22), it is
crucial to have sharp differentiability assumptions on the coefficients as
stated here.

Remark. Since the abstract theorem includes both (4.2) and (4.3) as
special cases, it is clear that coupled systems of such equations can be
handled in a similar way. This is important for certain types of matter
fields coupled to the gravitational field.

Now we turn to the nonlinear problem. As above, let X and Y be
Banach spaces, with Y densely and continuously included in X. Let
W<cY be open, let T>0 and let G:[0, T|xW~>X be a given
mapping. A nonlinear evolution equation has the form

u(t)= G(t, u(t)), whereu =%—:. 4.4)
If s [0, T] and &€ W are given, a solution curve (or integral curve) of
G with value ¢ at s is a map u(- )e C°(s, T], W)~ ([s, T], X) such that
(4.4)hold on [s, T] and u(s)= ¢.

If these solution curves exist and are unique for ¢ in an open set
U < W, we can define evolution operators F,;: U - W that map u(s)=
¢ to u(t). We say (4.4) is well posed (or is Cauchy stable) if F,, is
continuous (in the Y-topology on U and W) for each ¢, s satisfying
Oss<st<T. We remark that joint continuity of F,,(¢) in (¢, s, @)
follows under general hypotheses (Chernoff and Marsden, 1974).
Furthermore, if one has well-posedness for short time intervals, it is easy
to obtain it for the maximally extended flow.

Well-posedness can be difficult to establish in specific examples,
especially for ‘hyperbolic’ ones. The continuity of F,; from Y to Y
cannot in general be replaced by stronger smoothness conditions such as
Lipschitz or even Holder continuity; a simple example showing this,
namely 4 +uu, =0in Y = H*"', X = H* on R, is given in Kato (1975a).
A discussion of these smoothness questions is given below.
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Chapter 4. The initial value problem

The most thoroughly studied nonlinear evolution equations are those
giving rise to nonlinear contraction semigroups generated by monotone
operators (Brezis, 1973). These sometimes have evolution operators
defined on all of X. This is not typical of hyperbolic problems, where F,
may be defined only in Y, may be continuous from Y to Y, be differen-
tiable from Y to X, and be Y-locally Lipschitz from X to X, without
being X -locally Lipschitz from X to X or Y-locally Lipschitz from Y to
Y, as is shown by the example above.

Specializing (4.4), we shall consider the quasi-linear abstract Cauchy
problem

G AGwu+ftu), 0<t<T, u(0)=¢ (4.5)

where u takes values in X and A (¢, ©)is an (unbounded) linear operator
depending on the unknown u in a nonlinear fashion. We include f for
completeness, although it can be omitted by using Kato’s suspension
trick mentioned above. -

Here are our assumptions.

We start from four (real) Banach spaces

YeXcZ'cZ,

with all the spaces reflexive and separable and the inclusions continuous
and dense. We assume that

(Z') Z' is an interpolation space between Y and Z; thus if Ue
B(Y)NB(Z), then U € B(Z') with [|U||z-< ¢ max {|U|ly, |Ullz};
B(Y') denotes bounded operatorson Y.

Let N(Z) be the set of all norms in Z equivalent to the given one || ||~
Then N(Z) is a metric space with the distance function

d(l lle Il Il,)=1log max {oiggZIIZIlu/llZIIw 0iuI:ZIIZIIV/HZIIM}-

We now introduce four functions, A, N, S, and f on [0, T]X W, where
T>0 and W is an open set in Y, with the following properties:
Foralls, ¢,..., [0, T]for all w, w', ... € W, there is a real number
B and there are positive numbers An, uns . .. such that the following
conditions hold.
N) N(t, w)e N(Z), with
dN @ w), |l lz)y<Am
AN (', w'), N(t, w) < un(t' —t|+]w' = wlx).
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(S) S(t, w) is an isomorphism of Y onto Z, with
IS wlly.z<As, ISGw) zy=<al
IS¢, w)—S(t willv.z < us(t' —t|+]w' - wllx).

(A1) A(t, w)e G(Zngwy 1, B), where Zn.w) denotes the Banach
space Z with norm N(t, w). This means that A(t, w) is a C,-
generator in Z such that [le™®"z||<e®|z| for all +=0 and
zelZ. ’

(A2) S(t, w)A(r, w)S(t, w) ' = A(t, w)+B(t, w), where
B(t, w)e B(Z), |B(t, w)lz=<As.

(A3) A(t, w)e B(Y, X), with |A(t, w)ly.x <Aa and
lA@ W)~ A wilv.z<wallw' —wlz
and with t— A(t, w)e B(Y, Z) continuous in norm.

(1) fwieY, lf@e willy<rp lf@e w)—ft wllz<udw'—wlz,
and ¢— f(¢, w)€ Z is continuous.

Remarks. (i) If N(t, w)=const=|| ||z, condition (N) is redundant. If
S(t, w)=const=S, condition (S) is trivial. If both are assumed, and
X =2Z'=Z, we have the case of Kato (19755).

(ii) In most applications we can choose Z'=Z and/or Z' = X.

(ii)) The paper of Hughes, Kato and Marsden (1977) had an additional
condition (A4) which was then shown to be redundant in Kato (1977).

Theorem 4.16

Let (Z'), (N), (S), (A1) to (A3), and (f1) be satisfied. Then there are
positive constants p' and T'<T such that if ¢ € Y with | —ydlly <p’,
then (4.5) has a unique solution u on [0, T'] with

ueC’(0, T'); W)yn C'(o, T'); X).

Here p' depends only on An, As, As, and R =dist (yo, Y\W), while T’
may depend on all the constants 8, An, iy, . . . and R. When ¢ varies in
Y subject to || — yolly <p’, the map ¢ —> u(¢) is Lipschitz continuous in
the Z'-norm, uniformly in ¢ [0, T').
To establish well-posedness, we have to strengthen some of the

assumptions. We assume the following conditions:

B) B, w)—B(t, wlz < psllw'—wly.

(f2) ”f(t’ W')—f(t, W)” Y= /J'If"w’ - w“Y-

177



Chapter 4. The initial value problem

Theorem 4.17

Let (Z)), (N), (S), (A1) to (A3), (B), (1), and (£2) be satisfied, where.
S(t, w) is assumed to be independent of w. Then there is a positive constant
T'< T’ such that when ¢ varies in Y subject to || — yolly <p', the map
&> u(t) given by theorem 4.16 is continuous in the Y -norm, uniformly in
tel0, T"].

Remark. As in Kato (1975b), one can prove a similar continuity
theorem when not only the initial value ¢ but also the functions N, A,
and f are varied, i.e., the solution is ‘stable’ when the equations them-
selves are varied. It appears, on the other hand, that the variation of § is
rather difficult to handle.

The theorem thus guarantees the existence of (locally defined) maps

Fs:Y->Y

which are continuous in all variables. We have

F,,=1d
E,S OFS,’ =Ft,r

as in the linear case. We speak of F, as the evolution operators generated
by the equation (4.5). The general notion of evolution operators for (4.4)
is defined in an analogous manner.

The idea behind the proof of theorem 4.17 is to fix a curve v(¢),
v(0)=¢ in Y and to let u(¢) be the solution of the ‘frozen coefficient
problem’

u=A(,v)u+fto), u@0=¢

which is guaranteed by theorem 4.13. This defines a map ®: v—u and
we look for a fixed point of ®. In a suitable function space and for T"
sufficiently small, ® is in fact a contraction, so has a unique fixed point.

However, it is not so simple to prove that # depends continuously on
¢ and detailed estimates from the linear theory are needed. The proof
more or less has to be delicate since the dependence on ¢ is not locally
Lipschitz in general. For details of these proofs, we refer to Kato
(1975b, 1977) and Hughes, Kato and Marsden (1977).

The continuous dependence of the solution on ¢ leads us naturally to
investigate if it is smooth in any sense. This is important for studying the
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relationship between nonlinear theories and their linearization. The
following results are taken from some unpublished notes of Dorroh and
Marsden.

First, we give the notion of differentiability appropriate for the
generator G of (4.4). Let X and Y be Banach spaces with YcX
continuously and densely included. Let U = Y be open and f: U - X be
a given mapping. We say f is a-differentiable if for each x € U there is a
bounded linear operator Df(x): Y - X such that

Ifx +h)—fx)—Df(x) - hllx

0
Il

as ||lhlly = 0. If f is a-differentiable and x+~>Df(x)e B(Y, X) is norm
continuous, we call f C' a-differentiable. Notice that this is stronger than
C' in the Fréchet sense. If f is a-differentiable and

(e +h)—f(x)=Df(x) - hllx/lhllx

is uniformly bounded for x and x + 4 in some T neighborhood of each
point, we say that f is locally uniformly a-differentiable.

