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Introduction.

This paper discusses some recent results on the related problems of positivity
of mass and the existence of maximal spacelike hypersurfaces X for asymp-
totically flat space-times. If kr denotes the second fundamental form of X,
5 is called mazimal if trks= 0, has constant mean exirinsic curvature if
trks = const on X, and is a moment of time symmetry if kx= 0.

We will give a certain amount of background material in order to keep
the exposition self-contained. However, we do assume familiarity with the
ADM formalism. The notation and basic results we need are summarized in [1].

We define an asymptotically flat space-time to be a Lorentz metric on R*
which, in the Euclidean co-ordinates on R4, satisfies the asymptotic conditions

1 1
ypv = Nuv + 0 (;) ) Guvya = 0 (;5) ’

as 7 — oo on ¢ = const hypersurfaces. (See sect. 1 for the more technical
definition in terms of function spaces.) Here » denotes the standard Minkowski
metric (diag(—1,1,1, 1)) on Rt Asymptotically flat space-times are often
referred to as isolaled systems.

(*) Partially supported by the National Science Foundation (U.S.A.) and the National
Research Council (U. K.).
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By an asymptotically flat hypersurface 2 <R* of an asymptotically flat
space-time (RY,¥g) we mean a spacelike hypersurface X' = i(R%), where

i.R® > R?

is @ spacelike embedding and such that the induced metric gr = #*(Wg) (with
Y identified to R*) and second fundamental form satisfy (in the Buclidean co-
ordinates on R?%) the asymptotic conditions

1 1 1
9is = i+ 0 (;) ) Gisx=10 (’;) ' kiy =0 (r—-) y as r—>oc,

where y = diag(l, 1, 1) denotes the Euclidean metric on R3,
For such a hypersurface, the mass (energy) is given by the surface integral

1

m(gx) = 64

§ (@05, — 955,048,

evaluated at infinity in the Euclidean co-ordinates in R3. This formula, first
derived by EinsTEIN [2] and KLEIN [3], has been rederived and discussed by
many authors, such as vox FREUD [4], PAPAPETROU [5], GUPrTA [6], GOLDBERG [ 7],
ARNOWITT, DiEsSER and MISNER [8] and TRAUTMAN [9]. Below in scet. 5 we
shall review the textbook derivation.

Roughly speaking, m is an average of the 1/r part of g at spatial infinity,
and represents the total mass-cnergy of both the gravitational and all nongrav-
itational fields present. TFor the Schwarzschild and Kerr metrics one recovers
the usual mass parameter.

The most satisfactory interpretation of the mass function, but also the most
subtle, views m as the generator of time translations in the Hamiltonian for-
mulation. This view, initiated by DIrRAc [10], and developed by DEWITT [11],
has recently been revived by the important contribution of REGGE and TEITEL-
BomM [12], who show that this surface integral representing the mass must
be taken as part of the Hamiltonian if the Hamiltonian is to generate the
dynamical equations (see proposition 7.1). In sect. 10, we outline a possible
sympleetie version of their results by showing that time translations induce
a group of symplectie transformations on the space of gravitational degrees
of freedom. On this space the mass alone (not supplemented by the ADM
Hamiltonian) is the correet Hamiltonian function. This viewpoint is based
on a suggestion of WALKER, who together with ASHTEKAR takes a symplectic
viewpoint rvegarding the Bondi-Metzner-Sachs group and the Bondi-Sachs
mass, which, roughly speaking, is the mass evaluated on lightlike hypersurfaces
at infinity and is the part of the mass associated with gravitational radiation
(see [13]). ‘ ‘

Many physicists have argued that for nonflat space-times m > 0 on the
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grounds that gravity is an attractive force. (See, for example, [141], p. 113.)
In understanding this, we must keep in mind that m includes not only masses
of source, but of the purely gravitational energy as well. The fact that m is
supposed to vanish only for flat space is one version of Mach'’s principle (see,
for example, [15]).

The key difliculty in establishing positivity of m oceurs already for an empty,
but nonflat space-time. That there can exist pure gravitational waves was
emphasized by TAUR [16), who pointed out some key differences with the eleetro-
magnetic case,

The first proofs of positivity of mass in some important cases were due to
ARAKI [17]) and BRILL [18]. ARAKI proved the positivity of the second variation
of the Schwarzschild mass of a certain class of time-symmetric solutions con-
strueted by conformal methods. BRILL proved positivity for time-symmetric
and axial symmetric empty space-times. ARNOWITT, DESER and MISNER [19]
showed positivity in case one can find a hypersurface which is maximal, iso-
tropic and asymptotically flat.

An attempt at the general case, which arose out of work of BERGMAN [20]
and MoLLER [21], was made by Kowar [15]. Although the method was unsue-
cessful [22, 23], many of the ideas helped the later development.

After a lull of several years, the important paper of Brill and Deser (24)
appeared and secemed to prove positivity of m once and for all, in general.

The method of Brill and Deser is to show that the mass function has only
one critical point, namely at flat space and that the second variation is strictly
positive there. The proof is, however, incomplete for four reasons. 1t is worth
detailing these reasons, as some are subtle. Of course, BrILL and DESER were
well aware thal there were serious mathematical problems.