Most concrete examples can be checked using the following prop-
osition.

Proposition 4.18

Suppose f: U <Y - X is of class C*, and locally in the Y topology

1D, R
Al

is bounded. Then f is locally uniformly C' a-differentiable.

This follows easily from the identity
1 .1
fx+h)—f(x)—-Df(x) - h= I j D*f(x +sth)(h, h) ds dt.
0 Y0

Next, we turn to the appropriate notion for the evolution operators.
A map g: U< Y > X is called B-differentiable if it is a-differentiable
and Dg(x), for each x € U, extends to a bounded operator X to X.
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Chapter 4. The initial value problem

B-differentiable maps obey a chain rule. For example, if g;: Y - Y,
g2 Y > Y and each is B-differentiable (as maps of Y to X ) and are
continuous from Y to Y, then g; - g, is B-differentiable with, of course, '

D(gz ° g1)(x)=Dgo[g1(x)] ° Dg1(x).

The proof of this fact is routine. In particular, one can apply the chain
rule to F,, o F,, = F,, if each F, is B-differentiable. Differentiating this
in s at s = r gives the backwards equation for x€ Y:

9 F.(x)=-DF,(x)- G(x).
as .

Then differentiation in r at r = s gives
DF,(x)- G(x)=G[F.s(x)],

the flow invariance of the generator.

We leave it to the reader to supply rigorous proofs of these claims
following the hint from the linear case.

For the following theorem we assume these hypotheses: Y =X is
continuously and densely included and F, is a continuous evolution
system on an open subset D < Y and the X -infinitesimal generator G(t)
of F,; has domaint D. Also, we assume:

(H,) G(t): D<= Y~ X is locally uniformly C' a-differentiable. Its
derivative is denoted D,G(t,x) and is assumed strongly
continuous in £.

(Hp) For xeD, s=0, let Ty, be the lifetime of x beyond s, ie.,
sup {t=s5|F,,(x) is defined}. Assume there is a strongly
continuous linear evolution system {U™*(r,0):0so<7<T,,}
in X whose X-infinitesimal generator is an extension of
{D,G(t, F,;x)e B(Y, X); 0st<T,};ie,ifyey,

9

UM (@0)y|  =DiGn Fu®)) - y.
T =0

Theorem 4.19 (J. R. Dorroh)
Under the hypotheses above, F,; is B-differentiable at x and in fact,
DF, (x)= U,s(t, s).

f As in the linear case, G(f) may have an extension to a larger domain, but we are only
interested in G(¢) on D here.
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Proof. Define ¢,(x, y)= ¢(t, x, y) by
G(t’ x)— G(t’ y)szG(t’ }’) : (x —Y)+”x_y”X‘Pt(x’ y)

(or zero if x=y) and notice that by local uniformity, |l¢(4 x, y)|lx is
uniformly bounded if x and y are Y-close. By joint continuity of F;(x),
for 0<t< T, |le(t F.s, F.sx)||x is bounded for 0<s<T if ||x —y|ly is
sufficiently small.

By construction, we have the equation

C Fsl)= GIFu ()], 0<s<t<T,,xeD.
Let
W(t, s)=E,s(y)_E,s(x)
so that

aw(t, s)

o = O Fu(y) = G(t, Fis(x)

=D.G(t, Fsx)w(t, ) +[w(t, )lxe(t, Fioy, Fiox).

Since D,G(t, F,;x)- w(t, s) is continuous in ¢, s with values in X, and
writing U = U, , we have the backwards differential equation:

i’%_ U(t, 0)D:G (0, Fyy(x)) - w(or, 5)

B%U(t, (o, )= Ut o)
= U(t’ o-) ’ “w(o-’ S)HX¢(O-’ F(T,S(y)’ Fo',s(x))'

Hence, integrating from o =s to o =1,
w(t.5)=Ult )y =0+ | Ul olw(@: )xe(o, Fosly), Frs() do

Let “U(Ta ‘T)”X,X =M, and ”go[o; Fo.(y), FO:S(X)]”X sSM;,0ss<osr
< T. Thus, by Gronwall’s inequality,
w(t, $)ll. <M, eMi™ Tlly — xllx = Msly — x||x.
In other words,
1Es ()= Fos ()= U6, s )y —x)lx
ly —xllx

From the bounded convergence theorem, we conclude that F,, is 8-
differentiable at x and DF,;(x)= U (4, s). (¢(, F,s(y), Fis(x)) is strongly
measurable in s since ¢ (x, y) is continuous for x # y.) |

$M1M3 J. “(0 (0', Fo’,s(y ), Fo’,s(x ))X do.

s
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Chapter 4. The initial value problem

This completes our description of the abstract nonlinear theory. Next,
we state how the nonlinear existence and uniqueness theorem applies to
quasi-linear equations of types (4.2) and (4.3). '

First, we consider the first-order case:

ou m Ju
aolt, x, u)—=Y, a;j(t, x,u)—+a(t x, u). (4.6)
a =1 ox

We assume

(i) s>3m+1 and a., a are of class C**! in the variables ¢, x, u
(possibly locally defined in u);

(ii) the linear conditions (i), (i), (iii) of theorem 4.14 hold locally
uniformly in u.

Theorem 4.20

Under these conditions, theorems 4.16, 4.17 and 4.19 hold for (4.6), i.e.,
(4.6) generates a unique local evolution system Fsin X = H SSHR™) with
Y=H'R™) and Z=Z'=L*(R™); F., maps Y to Y continuously and,
for t, s fixed, is B-differentiable as a map of Y to X.

The full details of the proof require a lengthy discussion of Sobolev
space estimates to verify the hypotheses, but it is relatively straight-
forward. See Kato (19754, b) for details. We note that one may also
choose X =Z =Z'=L*R™), Y = H*(R™), but the choices in theorem
4.20 are appropriate for theorem 4.19. Again, length and their technical
nature preclude giving details of how theorem 4.19 applies to (4.6). It is
again a semi-routine Sobolev space exercise.
For the second-order case, we proceed as follows. Consider

2 2

I u m du
aoolt, s, u, Vu)—== a;(t, x, u, Vu)———
ool Yo7 = L, il Yoo
m ou
+2 ¥ aoi(t, x, u,Vu) =+a(t, x, u, Vu). “4.7)
j=1 ot ox
Here
ou du ou
Vu=(—1,.. .,—,;,—).
ax dx ot
We assume

(i) a.g, a are of class C**'in all variables (possibly locally defined in
u);
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(ii) the linear conditions (i), (ii), (iii), (iv) of theorem 4.15 hold locally
uniformly in u.

Theorem 4.21
() If s >3m + 1, theorems 4.16, 4.17 and 4.19 hold for (4.7) with
X=H'R™)XH " (R™),
Z=Z'=H'R™)xH"R™),
Y=H"'R™)XH*(R™),

i.e., (4.7) generates a unique local evolution system F,;: Y Y which is
continuous and for fixed t, s is B-differentiable from Y to X.
(ii) If aus do not depend on Vu, then the same conclusions hold with
1
s>5m. '

For details of the proof, see Hughes, Kato and Marsden (1977).

As we shall see in the next section, case (ii) is the case relevant for
general relativity. Note that if m =3, solutions (u, #) will lie in Y =
H'XH"™" where r>2.5. For example, in this case, (4.7) gives a well-
posed problem for u in H>. (Notice that u is only C' in this case and
need not be C>.) For hyperbolic systems, theorems 4.20 and 4.21 are
the sharpest known results, although these problems have been con-
sidered by a large number of authors,T such as Choquet-Bruhat (1952,
1962), Courant-Hilbert (1962), Dionne (1962), Frankl (1937),
Krzyzanski and Schauder (1934), Leray (1953), Lichnerowicz (1967),
Lions (1969), Petrovskii (1937), Schauder (1935), and Sobolev (1939).

4.4 The Cauchy proeblem for relativity

We shall begin with the vacuum problem and then go on to consider
gravity coupled to other fields. We begin by reviewing the classic work
of Lichnerowicz (1944) and Choquet-Bruhat (1952) and the intro-
duction of harmonic coordinates. We shall be brief since this is
described in Choquet-Bruhat (1962) and in Hawking and Ellis (1973).
Our main result is that for H® spacetimes with s>2.5, there is a
satisfactory existence theorem 4.23 and uniqueness theorem 4.27 for

t For relativity, some partial results in H> were indicated by Hawking and Ellis (1973, p.
251).
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Chapter 4. The initial value problem

the Cauchy problem. These results are the sharpest presently known for
the Cauchy problem

We work on ®* for simplicity and because of the hyperbolicity, with -
no essential loss of generality. For empty space relativity, one searches
for a Lorentz metric g,. (%, xi) whose Ricci curvature R, is zero; i.e.,
guv (5, x') must satisfy the system

agp.v 8 g,w >=_1 oB azg,,,,, _1 B azgaB

R V<t7 xi’ ' % b
" Bur 5% ax*axP 2% ax*ax® 2° ox*ax”

1 7] azgﬂv 1 af azgﬂtu
g B " + g B v
2% ax®oax* 27 ox” ox

08
+HI—'-V(gH-V7 ";)
ax
=0,

o

where H,., (84, 98.,/3x*) is a rational combination of g, and 9g,../ox
with denominator det g,., # 0. Note that the contravariant tensor g*" is a
rational combination of the g,, with denominator det g,.., # 0.

Let G..=R,. 2gu.,R be the Einstein tensor, where R =g BRaB is
the scalar curvature. Then, as is well known, G°, contains only first-
order time derivatives of g,,. Thus G°,.(0, x ') can be computed from the
Cauchy data g,.(0,x') and 0g..(0, x')/ot alone, and therefore
G°.(0, x')=0 is a necessary condition on the Cauchy data in order that
a spacetime g, (¢, x') have the given Cauchy data and satisfy G, =0,
which is equivalent to R, = 0.

The existence part of the Cauchy problem for the system R,., = Oisas
follows.

Let (8., (x"), k. (x") be Cauchy data of class (H S(Q), H7'(QY), s =3,
such that éon(x )=0. Let Qo be a proper subdomain, Qo< Q. Find an
& >0 and a spacetime g,., (¢, X H, [t <e, (x')e Qo= Q such that

() gu(tx )tsH jointly in @t x )e(—s &) Ldo;
(i) (Zur (0, x°), 381 (0, x°)/8) = (£ (x"), K ()3
(iii) g..(t, x°) has zero Ricci curvature.

The system R,,=0 is a quasi-linear system of ten second-order
partial differential equations for which the highest-order terms involve
mixing of the components of the system. As it stands, there are no
known theorems about partial differential equations which can be
applied to resolve the Cauchy problem. However, as was first noted by
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The Cauchy problem for relativity

Lanczos (1922) (and in fact by Einstein himself (1916b) for the
linearized equations) the Ricci tensor simplifies considerably in
harmonic coordinates, i.e., in a coordinate system for which the
contracted Cristoffel symbols vanish, I'* = g*T%; = 0. In fact, an alge-
braic computation shows that

1 op 98 1 3T 1 oI

R v = X P ~ a__—y+_ va—_+H v
. 28 ax® ox®  2Bregxy T o8y Tk

so that in a coordinate system for which I'* =0,

l af azgl-ﬂ’

R, =R =-
# # 2°  ax” ax®

+H,,.

The operator —3g°%(9°/6x® 3x®) operates the same way on each
component of the system g,, so that there is no mixing in the highest-
order derivatives. Thus the normalized system R(h) =0 is considerably
simpler than the full system. In fact, the system R(h) =0 has only simple
characteristics so that Rﬂ‘,} =0 is a strictly hyperbolic system.

The importance of the use of harmonic coordinates and of the system
R‘h) =0 is based on the fact that it is sufficient to solve the Cauchy
problem for Rff,? =0; this remarkable fact, discovered by Choquet-
Bruhat (1952), is based on the observation that the condition k)=
g8 (x"Ie(x)= 0 is propagated off the hypersurface # =0 for solutions
8 Of Rﬂ‘,? 0. This is established in the next lemma.

Lemma 4.22

Let (8..(x), K. (x")) be of Sobolev class (H, H* ") on Q, s>3in+1,
n =3, and suppose that (§,.,(x"), k,w(x ")) satisfies
G T“("=o,
(i) Go(x)=o0.
If g.(t, x), lt|<e, xeQq, Qo a proper subdomain, Qo Q, is an H*-
solution of
R =—1g"8(5%g,./0x* 9x®)+ H,, =0,

(8 (0, %), 980 (0, X)/38) = (8s (x"), Kun (x7)),
then T*(t, x')=0 for |t| <&, x € Q.
Proof. Let g,.(t, x') satisfy (i), (i), and R®) = 0. Then a straightforward
computation shows that I*(f,x")=g*?(t, x )[* s(t, x')  satisfies
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aT™(0, x')/at = 0. From G**,, =0 and R%) = 0, T is shown to satisfy the
system of linear equations
2
ag TV
ax” ax®

0.

g wr ag“,)a_r“_

At 2
This linear system is of the form (4.3) for which a uniqueness and
existence theorem holds. Thus, by theorem 4.15, T'“(0, x')=0 and
aT*(0, x")/at = 0 imply T* (¢, x)=0. [ ]

According to the lemma, an H*-solution of Rf{',? = (0 with prescribed
Cauchy data is also a solution of. R, = 0 (since T*(t, x)=0= Rﬁ’,f =
R,.), provided that the Cauchy data satisfies (i) f* =0 and (ii) G°, =0.
As mentioned above, (ii) is a necessary condition on the Cauchy data for
a solution g,.,(t, x) to satisfy R,., =0. If (i) is not satisfied, then a set of
Cauchy data can be found whose evolution under R 2'3 =0 leads to an
H’-spacetime which, by an H s*1_coordinate transformation, gives rise
to a spacetime with the original Cauchy data (see theorem 4.26 below and
Fischer and Marsden, 1972b).

From theorem 4.21 we conclude that Cauchy data of class (H®, H* ™)
has an H°-time evolution for s > 2.5 and Cauchy stability holds.

We can also prove this result by reducing the strictly hyperbolic
system Rﬁ‘,} =0 to a quasi-linear symmetric hyperbolic first-order
system. This will be outlined below.

Theorem 4.23

Let Q) be an open bounded domain in R? with Qo a proper subdomain,
Qo Q, and let ($,,(x), K (x)), (x)eQ, O<pu, v<3, 1<i<3, be of
Sobolev class (H*, H*™"), s >2.5. Suppose that (x)=0 and G° . (x)=
0. Then there exists an € >0 and a unique Lorentz metric g,..(t, x), |t| <&,
(x"Ye Qo such that
() 2. (2, x') is jointly of class H';

(i) R (4, x")=0;

(i) (€ur(0, '), 98us (0, x7)/80) = (G (x), Ko (x")).
From lemma 4.22, this g,.(t, x') also satisfies R,..(t, x")=0. Moreover,
8uv(t, x') depends continuously on (8. (x"), kuu(x?)) in the (H, H ™
topology. If G (x'), K. (x") is of class (C™, C7) on Q, then g,..(t, x')is
C* for all t for which the solution exists.

See below for a discussion of solutions on all of R> with spatial
asymptotic conditions.
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The Cauchy problem for relativity

We have already indicated how this follows directly from theorem -
4.21 and lemma 4.22. To give another proof using theorem 4.20, we
reduce the system Rﬂ‘,? =0 to a first-order system by introducing the ten
new unknowns k., =9dg,./dt and the thirty new unknowns g,,;=
gu.,/ox' and considering the quasi-linear first-order system of fifty

equations: ] 3t = K,
;i ag ,_,,') ak v
=) = g¥ 2 4.8
& ( ot AP (4.8)

_goo% =2 OI%*‘ gu%_ 2HIAV(gH«V’ Buv,is kuv)-

We are considering H,,, as a polynomial in g,,,; and k,,, and rational in
8. With denominator det g, # 0. At first, we extend our initial data to
all of R>, say, to equal the Minkowski metric outside a compact set, and
consider the system (4.8) on ®°. Note that the Cauchy data need not
satisfy the constraints GO,L = 0 during the transition.

The matrix g” has inverse gx —(gogko/g00), ie., g" [gix —
(8108k0/goo)] = 8%, so that the second set of thirty equations can be

inverted to give '
08/ 0t = dk,,,/dx". 4.9)

For g,, of class C?, (4.9) implies
Buv,i = aguv/ax i,

so that the system (4.8) is equivalent to R®) = 0.

Let 8uv

U= Buv,i

k..
be a fifty-component column vector, where g, ; is listed as
k 8oo,1
833,1

800,3

833,3
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Chapter 4. The initial value problem

Let 0'°=10X10 zero matrix, I'°=10x 10 identity matrix, and let
A%u)= A%8is» 8uw Kp) and A’(g,.., guris ko) be the 50X 50 matrices
given by '

I 0'° 010 010 010
010 gllIIO g12110 g13110 0°
Ao(g Guvis K )= 00 g12110 g22I10 g23110 010
e 01° g13110 .g2311o 010 00
0

10 010 010 010 _gOOIIO

010 010

10 010 gilIIO
010 gj2110
010 gj3110

0
0
Ai(gy-v’ Buv,is kp.v)= 0
0
0 g3i110 2g]'0110

g
and let B(gy., uv.i» k. ) be the fifty-component column vector given by

. ku,y
B(gu-l" 8iv,is kp.u) = 030
_2Hul'(gum gl.w,is kuv)

where 0%° is the thirty-component zero column vector.