First of all, they assumed the existence of maximal slices which was then
open to question. It is worth reealling why they believed this difficulty could
be avoided:

« The existence of at least one minimal tr = = 0 hypersurface can be
thought of as part of our definition of nonpathologieal space-time. The value
of tr x corresponds to a choice of time co-ordinate. If one examines the trans-
formation needed to reach trzx = 0 from arbitrary z one is led to a 1’oisson-
like equation for the co-ordinate function »,

The heart of the detailed proof (see sect. 2) uses precisely this idea.

Secondly, the topology in which the second variation of m is positive de-
finite is not the same as the topology needed on the initial data to properly
capture the 1/r behaviour at infinity. They were also aware of this problem:

« We note here that in drawing the conclusions from our variational
results, wo are assuming that the usual extremum theorems for functions of a
finite number of variables hold also for our functional, as sufficiently relevant
mathematical theorems are not yet available. »

~
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Actually the situation is technically more complex than this quote indicates.
When the function space topology and the topology associated with the
second variation do not match up, counter-examples are possible. The matter
is serious, for positivity of the mass depends on delicate asymptotic behaviour.
The work of Tromba [25] is indicative of the mathematical complexity.

Thirdly, the gauge problem was dealt with only on an infinitesimsal level.
To really establish the result one must show that the space of Cauchy data with
the gauges divided out forms a smooth infinite-dimensional manifold. In view
of the well-known singularities in superspace [26, 27}, this problem requires
careful attention.

Fourthly, the global assertion that a C* real-valued funetion with a single
nondegenerate loeal minimum has that point as a global minimum is not true.
For example, we can easily construet such a funetion & on R? as follows. Let
D be the open unit disc in the plane. Let f be a function such that f(0, 0) = 0,
(0, 0) is a nondegenerate minimum, there is a finite number of other critical
points and f takes negative values. Cut out these other critical points by drawing
nonoverlapping ares from the boundary of the dise in & manner that f still
takes negative values on the region D' remaining. Let ¢:R2— D' be o dif-
feomorphism and let h= fop. Specific example:

W@, y) = 2(w - 1)* 4- 3 exp [2y]— 6(r 4 1) exp [y] 4 1.

These sorts of difficulties have been noted by GEroci [28]. In addition,
because of the possible nonexistence of maximal slices, O’MURCHADHA and
YoRK [29] speculated on the possibility of negative mass. An important re-
sult obtained by them is that, if one can find a maximal hypersurface, then
there is an other vacuum time-symmetric space-time with smaller or equal
mass, thereby reducing the positivity problem to the time-symmetric vacuum
ease, i.e. k = 0 on an asymptotically flat hypersurface X.

Difficulties with positivity of the Bondi-Sachs mass similar to those of the
ADM mass were pointed ont by RoBIxsoN and Wixicour [30]. It should be
possible, however, to make use of m>0 to help establish my,, . .>0.
Indeed, as WALKER has suggested, it would appear that the symplectic struc-
ture on the space of gravitational degrees of freedom in closely related to the
symplectic structure defined on the gravitational-radiation fields at future
null infinity by AsnTEKAR. The fact tha the ADM mass and the Bondi-Sachs
mass are associated with time translations leaving these structures invariant
lends some weight to the conjecture that the ADM mass is the past limit,
before any radiation has been emitted, of the Bondi-Sachs mass. See sect. 10
for further comments,

Returning to the difficulties with the Brill, Deser proof mentioned above,
the problems as they left them can be divided into two parts:

i) Local problem: ig the mass positive near flat space?
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ii) Global problem: is the mass positive for a space-time that can be
vonnected to flat space?

None of the previous papers had answered either question rigorously. Here
we shall give the proof, following CioQUET-BRUHAT and MARSDEN [31], that
the answer Lo i) is «yes».

As the above discussion has shown, there is a link between the problem of
positivity of mass and the existence of maximal hypersurfaces. However,
maximal hypersurfaces are of interest in their own right. For example, in [18],
the « moment » of time symmetry (which is in particular maximal) indicates
@ division between implosion and explosion of the gravitational waves. For
closed universes, maximal hypersurfaces may signal a division between expan-
sion and collapse. Besides this, maximal (or constant trace) hypersurfaces
have been important in the study of the constraint equations, for these equa-
tions partly decouple in such circumstances. This decoupling oceurs in both
the conformal approach to these equations [29, 32-34 and references therein)
and in the direct approach [27,35]. Maximal hypersurfaces have also proved
to be important in numerical computation of space-times; see, e.g., [36].