Note that A°(u) and A’(u) are symmetric, and that A’u) is positive-
definite if g,, has Lorentz signature. A direct verification shows that the
first-order quasi-linear symmetric hyperbolic system

A%u)Bu/ot)y= A'(u)ou/ox’)+ B(u)
is just the system (4.8). From theorem 4.20 we conclude that for Cauchy
data :
el
()= | Bunalx”)
Kun(x")
of Sobolev class H*™*, s —1>3n + 1, there exists an £ >0 and a solution
Zur (£, ")

u(t’ xi) = gy.v,i(t’ x.i)
k..t x")
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of class H* !, By Sobolev’s lemma, u(t, x°) is also of class C?, and so, by
the second set of equations of (4.5), g..; = 9g.,/9x". Since (guvi, Kus) =
(38uv/0x", 38,.,/98) is of class H*™", g,.,.(¢, x') is in fact of class H®. The
continuous dependence of the solutions on the initial data follows from
the general theory.

To recover the result for the domain () from the result for ", we can
use the standard domain of dependence arguments; see Courant and
Hilbert (1962).

Since Q is bounded, (..., k,,) of class C* implies that the solution is
in the intersection of all the Sobolev spaces and hence is C™; again, we
are using the general regularity result about symmetric hyperbolic
systems.

From lemma 4.22, the g,,(t, x') so found satisfy the field equations
R, =0.

While the second-order approach gives s>2.5, e.g.,, s=3 (see
theorem 4.21(ii)) the first-order approach as it stands only gives s > 3.5,
e.g., s =4. It can be refined, but it requires a knowledge of the special
structure of the equations and ellipticity. For these reasons, the second-
order methods seem more attractive.

For the case of asymptotic conditions, some care must be exercised.
Spacetimes which are cpatially like 1/r will not be of class H’. Fix a
background spacetime gfi,g with prescribed fall-off to the Minkowski
metric at 0, For example, a specified mass will determine the coefficient
of 1/r; ghs could be a Schwarzschild-type solution with the singularity
at r = 0 smoothed out.

We let our variables be u.s = g.s — gos and solve for Ugg. Although
gap Will not be in H? itself, u,g will be.

Assume the following conditions on gZB:

ghaeCi (R R), glacH' (R’ R)
and (4.10)

8o ;s .
—ag—,.‘?eH(RiR), O<a,B<3, l1<i<3.
X

In the variables u,g, the equations (4.8) are of the form (4.7).

The coeflicients of the second-order terms do not involve derivatives
of u, so only s >3n is required.

Let us write Hy,, for the space of g.g such that g.;—ghsec H,
topologized accordingly. Then theorem 4.21 yields:
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Theorem 4.24

Let (4.10) hold. Then, for s>1.5 and initial data in a ball about »
(g5 825) in H;ﬂi’; X H gy, (4.8) have a unique solution in the same space
for a time interval [0, T'), T'>0. The solution depends continuously on
the initial data in this space (i.e., it is well posed or ‘Cauchy stable®) and

smoothly in the sense of theorem 4.19.

Thus, with the asymptotic conditions subtracted off, H>x H? initial
data generates a piece of H’ spacetime in a way which depends
continuously on the initial data. If T” is allowed to be large, the Lorentz
character of g.g could be lost or a singularity could develop.

A by-product of the proof is regularity; i.e., if existence holds in
H**'XH® on [0, T'] and the initial data is smoother, then so is the
solution on the same interval [0, T']. Thus C™ initial data gives C*
solutions.

An interesting problem is to determine whether or not the spacetime
generated by initial data satisfying (4.10) is large enough to include
asymptotic boosts. An examination of the proofs shows that the time of
existence increases at least logarithmically at spatial infinity, so the proofs
as they stand do not seem to give an affirmative answer.

We now show that any two H‘-spacetimes, s > 2.5, which are Ricci
flat and which have the same Cauchy data are related by an H*"'-
coordinate transformation. The key idea is to show that any H°-
spacetime when expressed in harmonic coordinates is also of class H".
This in turn is based on an old result of Sobolev (1963); namely, that
solutions to the wave equation with (H’°, H*™") coefficients preserve
(H**', H®) Cauchy data, a result implied by theorem 4.15. We can give
an alternative proof of this result using the well-known result that any
single second-order hyperbolic equation can be reduced to a system of
symmetric hyperbolic equations (see Fischer and Marsden, 19725). The
result follows:

Lemma 4.25

Lets>2.5 and (o(x), o(x)) be of Sobolev class (H**', H*) on R*. Then
there exists a unique Y (t, x) of class H**" that satisfies
2

8t 1)) + 56 ) ) + 6 X =0
(00,0, 285N - e, oo,
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The Cauchy problem for relativity

where g**(t, x) is a Lorentz metric of class H", b* (¢, x) is a vector field of
class H*™X, and c(t, x) is of class H* ™.

We can now prove that when one transforms an H°-spacetime to
harmonic coordinates, it stays H".

Theorem 4.26

Let g,.(t, x) be an H*-spacetime, s>2.5. Then, there exists-an H*
coordinate transformation %" (x*) such that

ax*?
ox”

N )

e (%")gapx* (F*)]

g (XY)=

is an H*-spacetime with T*(F, £)= g**T44(f, £)= 0.

Proof. To find " (x*) consider the wave equation

a 4
) e ralzE) =0

2

= — of
Hy g (c’)x“ ax”®
and let 7(z, x) be the unique solution of the wave equation with Cauchy
data 1(0, x)=0, 87(0, x)/3t = 1, and let £'(¢, x) be the unique solution of
the wave equation with Cauchy data

) 9%t
x'(0,x)=x', _aXT(O’ x)=0.

For g,, of class H®, T is of class H*™', so f(t,x) and X(s, x) are
H**'-functions and in fact by the inverse function theorem for H°-
functions (Ebin, 1970), ((1, x), Z(t, x)) is an H**' diffeomorphism in a
neighborhood of ¢=0.

Since O “(¢, x) =0 is an invariant equation,

2-p sw
, 0X

X =
Og*=-g"* +gTe—
g g Ba)Z

=5¥T*, =0
ax° ox® B

in the barred coordinate system, so ¥* is a system of harmonic co-

ordinates. |

Remark. This theorem may be regarded as a special case of the general
theory of harmonic maps (Eells and Sampson, 1964).
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As a simple consequence of lemma 4.25 we have the following
uniqueness result for the Einstein equations:

Theorem 4.27

Let g,..(t, x) and g..(t, x) be two Einstein flat H*-spacetimes with s >2.5
and such that (8..(0, x), 32,.(0, x)/3t)=(§,. (0, x), 88, (0, x)/t). Then
8u(t, x) and Z,.(t, x) are related by an H**'-coordinate change in a
neighborhood of t = 0.

Proof. From lemma 4.25 there exist H**'-coordinate transformations
y*(x*) and y*(x*) such that the transformed metrics

(0x/ay* N9x" /8y " )gup and (9x°/07" ) 9%/ 37" )Zap

satisfy R%) = 0. Since the Cauchy data for 8.. and g, are equal, the
transformed metrics also have the same Cauchy data. By uniquerness,

(0x/3y" W0xP/9y")gup = (9x/ 97" YOxP /07" )Zup.

Since the composition of H**'-coordinate changes is also H**!, Bap 18

related to g,z by an H**'-coordinate change in a neighbourhood of ¢ = 0.

|

The local existence and uniqueness theorems 4.23 and 4.27 can be

globalized in the same spirit that one studies maximal integral curves for

systems of ordinary differential equations. This leads to the following
theorem of Choquet-Bruhat and Geroch (1969).

Theorem 4.28

Fix a compact manifold M and let (go, mo)€ 6% N €5 = € (the solutions of
the constraint equations). Then there is a spacetime (V,, “go) and a
spacelike embedding io: M - V4 such that:
(i) Ein (Ygo)=0;
(i) the metric and conjugate momentum induced on Zo=iy(M) is
(gO’ 770);
(iii) X is a Cauchy surface;t
(iv) (Va, Pgo) is maximal (i.e., cannot be properly and isometrically
embedded in another spacetime with properties (i), (ii), and (iii)).

T So that (Vy,, mg) is globally hyperbolic (Hawking and Ellis, 1973, Proposition 6.6.3), and
hence any compact spacelike hypersurface is Cauchy (Budic, Isenberg, Lindblom and
Yasskin, 1977).
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This spacetime (Va, ®go) is unique in the sense that if we have another
(Vi ®gb) with (i-(v) holding, there is a unique diffeomorphism F:
Va- Vi such that

(i) F*@gh =g, (F is isometric) and

(i) Foio=ib.

The proof is conveniently available in Hawking and Elis (1973). The
uniquene'ss of F uses the fact that an isometry is determined by its action
on a frame at a point. The linearized version of this result is needed in
the next section (see Fischer and Marsden, 19784, for details).

Theorem 4.29

Let (Vy, ®go) be a vacuum spacetime, i.e., Ein (“Pgo) =0 with a compact
Cauchy surface 2o=io(M) and with induced metric and canonical
momentum (go, mo) € €z N 5. Let (ho, wo)€ S2 X S% satisfy the linearized
constraint equations, i.e.,

D®(go, 7o) * (ho, wo)=0.
Then there exists an “hoe S2(V.) such that
D Ein (“go)- ®ho=0

and such that the linearized Cauchy data induced by ®hy on o is
(h(), wo).

If ®hY is another such solution, there is a unique vector field DX on V,
such that

4 4 4
( )h6 I )h0+L(4)x( )g()

and ®X and its derivative vanish on 2.

Remarks (a). The linearized Cauchy data is defined in the same manner
as the (g, ) are defined. In fact, if ®g(p) is a curve of Lorentz metrics
tangent to “h at “g,, then

p=0>

where (g(p), (p)) are the Cauchy data induced on I, from “g(p).

(). One can view harmonic coordinates as a technical tool in which to
verify the abstract theory in section 4.3. However, once this is done,
well-posedness follows in any gauge. For example, one can give a

38 ()
ap

am(p)
p=0 ap

(ho, wo)= (
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coordinate-free treatment of hyperbolic systems (see Marsden, Ebin and
Fischer, 1972 p. 247). Furthermore, for numerical calculations, work of
Smarr and others indicates that maximal slices or slices of constant mean
curvature may be more useful than harmonic coordinates.

The abstract theory given in section 4.3 (see theorem 4.16) applies to
fields coupled to gravity as well as to pure gravity, There are several
points to be noted however (cf. Hawking and Ellis, 1963, Section 7.7).

(i) The fields should be minimally coupled to gravity so the hyper-
bolic character of the equations for the gravitational field is not
destroyed.

(ii) The energy-momentum tensor must be a smooth function (not
necessarily polynomial) of g, ®¢.

(iii) For fixed “g, the (linearized) matter equations should be well
posed. This is needed so that hypothesis (A1) of theorem 4.16 can
be verified.t

The other conditions of theorem 4.16 are of a technical nature, but
cannot be ignored (they sharpen and are needed to verify condition (b),
p. 254, of Hawking and Ellis, 1973). For examples of coupled systems
and existence theory done by direct methods, see Choquet-Bruhat
(1962). .

For systems coupled to gravity, the results on uniqueness and global
Cauchy developments given above for the vacuum equations carry over
in routine fashion.

4.5 Linearization stability of the vacuum Einstein equations

Linearization stability concerns the validity of first-order perturbation
theory. The idea is the following. Suppose we have a differentiable
function F and points xo and yo such that F(xy)=ye. A standard
procedure for finding other solutions to the equation F(x)= y, near x, is
to solve the linearized equation DF(xy)- A =0 and assert that x =
xo+ph is, for small p, an approximate solution to F(x)= y,. Technically,
this assertion may be stated as follows: there exists a curve of exact
solutions x (p) for small p such that F(x(0))= yo, x(0)= x,, and x'(0) = h.
If this assertion is valid, we say F is linearization stable at x,. It is easy to
give examples where the assertion is false. For instance, in two dimen-

T As noted by Hawking and Ellis (1973), this can be roughly described by saying that ‘the
null cones of the matter equations coincide with (as in the Einstein-Maxwell system) or lie
within the null cone of the spacetime metric’.
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sions F(xy, x,)= x7+ x5=0 has no solutions other than (0, 0), although
the linearized equation DF (0, 0) - (h, k)= 0 has many solutions. Thusit is
a non-vacuous question whether or not an equation is linearization stable
at some given solution. Intuitively, linearization stability means that
first-order perturbation theory is valid near x, and there are no spurious
directions of perturbation.

The question of linearization stability is important for relativity. In
the literature it was often assumed that solutions to the linearized
equations do in fact approximate solutions to the exact equations.
However, Brill and Deser (1973) indicated that for the flat three-torus,
with zero extrinsic curvature, there are solutions to the linearized con-
straint equations which are not approximated by a curve of exact solu-
tions. They gave a second-order perturbation argument to show that
subject to the condition tr 7 = 0, there are no other nearby solutions to
the constraint equations, except essentially trivial modifications, even
though there are many non-trivial solutions to the linearized equations
(see Fischer and Marsden, 19754, for a complete proof). It is analogous
to and is proved by techniques similar to the following Isolation Theorem
in geometry (Fischer and Marsden, 1975b).¥

Theorem 4.30

If M is compact and gr is a flat metric on M, then there is a neighborhood
U,,. of gr in the space of metrics M such that any metric g in the
neighborhood U, with R(g)=0 is flat.

The proof amounts to a version of the Morse lemma adapted to
infinite-dimensional spaces with special attention needed because of the
coordinate invariance of the scalar curvature map.

The results on linearization stability are due, independently, to
Choquet-Bruhat and Deser (1972) for flat space, and Fischer and
Marsden (1973a, 1974, 1975a) for the general case of empty
spacetimes with a compact hypersurface. The methods used are rather
different. O’Murchadha and York (1974a) generalized the Choquet-
Bruhat and Deser method to the case of spacetimes with a compact
hypersurface; see Choquet-Bruhat and York (1979). Results for
Robertson—-Walker spacetimes were proved by D’Eath (1975) and results

+ This result has recently been globalized by Schoen and Yau as a special case of their
solution to the mass problem in relativity. For example, they prove that on the three-torus,
any metric with R(g)=0 is flat.
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for gauge theories coupled to gravity have been obtained by Arms (1977).
The flat space result is:

Theorem 4.31

Near Minkowski space, the Einstein empty space equations Ein (g)=0
are linearization stable.

In this theorem, one must use suitable function spaces with asymp-
totic conditions and asymptotically flat spacetimes. We will only
consider the compact case in this article; see Choquet-Bruhat, Fischer
and Marsden (1978) for the non-compact case.

We begin by defining linearization stability for the empty space
Einstein equations.

Let Ein (“go)=0. An infinitesimal deformation of @g, is a solutlon
®h € $,(V,) of the linearized equations

D Ein “go)- “n =0.

The Einstein equations are linearization stable ar ®g, (or Pg, is

linearization stable) if for every infinitesimal deformation “% of g0,
there exists a C' curve “g(p) of exact solutions to the empty space field
equations (on the same V),

Ein [“g(0)] =0,

such that @g(0)=“g, and 8 g(0)/ap = @h,.

This definition has to be qualified slightly to be strictly accurate.
Namely, for any compact set D < V,, we only require (4)g(p) to be
defined for |p| <& where & may depend on D. The reason for this is that
®g(p) will be developed from a curve of Cauchy data (g(p), w(p)) and

so “g(p) will be uniformly close to “g, on compact sets for |p|< ¢, but
not on all of V, in general.

Since we are fixing the hypersurface topology M here, all Cauchy
developments lead topologically to the same spacetime V;=~R XM, so
fixing V is not a serious restriction. Topological perturbations are, of
course, another story.

Using the linearized dynamical Einstein system, linearization stability
of the Einstein equations is equivalent to linearization stability of the
constraint equations, as we shall see below. In fact, linearization stability
of a well-posed hyperbolic system of partial differential equations is
equivalent to linearization stability of any nonlinear constraints present.
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Linearization stability of the vacuum Einstein equations

In terms of the linearized map D®(g, 7), we can give necessary and
sufficient conditions for the constraint equations

d(g, 7)=0

to be linearization stable at (go, mo); that is, if (h, w)e §,x 83 satisfies
the linearized equations

Dq)(go, 7T’O) * (h’ w) = 0,

then there exists a differentiable curve (g(p), a(p))e T*M of exact
solutions to the constraint equations

D(g(p), m(p)) =0
such that (g(0), 7(0)) = (8o, 7o) and

0g(0) am(0)\ _
(555 ) e

The main result follows:

Theorem 4.32

Let ®=(%, $): T*M > CT X A} be defined as in section 4.2 so 63N
€s =D '(0). Let (go, mo)e 6N bs. The following conditions are
equivalent:

(i) the constraint equations

®(g, 7)=0

are linearization stable at (go, 7o);
(i) DP(go, mo): S2% S5 > CT X Ag is surjective;;
(i) [DD(go, mo)|*: C° X X > S5 % S, is injective.