The first existence and uniqueness theorem for maximal hypersurfaces is
due to CHOQUET-BRUHAT [37-39] and CaNTonr of al. [40]. This theorem is
loeal in nature and will be presented in seet. 2. Global uniqueness is proved
in Brit and FLAUERTY [41]; see GoDDARD [42] and TreLEr and MAgs-
DEN [43] for generalizations. There is still a number of difficulties preventing
a proof of global existence. In particular, the results on existence in AVEZ [44)]
contain an error (this error is propagated in [453]). These difficulties are also
discussed in sect. 2,

We continue our discussion of the history of the mass problem. The local
problem being solved, what can be said about the global problem? Although
several additional papers of interest were published (such as [16-48]), the next
significant attempt was that using supergravity. This attempt was initiated
by DESER and TErTELBOIM [49] for quantum gravity. The classical limit & — 0
was taken by GRISARU [50], which indicates that m > 0. However, as it stands,
the argument has even more technical objections than those of the original
BriLL and Dzskr paper discussed above [24]. Neverthless, as GRISARU has
suggested, it may be possible to give a purely eclassical rigorous proof once
the precise mathematical nature of classical supergravity is understood.
(According to ZumiNo and SINGER, one has to study the frame bundle of o
Dirac spin bundle over space-time with a subtle graded algebra structure
added ... of. articles by STERNBERG, KOSTANT and ZUMINO in [517).

The culmination of the mass problem occurs with the paper of ScHorN
and YAvu [32). They finally prove that m> 0 for any asymptotically flat space-
fime with a m.l.\nnal slice, with m =0 only for flat space. Their proof
involves an ingenious use of the plateau problem and some estimates obtained
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from the Gauss-Bonnet formula. Their proof was inspired by a question in
pure geometry posed by GEROCH [28].

This latest history, namely supergravity and the method of Sehoen and
Yau, will not be discussed further in this paper, because of timing and lack
of space.

We wish to thank J. Arms, M. CANTOR, J. EHLERS, G. GIBBONS,
R. Haxsex, 8. HawkINg, V. Moxcrier, R. S8acus, B, Senmipr, R. ScHOEN,
A. Taus, A. TroMBaA, 8. T. Yau, M. WALKER, A. WEINSTEIN and J. W. York
for their helpful comments, and the Department of Applied Mathematics
and Theoretical Physics, University of Cambridge, for their hospitality.

1. — Weighted Sobolev and Hilder spaces.

For compact manifolds, the ordinary Sobolev W** (or Hilder, Ck+=) spaces
scrve as adequate funetion spaces. The W*® spaces, with H*= W»2 were
described in[1]. However, for the noncompact case it is essential to modify
these spaces in order to properly capture the 1/r behaviour needed at infinity.

Holder spaces with asymptotic conditions have been deseribed and used
by CriroQUET-Brunat and DESER [53]. We define, for an integer k, 0 < x < 1,
and ¢> 0,

C¥r(Rv) = {U € CH(R")} 11,0 = sup [Du() — D] -+

r,veR" ”.’l/' - y” *
&
+ X sup |ajn st Diu(r)] < oo}
2=0 xeR"
and

O = o N {ue C:lAue Cly) .

These spaces do capture the required behaviour in which the clliptic estimates
are possible. For example, if # =3 and 0<e <1, then «e C** implies

1 1
w =0 o Du=0 el I

which eorresponds to g— y = O(1/r). Moreover [53],

o f 12+ N 0+ 3
A4:C~ 0%

is an isomorphism. It is the latter fact that enables one to use the implicit
function theorem.

26 — Rendiconti S.1.F. - LXVII
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Thus we can say that a metric g . is asymptotically flat when
\ [/ yimj y
gpr_ 7}".,6 (’!:‘:-.‘ ? 0 < a - 1 -

To motivate the necessity of these sorts of spaces, recall that the selution
of Poisson’s equation Vigp = o in R® is

o(y)
7 = l-zf fa—y]

and that, if |@] —||o(o/)|du/ oo, then ¢ = O(1fr) as r-—> co. Iowever, a
faster fall-off, ¢ = O(1/r?), is not possible unless ¢ jn(?/)du = (. The above
spaces have relaxed 1/r to 1/r" and integrability of @, so /1 will be an isomorphism.

As an alternative to C¥** which we shall follow, one can also use weighted
Sobolev spaces M?,, introduced by NIRENBERG and WALKER [54] and CaN-
Tor [35]. They are defined as follows:

Let €2 denote the C* funetions with compaet support from R* to R™. For
jeCy, we define the M?, norm of f by

Hpws= 2 16" D,
0las

Here 1 < p<Zco, 0€R, s is a nonnegative integer and o(r) = 1+~ ‘2)*.
M (R", R™) is the completion of C7 in this norm. As with the Sobolev spaces,
we shall usually abbreviate the notation to M7,.

Analogous to the Sobolev properties we have:

1) Embedding in C*: Sobolev spaces may be defined on all of R, and the
Sobolev embedding still holds in & weakened form: the embedding is continuous
but not compact. For 6>0, the M7, norm is stronger than the W+» norm,
s0 we have the continnous embedding (°),

M?,(R", R™) — Wer(R", R®) — CH(R®, R=) .

2y Multiplication: If p>1, 8 > nfp, 0<i<s and § > 0, then pointwise
multiplication M2, x M?_, ., — M}_ 5, is continuous and hence C®. (There
is & number of results of this type.)

3) Composition: If p>1, s>nfp + 1, €R, and | is » diﬂ‘eomorphism
such that f and f~! both belong to M?,, then the compositions M7, - M3,

(*) The noncompactuess of the embedding in the M), case was pointed out in a
private communication by S. Acyox (1975).



MAXIMAL HYPERSURFACES AND POSITIVITY OF MASS 403

gr>fog, g—>gof arve continuous (the former is C* if § and f-) are My, and
the latter is €™, being linear).

Tor these spaces the following have been proven:
I )

1.1. Theorem (NIRLENBERG-WALKER-CANTOR). — Tf

R

n P,

n

P> ’

-

n—2
and — nfp <67 —2 4 nfp’, then

A M.,

is an isomorphism.
CANTOR has generalized this to operators with nonconstant coefficients:
1.2. Theorem (CANTOR[536]). — Let n >k and A, = Y @.D* be an elliptic

Talwle
homogencous operator with constant coefficients Jor systems, on R, Suppose we

have an elliptic operator

A= Y asa) D=

R}

on R" such that for s=k, ase C* and for each U< |¥]es— 1k,

sup | D (aa(x)) - o) VY| 2 oo jor laj <<k
and
lim sup |D*(aa(x) — @.) 6" | < & for |a| =k.
le|-—-re
Then, if
n ) n(p—1)
P> — Y < d< —k + =L
P oy O<o<—k + p ,

and ¢ is sufficiently small,

AM2 WP

— kAt
has closed range and finite-dimensional Eernel.

For a second-ovder operator, such as the Laplacian on R3, these theorems
require p>3 and 0<d-< (p— 3)/p. In this case A3, includes the functions
that satisfy f = O(1/r) and Df = 0(1/r?) at infinity ; in fact, it is casy to see
that fe M}, is, on an intuitive level, another way to say f is asymptotically
like 1/r, DDf is asymptotically like 1/, ..., D?f = O(1/r**1). Note that such an f
is not in L,, but Df is in L,.
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A partial Fredholm alternative can often be obtained from the following:

1.3. Theorem (CANTOR [56)). — Let the hypotheses of the above theorem hold.
If Ay - (A — Ay), 0<t<], is an injection, then A is an isomorphism. (The
line A |- (A — Ag) may be replaced by any C° curve joining A to A,.)

The following three lemmas illustrate the sort of estimates one makes in
these spaces and establish some notation.

L4, Lemma. — If of € L(R%), then feL, provided
p=r=2p/(p - 3) -

Proof. By Holder’s inequality,

' IfIrde < (J lof | (la:)""( |

P 17¢
o " (lm) ,

where g = p[r, 1{q -+ 1/¢' = 1. The last integral is finite if rg'= rp/(p —r) > 3,
fe il r>2pfp+3). O

1.5, Lemma. — If n=23,2<p <6, =0 and =2, then fe M?, implics
fe L, and Dfely. In fact, if we write [f15= |Df; (the « energy norm»), we
have inequalities

< const:|f ,<eonst-[f .o

Proof. 1f f is in some L, space, we have the inequarlity [[f e C|Df|s
(see [37]). Thus we need only show Dfe L. However, 6Df€ L,, so, by the
previous lemma, Df € L,, p=r> 2p/(p + 3). For p <6, 3p/(p 4+ 3) <2, s0

=2 ean be chosen. O

1.6. Lemma. — Let n, p, &, s be as in lemma 1.5. If he Mi, andge M]_,,.,,
then hge L,.

Remark. 'The intuitive reason is that 2 falls off like 1/r, g like 1/r®, so hg
falls oft like 1/r% which leaves room for integrability (1/r*** is integrable at
infinity).

Proof. Again the argument is by Holder’s inequality. To show hge L,
we need to show that ge L,, where p' = p/(p—1). However,

fl_q]"' dx =fjo"' gl e de < ( J lo*g|® da:)p"”( f o dm) v

where

_”.] 5 q —_— p
a=pips 0= =,
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Thus
Daam! )
2p'q' = - PP—, =—x3
p—p 1=

if p<6. Henceo ™" is integrable, so ge ... [
» ? J »

These lemmas will be used later for establishing important difterences
between the mass in Newtonian theory and the mass in general relativity.
First of all, a Newtonian potential @, everywhere regular, zero at infinity and
sabisfying V2 = 0 is identically zero, e.g., by the maximum principle. 1n
general relativity, however, one can have nonflat, asymptotically flat, vacuum
solutions.

Secondly, if g€ M?, for p,s, & as above, ¢ = Vipe M, ,,, need not be
integrable, so the total mass might be infinite. For example, if p = 1/»3 outsile
a bounded set, but is otherwise €, p¢ M7, 44, for any s, so o= A-'pe M.
Thus ¢ will only fall off at a rate 1/r%, 0 <a < 1. In general relativity, if
the metrie differs from the Minkowski metric by something in J?,, then the
vacuum will have finite energy. The above lemmas will be used later to prove
this. However, sources which are M7, 5. Meed not have finite total energy,
in either the Newtonian or relativistic case. The above lemmas will be
important for probing this later.