Remark. In section 4.2 we listed some sufficient conditions in order for
(ii) to be valid, namely the conditions Cg, Cs, and Ci.

Proof of theorem 4.32. In section 4.2 we showed that [D®(go, mo)]* is
elliptic. Thus, the equivalence of (ii) and (iii) is an immediate
consequence of the Fredholm alternative.

(i) implies (i). The kernel of D®(go, o) splits by the Fredholm alter-
native. Thus the implicit function theorem implies that near (go, 7o),
®!(0) is a smooth manifold. Here one must use the Sobolev spaces and
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pass to C* by a regularity argument, as in Fischer and Marsden
(1975b). Since any tangent vector to a smooth manifold is tangent to a
curve in the manifold, (i) results. '

(i) implies (iii). This is less elementary and will just be sketched.
Assume (i) and that [D®(go, mo)]* - (N, X)=0, but (N, X)# 0. We will
derive a contradiction by showing that there is a necessary second-order
condition on first-order deformations (h, w) that must be satisfied in
order for the deformation to be tangent to a curve of exact solutions to
the constraints. Thus, let (k, w) be a solution to the linearized equations,
and let (g(p), w(p)) be a curve of exact solutions of

D), m(p) =0 @.11)

through (go, 7o) and tangent to (h, ). Differentiating (4.11) twice and
evaluating at p =0 gives

D®(go, o) - (g"(0), 7"(0)) + D*®(go, mo) - ((h, @), b, w)) =0 (4.12)
where

3’7 (0)
6p2 )

3’g(0)
é)p2

g"(0)= and #"(0)=
Contracting (4.12) with (N, X ) and integrating over M, the first term of
(4.12) gives

[ @ %), Dago, 7o) (27(@), 70y
= [ aD®(o, 7o - ¥, %), (670, 7O =0,

since (N, X)e ker [D(go, mo)]*.
Thus the first term of (4.12) drops out, leaving the necessary condition

[ %), D00, 70)- (1 0, (1 =0, .13)

which must hold for all (k, w )€ ker D®(gy, o). An argument like that in
Bourguignon, Ebin and Marsden (1975) can be used to show that (4.13)
is a non-trivial condition (see Arms and Marsden, 1979, and Fischer,
Marsden and Moncrief, 1978). - N

The procedure for finding a second-order condition when lineariza-
tion stability fails is quite general. See Fischer and Marsden (1975a, b)
for other applications.
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Linearization stability of the vacuum Einstein equations

From the linearization stability of the constraint equations, we can
deduce linearization stability of the spacetime, and vice versa, as
follows.

Theorem 4.33

Let (V4, Pgo) be a vacuum spacetime which is the maximal development
of Cauchy data (go, 7o) on a compact hypersurface o= io(M).
" Then the Einstein equations on Vs,

Ein (“g)=0,
are linearization stable at (4)go if and only if the constraint equations
O(g, 7)=0

are linearization stable at (go, o).
In particular, if conditions Cg, Cs, and Cy hold for (go, mo), then the
Einstein equations are linearization stable.

Proof. Assume first that the constraint equations are linearization
stable. Let “h, be a solution to the linearized equations at @gs and let
(ho, wo) be the induced deformation of (g, 7) on Zo. Now (ho, @o)
satisfies the linearized constraint equations. By assumption, there is a
curve (g(p), m(p)) € €5 N €5 tangent to (ho, wo) at (8o, mo)-

By the existence theory for the Cauchy problem, there is a curve
(4)g_(p) of maximal solutions on V,=R XM of Ein (“’g(p))=0 and with
Cauchy data (g(p), 7(p)). By theorems 4.19 and 4.24 “g(p) will be, for a
given choice of lapse and shift, a smooth function of p in the sense of
theorem 4.19 or in the usual C™ sense. As earlier, for any compact set
D<c V, and £ >0, there is a >0 such that “g(p) is within & of “g,
(using any standard topology) on D.

Using the uniqueness results for the linearized and full Einstein
system, one can transform the curve @g(p) by diffeomorphisms so that
®p, is its tangent at p=0. See Fischer and Marsden (1978a) for
details. n

Moncrief (1975a) has proved that for (g, w)e €% €5 the map
[D®(g, 7))* is injective if and only if a spacetime “’g generated by (g, )
has no (non-trivial) Killing vector fields DY (e., Lwy, @g =0 implies
@y = 0); together with theorems 4.32 and 4.33, Moncrief’s result then
gives necessary and sufficient conditions for a spacetime with compact
Cauchy spacelike hypersurfaces to be linearization stable.
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Moncrief’s result still does not give necessary and sufficient conditions
for [D®(g, w)]* to be injective in terms of the (g, 7 ) (the conditions Cg,
Cs, and €, are sufficient but not necessary), but bypasses the condition -
tr v’ = constant, apparently rendering it much less important.

Theorem 4.34 {Moncrief, 1975a)

Let g be a solution 10 the empty space field equations Ein (¥g)=0. Let
20 =ig(M) be a compact Cauchy hypersurface with induced metric g, and
canonical momentum mo. Then ker [D®(go, mo)|* (a finite-dimensional
vector space) is isomorphic to the space of Killing vector fields of ©g. In
fact,

(Y., Ypeker [DD(go, mo)]*

if and only if there exists a Killing vector field ®Y of “g whose normal
and tangential components to 3o are Y, and Y).

See Coll (1977) and Fischer and Marsden (1978a) for alternative
proofs to the one given by Moncrief.

As an important corollary of this result, we observe that the condition
ker [D®(go, 7o)} * = {0} is hypersurface independent (since it is equivalent
to the absence of Killing vector fields, which is hypersurface indepen-
dent). The condition is also obviously unchanged if we pass to an
isometric spacetime. .

Putting all this together yields the main linearization stability
theorem.

Theorem 4.35

Let ®go be a solution of the vacuum field equations Ein (Pgo)=0.
Assume that the spacetime (V., ©go) has a compact Cauchy surface .
Then the Einstein equations on V,

Ein (“g)=0

¢ )

are linearization stable at Pg, if and only if ©go has no Killing vector

fields.

We conclude this section by briefly examining the case in which “g, is
not linearization stable. The goal is to find necessary and sufficient
conditions on a solution “’& of the linearized equations so that “h is
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Linearization stability of the vacuum Einstein equations

tangent to a curve of exact solutions through ®g,. The necessary condi-
tions will be derived; for sufficiency, see Fischer, Marsden and Moncrief
(1978).

In theorem 4.32 we showed that if % is tangent to a curve of exact
solutions and (N, X)e ker [D®(go, 7o)]*, then

i L (N, X, D*®(go, ) - (B, ), (b, @))) =0.

Following Moncrief (1976), we can re-express this second-order
condition in terms of the spacetime, just as the condition
ker D®(go, mp)= {0} was so re-expressed. See Fischer and Marsden
(1978a) and Fischer, Marsden and Moncrief (1978) for alternative
proofs.

Theorem 4.36 (Moncrief, 1976).
Let Ein (“go) =0, and let “h € $5(V.,) satisfy the linearized equations
D Ein (“go)- “n=0.

Let PY be a Killing vector field of “Pgo (so that ®go is linearization
unstable). Let 3o be a compact Cauchy hypersurface and let (Y., Y)) be
the normal and tangential components of @Y on 3o. Then a necessary
second-order condition for h to be tangent to a curve of exact solutions is

[, D% Ein Ogo)- (OnOh), (Y5, ©Z2) dulgn)
p]

4.14)
= L (Y4, Y}), D*®(go, m0) - (I ), (1, @)))= 0.

If Ein(“go)=0=D Ein(“go)- “ho, then D?Ein(Wgo)- (Ph, “h)
has zero divergence (Taub, 1970). Thus, if @y is a Killing vector field,
then the vector field

(4)W = (4)Y . [D2 Ein ((4)go) . ((4)h (4)h )]
also has zero divergence. Thus the necessary second-order condition

I (YW, 9Z;,) du(go)=0
P

on first-order deformations is independent of the Cauchy hyper-surface
on which it is evaluated. The integral of W over a Cauchy hyper-
surface then represents a conserved quantity for the gravitational field,
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constructed from a solution “# of the linearized equations and from a
Killing vector field Y. The interesting and important feature of this
conserved quantity of Taub, as shown by theorem 4.36, is that unless it
is zero, the first-order solution A from which W was constructed is
not tangent to any curve of exact solutions. Thus, for spacetimes which
are not linearization stable, Taub’s conserved quantity plays the central
role in testing whether or not perturbations “h are spurious (i.e., are
not tangent to any curve of exact solutions).