We can introduce notation for spaces of metries like .#*» which is used
in the compact case (see [1]) as follows:

Let p denote the standard Euelidean metric on R® and let 75 denote the
set of Riemannian (positive definite) metries g such that g—yed},. Then
2,05 an open cone in 8?7, {y}, where 8?7, denotes the Banach space of
2-covariant symmetrie tensors of class M;,. Thus, the tangent space to My

£

at g is T, 47, = 8°,. (llere we assume s> n/p and 6>0.)
g PRt 5,0 1

3,

Let I: R®—>R®be the identity map and let 27 s denote the diffeomorphisms
7y of R® such that »— I and ' — I are of class M. If s>nfp+1, 60,
then 27, is a smooth manifold and 2 topological gronp. From the properties
listed above, we find that %, = acts continuously on .#?, by pull-back.
One can show that the orbit of y under 77,16 15 2 submanifold of .#?,. However,
for 1/r fall-oft at co, 22, . is more appropriate, as is seen by examining the
definition of pull-back y%g for NED gy ¥nd ge. M2,

It is convenient to cnlarge 7., 5, Somewhat, Let 53“,‘,4 denote those
diffecomorphisms 5 of R* such that Dy and D(y-*) are of class M5, Again,
5;’“_6_, is a topological group and a smooth manifold if s>afp and 00.

1.9. Lemma. — &%, ,_, acls continuously on MYy by pull-back: (3, g) > n*g.

This uses the multiplication property 2) above and the faet that com-
position
M, 7(‘-(7:’.&—1‘3’3[:.57 (7, %) > fon
is eontinuous,
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Let €, be the orbit of y under Z”,, 51~ This is not a smooth submanifold
of M7, If it were, its tangent space at y would be the set of Lie derivatives Lyy.
The twuh]e is that the canonical decomposition h = h - Lgy need not hold
if & only falls off like 1/r.

What is true is that the orbit t’ of y € M7, under Z°,_ ; is & smooth man-
ifold with tangent space the set of Lie derivatives Lyy, Xe M}, 5. We shall
need this fact in sect. 10 (here y*y differs from y like 1/r* at oo). The crucial
fact needed to prove this is the following splitting lemma. The rest of the
argument can then proceed as in [58].

1.8. Lemma. — Suppose he 824, and g€ M}y, ,. Then b splits uniquely as
h = h + Lyg,
where 8,h = 0 and X is a veetor field of class M7, ;.

Proof. Consider the curve of metries g, = g +- (t—1)y joining g to y.
Thus we get a curve of operators A,(X) = 3, (Lzg:) joining A,(X) = 8,(Ly)
to A, (X) = 3(Lyy). The latter is a homogeneous second-order elliptic oper-
ator with constant coeflicients. To show A, is an isomorphism, we thus need
only show A, is an injeetion by theorem 1.3. We can write g for g..

Thus assume A,(.Y) = 0. Then

0 = [ 8,(xg) Xulg) = } | Leg- Ll
An Ao
where u(g) is the volume element associated with g.

The integration by parts is justified since IL.ge M}, and Xe M7, ,.
Thus Lyg=0. We now need to prove from this that Y =0. We sketch
two proofs.

Suppose first that gy equals y outside a ball. Then Lyg =0 implies that
outside the ball, X is a Killing field for y and, since none of these is in M.,
X = 0 outside the ball. Since any isometry which fixes a point and a frame is
the identity, A’ = 0 identically. Thus, for such metries g, A, is an isomorphism.

Tor any ge./?,, let g, be a metrie equalling ¢ on a ball of radius B and
equalling y outside a ball of radius R - 1. Specifically, let g, = g + 11—y,
where ¢ is & C* function, 0 <g<1, which is 0 outside a ball of radius R=-1
and is 1 inside a ball of radius R. Then write

!
...-BR’

gn }

4, =4

where B(X)=38,_, , Lyy - 8, L(g—g;). The norm of A} is uniformly
bounded below, by, say, & as R — co. This requires the observation that
the norm of the inverse depends only on the modulus of ellipticity and the
norms of the coefficients in theorem 1.2, (Details are given in [56).) Secondly,

]BR”M" -0 a8 R—> oo,

1,605,641
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sinee ¢ — g, oceurs differentinted. Thus if we choose J¢ large enough so that

' -1
B’”‘"fﬂd"”f.dq—l <&,

A, will be invertible.

The splitting in the lemma now follows by choosing X = A.'(3,h) and let-
ting b = h— Lyg.

Here is a second proof that, if geMy, Xe M}, and Leg=0, then X' =0.
First of all, integration by parts shows that

[Lxg beg=2[(v. 3,
A R?

50
VX=0.

Secondly, from VX =0, on each line &'=a' t, X satisfies the equation
4X,/dt=a'T, X, But from geMly, 822, p>3, 00, I'(a*1) is continuous
in ¢, and integrable for almost all {¢*}. For such an {a*}, the equation only
has the zero solution vanishing for t=— co and 1= -+ oo. (This argument
only requires ged?, and lllz_n!o X@)y=0) 0O

Some additional notation will prove useful. We shall say that a Lorentz
metric g on R* is asymplotically flat if, on every ¢ = const hypersurface,
Wg—n is of class M2, and (2/ct)'Wg is of class M?_, 5.,. The set of all such
metrics is denoted #7,. (As above, 5 is the standard Minkowski metric.)

An embedding i:R* -~ R* is called asymplotically flat if i — i, is of class
M, 4oy, where 7, is the standard ! = const embedding. For such, we have
the induced metric gr = i*(g)e . A7,(R°) and second fundamental form
kxe 8], ;. (R%). Thus (i, gs, ks) will be called an asymplotically flat initial
dala sel.

These concepts correspond to the asymptotic relations required for isolated
systems, as described in the introduction.

As for co-ordinate transformations, we have already described 2Z7,(R3).
If we write F € D}4(RY) or speak of a diffcomorphism asymptotic to the
identity, we shall mean that i = Foi, is asymptotically flat for each of the
standard 7 = const embeddings i,.

Spaces with asymptotic conditions like M7, can also be studied by a
compactification method; see [59].

2. — The existence of maximal hypersurfaces.

In this section we prove that for asymptoticeally flat space-times near Min-
kowski space there exists a maximal (tr % = 0) spacelike hypersurface dif-
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feomorphism to R* which is asymptotically flat. This is the « local » existence-
of-maximal-hypersurface theorem. We shall also give the outline of a possible
extension of this result to the «global» case.

The existence of maximal hypersurfaces has important consequence for the
set of constraint equations, as will be discussed in seet. 3. On such a hyper-
surface the system of constraint equations can be split into a linear system and
a single nonlinear equation, following the conformal techniques initiated, by
LicnNEROwICZ [32) and developed by CHOQUET-BRUIAT [33, 60], Yorx [61]
and O'MURCHADHA and YORK [34, 62]. Tn sect. 4 we shall give some geometric
applications and, in later sections, maximal hypersurfaces will be used in the
mass problem.

The results of this seetion are based on [37-10]. (See also [43, 631.)

We begin by defining two basic energy conditions on space-times (17, “¥g).
Let Rie(t%g) denote the Ricei curvature of ‘¥g, and Ein ('9g) the Rinstein
tensor. Then ‘g satisfies the weak energy condition (respectively, the strong
energy condition) if, for every x€ ¥V, and timelike vector W, e 7,1,

Ein (9g)(9t,, 91,) =0

{respeetively, Ric (Wg) (9, L) > 0).

In these cases we shall write Ein (Wg)>0 and Rie ("g)>0, respectively.
A discussion of these energy conditions is given in [64]. (The notation is dif-
ferent if there is a cosmological constant.)

If Y, is a spacelike hypersurface of Vy with {forward pointing) unit normal
WZx,, then we let

0@, , =@, (L) = Ein (o) - (W Zx,, Wzy) = GaﬂZ« 78
and

WR =R l(_}"o) — Rie (¥ ).(N)Z: , Wy) = R VA A
L L4 g ° ° xf ’

the « perpendicular-perpendicular » projections of the Einstein and the Ricei
tensor, respectively.

Many of the results below do not depend on ‘g being a solution of the field
cquations WG ;= 8aT , but require only that ‘g satisfy either the strong or
week or both energy comnditions. Thus to keep the results as general as pos-
sible, we consider space-times which satisfy the field equations only when
neceessary.

Secondly, let us recall the derivation of the tr & evolution equation. The
following formula has been obtained in the absence of a shift by LICHNERO-
wicz [65] and in the general case by FOUREs-(CHOQUET) Brunar [60]. See
also RAYCHAUDHURI [66].
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2.1. Proposition. — Let (V,, 19g) be a space-time and X, a 1-parameter family
of spacelike hypersurfaces with induced metric g, and second fundamental form I,.
Let (N,, X,) be the lapse and shift for the embeddings. Then

A
a% (trk) = (k-k+4 OR,, -+ A)N—X-d(tr k),
where AN = — g N, ix the Laplacian of N formed from g and "R, =

= Rie ((-l)g)(mle, mZ"'})’

Remark. The evolution equation for tr &k is true for any space-time, inde-
pendent of the field equations.

Proof. The proof is by taking the various projections of the Riemann cur-
vature tensor. A good reference for these projection formulae is [67]). From
these we have (using the notation from [1])

= N(WR ,,,—kXk)—Hess N — Lyk.

81 o

Thus

Y
AN — e (Lek) = (k-k -+ OR,, + A)N—X-dtrk,

’3)!
b Q

2 rey = ( ) dbg (ﬁ)— @NF 4 Leg)-k + NOR,, —k-k) +

where we have used

2_3 = —2Nk—L;g, AN=—trlessX,
o

and tr (Lyk) = X-dtek - k-Iyg. O

Now we are ready to begin the proof of the existence of maximal hyper-
surfaces. Let X, = iy(3f) be a Cauchy hypersurface of V7, with induced met-
ric g, and second fundamental form k,. As usual the metries and other func-
tions used in the argument must belong to appropriate W** spaces in the com-
pact case and must be asymptotically flat or zero in the appropriate M?, sense
in the noncompact case.