4.6 The space of gravitational degrees of freedom

We now review some results of symplectic geometry that provide a basis
for a unified description of the various splittings that occur in general
relatively (Arms, Fischer and Marsden, 1975). These results are based
on a general reduction of phase spaces for which there is an invariant
Hamiltonian system under some group action (Marsden and Weinstein,
1974). A further application of these results leads to the construction of
the symplectic space of gravitational degrees of freedom (Fischer and
Marsden, 19785).7

Background references for the material in this section are Abraham
and Marsden (1978), Chernoff and Marsden (1974), and Marsden
(1974).

Let P be a manifold and ) a symplectic form on P; that is, Q is a
closed (weakly) non-degenerate two-form. For relativity, P will be T*.#
and ) will be the canonical symplectic form J ™', as described in section
4.1.

Let G be a topological group which acts canonically on P; that is, for
each ge G, the action of g on P, ®.:p+>g - p, preserves (). Assume
there is a moment ¥ for the action. This means the following: ¥ is a map
from P to g*, the dual to the Lie algebra g= T,G of G, such that

Qép(p), v,)=(d¥(p) - v, &)

for all ¢eg, where £p is the corresponding infinitesimal generator
(Killing form) on P, and v, € T,P. Another way to define V¥ is to require
that for each & the map p—(¥(p), £) be an energy function for the
Hamiltonian vector field ¢p. This concept of a moment is an important

T It should be noted that in the case of compact Cauchy surfaces, the space of gravitational
degrees of freedom has had all of the dynamical degrees of freedom factored out. For some
purposes this may be undesirable and a less severe identification may be wanted. (See
York, 1972, and Fischer and Marsden, 1977.)
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The space of gravitational degrees of freedom

geometrization of the various conservation theorems of classical
mechanics and field theory, including Noether’s theorem.

It is easy to prove that if H is a Hamiltonian function on P with
corresponding Hamiltonian vector field Xg, ie., dH(p)-v=
Q,(Xu(p), v), or equivalently, ix,,=dH, and if H is invariant under
G, then V¥ is a constant of the motion for Xj; i.e., if F; is the flow of X4,
then Vo F, ="V,

As an example, consider a group G acting on a configuration space Q.
This action lifts to a canonical action on the phase space T*Q. The
moment in this case is given by

(¥(ag), €)= (£0(q), o),

where a, belongs to T*Q. If G is the set of translations or rotations, ¥
is linear or angular momentum, respectively. As expected, ¥ is a vector,
and the transformation property required of this vector is equivariance
of the moment under the co-adjoint action of G on g; that is, the
diagram

@,
P ———pp

R

g —— g
Ad; -

must commute. We shall-consider only equivariant moments.

There are several classical theorems concerning reduction of phase
spaces. In celestial mechanics, there is Jacobi’s elimination of the node,
which states that in a rotationally invariant system, we can eliminate
four of the variables and still have a Hamiltonian system in the new
variables. Another classical theorem of Hamiltonian mechanics states
that the existence of k first integrals in involution allows a reduction of
2k variables in the phase space. Both of these theorems follow from a
theorem of Marsden and Weinstein (1974) on the reduction of phase
space.

To construct this reduced space, let 4 €g* and set

G.={ge G|Ad*;-u = pu}.

Consider ¥ '(u)={p|¥(p)=u}. The equivariance condition implies

that G preserves ¥ '(u), so we can consider P, =¥ '(n)/G,. In the
~ case that ¥ '(u)is a manifold (e.g., s is a regular value) and G acts freely
and properly on this manifold, we have: '
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Theorem 4.37

P, inherits a natural symplectic structure from P, and a Hamiltonian
system on P which is invariant under the canonical action of G projects
naturally to a Hamiltonian system on P,.

In Jacobi’s elimination of the node, G is SO(3), so g is ®* and the
co-adjoint action is the usual one. Thus the isotropy subgroup G, of a
point x in B> is S'. If n is the dimension of P, then ¥ () is the
solution set for three equations so the dimension of ¥~ '(u)/G, is
n—3—1=n—4. For k first integrals in involution, G is a k-dimensional
abelian group, so the co-adjoint action is trivial and G, = G. Thus the
dimension of ¥™'(1)/G is n —2k. Another known theorem that follows
from theorem 4.37 is the Kostant—Kirillov theorem which states that the
orbit of a point u of g* under the adjoint action is a symplectic manifold.

Now we shall show how to obtain a general splitting theorem for
symplectic manifolds, one piece of which is tangent to the reduced space
P, (Arms, Fischer and Marsden, 1975). This includes the splitting
theorems for symmetric tensors as a special case.

A splitting theorem for a symplectic manifold P requires a positive-—"
definitive but possibly only weakly non-degenerate metric; of other such
structure to give a dualization. This is so that orthogonal complements
may be defined. Suppose we know, say from the Fredholm theorem,

“that

T,P = range (T,¥)*@ker T,¥

(here (T,'¥)* is the usual L,-adjoint). Of course, in finite dimensions this
is automatic. Define

@ 8> TpP; > &p(p)
where g, is the Lie algebra of G,,. Suppose we also have the splitting
T,P =range ap@ker a3.

There is a general compatibility condition between these two splittings,
namely range «, < ker T,'¥, which follows readily from equivariance. In
fact,

range ap, = T,(G - p)nker T, ¥,
This compatibility condition implies the finer splitting:
T,P =range (T, ¥)*®range a, @ (ker T,¥ nker a}), (4.15)
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ie.,
T,P=range (T,¥)*® T, (G, - p) @ ker Tp¥/[Tp(G, - p)].

Note that the third summand is the tangent space to P,.. The geometric
picture is given in figure 4.2. For the purposes of this figure we number the

@

Orbit of p under G u

Figure 4.2. The geometry of a general symplectic decomposition.

summands in the previous decomposition as

T,P=02Q0®3,

where

@ belongs to range (T,¥)*, the orthogonal complement of the
tangent space to the level ¥~ (n); ’
@ belongs to range «,, the tangent space to the orbit of p under G, ;
® is in (ker T,¥ nker @3), and is the part of the decomposition
which is tangent to the reduced symplectic manifold.

@ and @ together are ker T, W, the tangent space to ¥~ ().

A basic splitting of Moncrief (1975b) can be viewed as a special case
of this result. We choose P=T*# and the ‘group’ is G=
Coace (M ; Vi, ®g), the spacelike embeddings of M to Cauchy hyper-
surfaces in (Vy, “g), an Einstein flat spacetime which is the maximal
development with respect to some Cauchy hypersurface 2 < V.

Although G is not a group, it is enough like a group for the analysis to
work.T G ‘acts’ on (g, 7) as follows (see figure 4.3). Let (Va, g, io),
Ein (“g) =0, be a maximal development which has (go, 7o) as Cauchy
data on an embedded Cauchy hypersurface 2o = io(M), io: M - V, (ig is
like an origin for Coace ). Then i € Cooace (M; Vi, ©g) maps (go, o) to

+ One uses the more general reduction procedure described in Weinstein (1977) and
Abraham and Marsden (1978). ‘
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V4, Pg)=a maximal development of (g,,7,) on Z,

/—\\ N

M (80, 7 9)=Cauchy data on Z,

N

Figure 4.3. Representation of ‘the ‘action’ of the space of embeddings on the space of
Cauchy data.

the (g, #) induced on the hypersurface £=i(M). The set of all such
(g, ) define the orbit of (go, 7o) in €% N €5. These orbits are disjoint,
and so define an equivalence relation, ~, in €% N €.

Although this is not an action (since Cqpace is not a group), it has
well-defined orbits and the symplectic analysis above applies (Fischer -
and Marsden, 1978b). Using the adjoint form of the Einstein evolution
system, the moment of ‘this action’ on a tangent vector ®Oxse
T:.C vonce (M5 V4, Pg) with lapse N and shift X is computed to be

Vel ®X)= [ Not(g, 1)+ X - £(g,m).