Let V', be diffcomorphic to Rx M (in the compuct ease) or R? (in the non-
compact ease). In the noncompact case all our metries ‘g will be asymptotically
flat, i.e. of class &7, and be joinable to 5 by a eurve in the same class.

We shall need to consider embeddings of & certain class, as deseribed in
sect. 1. Thus, in the compact case, we ecan let Emb+r (M, V,, ¥g) denote
the spraeelike embeddings of M to 17, whieh are of class W+r and, in the non-
compact case, Bmb} (R?, V,, g, i,) denote embeddings i of R® to V7, which
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differ from a given embedding i, by a function of class M?;. Emb] (R?, V, g)
refers to the case where i, is the standard = 0 embedding. We shall consider
primarily the noncompact case, but shall discuss ditterences with the compact
case at the appropriate point.

As usual, given a2 metrie g and an embedding i, we let X' = i(R3) and let
(g, kx) denote the associated metric and second fundamental form. If Wge &7,
and ieBmb?,, then ky will be of class M>_, ... (i.e. O(1}r?), but tr kr will
be of class M2 ... (i.e. O(1r%). This extra fall-off of tr ks is scen by writing
out tr k- in Gaussian normal co-ordinates about X'; see [37] for the formula.

Fix “¥g at Yg, for the moment, and define

P:Emb; (R, R, Wg) — M? (R3)

8=2,0+2

P(i) = tr (k)

(we drop into & — 2 s0 I’ will be C'-differentiable; see sect. 1).

The tangent spaee of the space of embeddings at i, is 7 slig)y the vector
fields ‘"X on R® to ¥V, which cover the map i (i.e. ‘"X (x) lies in the tangent
space to 1, at iy(x)). Thus the derivative of P maps as follows

DP(,): 2%, — M?

$-2,8+2 ¢

2.2, Proposition. — The derivative of P is given by
DPiy) VX = (ko ko - PR, . + AN — X d{trk,),

where N, X are the lapse and shift functions of WX, ko is the second fundamental
form on X, and VR, is the perpendicular-perpendicular projection of R,, on Z,.

If kyoko+ PR, >0 and Vg, may be joined to n by a curve of metries satis-
fying this condition, then DYP{i,) is surjective and its kernel splits.

Proof. If i(2) is a curve of embeddings through /i, tangent to X, then,
by the chain rule,

. . d
DP('ID) Y = El—/: tr k;_.;

=0

The expression for DP(i,) now follows from proposition 2.1. O

From the elliptic theory in seet. 1, A(N) = (k-hy+ @R, , + A)N is an
isomorphism from M7, to M?_,, .. Indeed, since koko-+ "R,, >0, A is
injeetive and may be joined to A, by a curve of operators which are injective,
by hypothesis. Therefore, by theorem 1.2, A is an isomorphism, Thus, DP(i,)
is onto, taking X = 0 and variable N,



MAXIMAL HYPERSURFACES AND POSITIVITY OF MASS 411

The kernel of DP(iy) splits as follows. Given X, let N(.V) be defined by
NX) = A (N -dtr k) (eq., if trk,= 0, N(X) = 0) and decompose

(N, X) = (N(X), X) + (N — N(X),0).
Remarks.

1) In the noncompact case, ko= 0, ‘"R, A = 0 is allowed, for A is an
isomorphism. In the compact case this is exceptional and instead we map
Emb*r (M, V,, Vg,) to #i*(M), the W volume elements on M with zero
integral, by

j‘):Elnbs-p_} I/‘;—;‘,D s

1
Py = {(tr k) ol f(tr ’-'::)/1(!])} wg) .

The derivative of P at i, is just WX > AN if k=0, R, , = 0, which is
surjective from W*” to %2 *% with kernel the constants.

2) Note that, if frk, =0 or constant, then X" does not appear in DP(7,).
This corresponds to the obvious fact that, if f:R* — R® (or M — M) is a dif-
feomorphism asymptotic to the identity, then i = ijof is another embedding
onto the same hypersurface (i.e. ¢ and 4, have the same range) and with
tr &, still 0 {or constant). Thus we cannot expeet maximal hypersurfaces to
be uniquely embedded, but we might expect the surface itself to be unique.

If we regard the variables in proposition 2.2 to be functions N, diffeo-
morphisms f of R* and four metries ‘g, then proposition 2.2 asserts that
the partial derivative of P with respect to N is an isomorphism. Thus the
implicit function theorem gives the following main loeal existence theorem
for maximal hypersurfices.

2.3. Theorem. — Let the hypotheses of proposition 2.2 hold. i) For g suj-
Jiciently close to g, in L7, there exists a spacelike embedding i asymptotic to i,
on which trks= trk, (trkr is relative to g and trk, relative to Wg,). ii) If
trko = 0, then i is unique up to a diffeomorphism { of R® asymplotic to the identity.