Here the ® X5 or the (N, X) can be thought of as belonging to the ‘Lie
algebra’ of Copace-

Since ¥~ '(0) is precisely the constraint set €s N €5, we choose u =0,
so G, = G. From the equations of motion, we find that

Agmy 8> Tigm(T* M)
is given by

. )T o Do, m1* - (),

so the symplectic decomposition (4.15) becomes
TqmT* 4 ={range [D®(g, 7)*}* Drange {J - [D(g, m)]*}
@ker D®(g, 7) [ker DO(g, w) o JJ*

which is Moncrief’s splitting. Elements of the first summand infinitesi-
mally deform (g, 7) to Cauchy data which do not satisfy the constraint
equations. Elements of the second summand infinitesimally deform
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(g m) to Cauchy data that generate an isometric spacetime, and ele-
ments of the third summand infinitesimally deform (g, 7r) in the direc-
tion of new Cauchy data that generate a non-isometric solution to the
empty space field equation; see figure 4.4 and compare with figure 4.2.

The orthogonal complement
to the constraint space

©) % dyn X the space of gravitational
degrees of freedom

r\%:constraint space

T" # =cotangent bundle of .#

orbit of (g.7)
under the dynamical
equations

Figure 4.4. Symplectic decomposition applied to the Einstein equations to construct the
space of gravitational degrees of freedom.

This third summand represents the tangent space to the reduced space
P, =~ %3 €5/ ~. This quotient by the equivalence relation described
above is naturally isomorphic to the space of gravitational degrees of

freedom,
G(Vi)=3( V4)/@( Vi),

namely the set of maximal solutions to the vacuum Einstein equations-

&(Va)={¥g|Ein (Pg)=0, and such that (Vi, Pg) is the maximal
development of the Cauchy data on some Cauchy hypersurface}

modulo the spacetime diffeomorphism group %(V,). This is the space of
isometry classes of empty space solutions of the Einstein equations, or the
space of gravitational degrees of freedom since the coordinate gauge
group has been factored out.

We call the representation of 9(V,) described here the dynamical
representation since one uses the canonical formulation to define P, =~
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s €s/ ~. See York (1971), Choquet-Bruhat and York (1979), and
Fischer and Marsden (1977) for a conformal representation of 4(V.).

As we have emphasized, in the case of compact hypersurfaces, one
identifies all the (g, ) which occur on slicings in an Einstein flat maxi-
mal spacetime. In the non-compact case one does not do this, as is
explained in Regge and Teitelboim (1974) and Choquet-Bruhat, Fischer
and Marsden (1978).

A few further remarks are in order regarding the decomposition of
T (T* M)

Set g, =ker D®(g, ) [ker D@(g, 7)°J]*¥, the third summand in
the decomposition above. The summand g, generalizes the classical
transverse traceless (TT) decomposition of Deser (1965) and Brill and
Deser (1968). Indeed for 7 = 0 and R(g)= 0, Moncrief’s decomposition
reduces to two copies of the Berger and Ebin (1972) splitting. If
moreover, Ric (g) = 0 (so that g is flat), we regain the original Brill-Deser
splitting.

Now suppose (h, w)€ Y, . Then (h, ») satisfies the following equa-
tions:

D®(g, 7)- (h, w)=0, (4.16)
and ‘
[D®(g, 7)o J] - (h, 0)* =Dd(g, m) - ('), —h* du(g)) =0. 4.17)

Written out in terms of the constraint functions # and #, these equations
are

D3t(g, ) (h, 0)=0,

D (g, ) (@'), —h* du(g) =0,
D#(g 7)- (h, 0)=0,

DF(g ) ('), —h" du(g)=0.

These equations, eight conditions on twelve functions of three vari-
ables, formally leave four functions of three variables as parameters of
the space ¥ .. Formally, ¥, is the tangent space to the space of
gravitational degrees of freedom, which is parametrized by four
functions of three variables.

Moreover, there is a certain ‘symplectic symmetry’ in the summand
Gomy reflected in (4.16) and (4.17) above: if (h, w)€ Ggmy then
Jo(h, ®)* is also in G ). We shall refer to this symmetry as J-invariance
of g(g,,.,).
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Proposition 4.38

The (weak) symplectic form Q on S,X S naturally induces a weak
symplectic form V' on any J-invariant subspace of S»x S2. In particular,
Ge.my is a (weak) symplectic linear space.

Proof. The symplectic form Q on S, X $2 defined by

U(hs, 01), (s 02)= [ T, 1), (o, )
M
defines by the same formula an antisymmetric bilinear form Q' on 4, .,

(or any other J-invariant subspace of S,xS3). One has to show ' is
non-degenerate. Thus suppose for (A, w1)€ Yz n),

j <J_l(h1,vw1), (hz, wz)) = 0
M

for all (hy, w;)€ Yy n). Since Y .., is J-invariant,

hl)*
7o() < Y

*
(a)==-(0)
wy w1y

and since J* = —J, we have

0= —j T, @), 7 (s, 0009 = [ (G a0), (s, 1))

Thus letting

='f (hl . h1+(l)1, . (1)1’) d[.L(g)
M

Thus (h1, w1)=0 so that Q' is non-degenerate. [ |
Proposition 4.38 is a special case of the following general result of
symplectic geometry (see Weinstein, 1977).

Theorem 4.39

Let (V, Q) be a (weak) symplectic vector space and W < V a subspace.
Let W ={ve V|QUv, @)= 0 for all o € W} and assume W is co-isotropic,
ie., Wa<W. Then W/W4 is, in a natural way, a (weak) symplectic
vector space.
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Proof. Denote an element of W/ Wg by w+ Wg. Define Q on the
quotient by Q(w,+ Wg, wy+ Ws)=Q(w1, wa). Since Q(w;, W5)=0,
i =1, 2 this is well defined. On the other hand, if Q(w, + Wa, wot W§)=
0 for all w,, w, € Wa, then w,+ Wy is the zero element of the quotient.

n
Proposition 4.38 follows as a corollary by letting V =53 S5 =
TemT* M, Q as given, and W =ker D®(g, ). Then,
Wa ={(h, 0)|Q(h, ), W)= 0}
={(h, w)lJ "' (h, w) is orthogonal to ker D®(g, )}
={(h, @) " (h, w) e range [DD(g, m)]*}
=range {J o [D®(g, 7)]*} = W. |

The symplectic structure on ¢ described above may be important for
the problem of quantizing gravity. The symplectic structure presented
here is probably implicit in the work of Bergmann (1958), Dirac (1959),
and DeWitt (1967). The present formulation, however, allows one to be
rather precise and geometric. First of all, it may allow one to use the
Segal or Kostant-Souriau quantization formalism to carry out a full
quantization or a semi-classical quantization. Secondly, the approach
presented here enables one to show that near metrics ®g in €(V,) with
no isometries (and hence no spacetime Killing vector fields), ¥ =
&(V.)/D(V,) is a smooth manifold and is locally isomorphic, in a
natural way, to $s N %s/~, and thus carries a canonical symplectic
structure.t Thus, in the neighborhood of Einstein flat spacetimes
without Killing vector fields, the space 4= &(V,)/D (V) of gravita-
tional degrees of freedom is itself a symplectic manifold, or if you prefer,
a gravitational phase space without singularities, each element of which
represents an empty space geometry. Note that ¢ is (generically) a
symplectic manifold even though it is not a cotangent bundle. We
conjecture that ¥ can actually be stratified into symplectic manifolds,
similar to the stratification of superspace; see Fischer (1970) and
Bourguignon (1975). The singularities in % occur near spacetimes with
symmetries, and these are of a conical nature (Fischer, Marsden and
Moncrief, 1978). Moncrief has emphasized in his 1978 Gravity Research
t An interesting point here is that g N %, although (generically) a submanifold of T*A,

does not have a natural symplectic structure induced from T*M, since the tangent space of

%5 ~ €5 is not J-invariant. One must pass to the quotient manifold €% n €s/ ~ in order to
get a symplectic structure induced by the symplectic structure of T* M.
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The space of gravitational degrees of freedom

Foundation essay that these singularities have an important effect on
quantization procedures (for instance, for de Sitter spacetimes).

The methods we have employed to analyze gravity, being based on
the L,-adjoint formalism, carry over directly to fields minimally coupled
to gravity, and in particular to Yang-Mills fields. In the latter case, one
divides out not by &(V},), but by the larger group of equivariant bundle
diffeomorphisms (i.e. gauge transformations covering diffeomorphisms
of spacetime). Using the methods presented here, we can show that the
space of degrees of freedom for fields and gravity, for fields minimally
coupled to gravity, is, generally, a symplectic manifold; see Fischer and
Marsden (19785, c).

Finally we remark that we hope that the geometric methods presented
here help to unfold some of the inter-relationships that exist between
general relativity, differential geometry, functional analysis, nonlinear
partial differential equations, infinite-dimensional dynamical systems,
symplectic geometry, and the theory of singularities. Certainly, all of
these areas of mathematics (and others) will have to make their contri-
bution to the study of gravitational theory before the final analysis is in.
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