For M compacet, kyko-- VR, >0, and not identically zero, and for g suf-
ficiently close to g, there exists an embedding i close to iy for which tr ks = tr ky;
i is unique wp to diffcomorphism if trky= const. If

kooko+ PR, =0, trk,= const,
and g is elose to Vg, there is an embedding i on which tr ks = const, a pos-
sibly different constant.



412 Y. CHOQUET-BRUHAT, A. E. FIRCHER and J. B, MARSDEN

As a corollary, note that, if g is near Minkowski space, then ¢ admits
a maximal hypersurface X, This surface is unique when it is specified to
which ¢ = const standard hypersurface it should be asymptotic.

Once one has found one hypersurface on which trk = 0 (or constant),
one can find 2 whole family of them in the noncompaet case. Inudeed, in
proposition 2.1, set . = 0 and let N be unknown. Then, if we let N be the
funetion of (g, &) defined by

(k% 4 m”;;“:' AN = 0, N—1le€ ‘H:J’

which is possible by ellipticity (see theorem 1.3), the hypersurfaces defined by
the lapse N and shift X'=0 will have (d/d2) tr k= 0. Since tr Lk starts off 0,
it will remain so. In the compact case one can produce a family of hyper-
surfaces of constant mean curvature by solving (d/dl) trk= C(2) for an
appropriately chosen constant (1) depending on 4.

Thus, we have proven

2.4, Corollary. — If Wg is as in theorem 2.3, then « whole neighbourhood of X
can be written as the union of spacelike hypersurfaces on which the second junda-
mental form has zero (or constant in the compact cases) lrace.

Now we turn fo the question of finding maximal hypersuriaces for g
when Wy is far away from Minkowski spaces, but connected to it by » curve
of space-times,

A possible procedure to deal with this case is based on the global inverse
function theorem which we reeall in the following. (Sce, e.g., [68] for a proof.)

2.5, Lemma. — Let E and F be Banach spaces and f.E—~F a C' mapping.
Assume Df(x) is an isomorphism for each zeE and cither f is proper or [Df(x)] =&
for some € > 0. Then {.E—F is a diffeomorphism of E onto F.

We now give a plausible conjecture with possible indications of a proof.

2.6. Conjecture. — Let g, £° (RY) satisfy the strong energy condition
Ric ('g,) > 0, and suppose there exists a curee of space-times Wg(0) € L5,, 0201,
such that Wg(0) = Wg,, Vg(1) = 5y = Minkowski metric on R4, and such that,
for ecach o, Ric (‘g(g))=0.

Then there exists an asymplotically flat maximal hypersurface for Vg, (and
in fact a foliation of space-time by them).

Indications for a proof. Let E be the component of Rie>0 space-times
containing g, and for &> 0 let S, be those ge E which have & maximal
glice on which

g:(&, &) »ep(&, &) for all veetors &

(y = the REuclidean metric on R?).
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By the preceding theorem, § = | S, is open. To show that § = E we have
£2>0
to show that S is closed as well, that is that, if Vg, -~ g, with ‘¥g, €S, then

Wge S. Now we note that, if g, e §, for all », then the inverse of D, P is
uniformly bounded below, independent of n, so the argument of theorem 2.3
ought to enable us to prove that 'Y¢ has & maximal slice. Thus the problem
then rests on the possibility of preventing the maximal slices in the metric t9g,
from turning null-like as n-— oo, i.e. of arranging g, to lie in a fixed S,.
It is plausible that this ean be arranged by making suitable hypotheses on
the space-time singulavities. (Neofe. A previous study of Avez [44] for the
existence of maximal slices in periodic space-times with compaet spacelike
sections encountered the same difficulty. The results of CHENG and YaU [69]
are crucial in overcoming this difficulty; see [43].)

3. — Applications to linearization stability.

Linearization stability for the vacuum Einstein equations in the case of
compact hypersurfaces was discussed in the previous paper. Here we shall
discuss the time-symmetric asymptotically flat case. Near flat spaece, lineariza-
tion stability by using weighted Holder spaces and conformal methods was
proved by CroQuET-Brunat and DeseR [53] with special asymptotie condi-
tions and in weighted Sobolev spaces, by using a direct approach, by FIscHER
and MARSDEN [27, 35, 70]. Here we prove linearization stability for the general
time-symmetrie asymptotically flat case following CrioQuUET-BRUHAT, FISCHER
and MARsSDEN [71].

As in the compact case, we shall consider the map

DMK,y — M)y, ]

- 2,582 9

(4, ) > P(g, 1) = (H (g, 7), S (g, ) .

(Here we use notation from [1], but have dropped the superseript 2 on § and 1
on /A, denoting 2-tensors and 1-forms, respectively, and the subseript d on M
and A, denoting densities.) The associated constraint space is then written

(6: = (Co)es (6)] KT N dH0) =
o {(g’:’)e 4 d(Ra) YS’_MH(R’)]_;Y’(g, 7)=0,8,7 = 0} .

We shall always work with space-times that admit hypersurfaces of constant
or zero mean curvaiure.

There are two technical points requiring attention when studying the asymp-
totically flat case. The first is that the evolution equations take place in H+
spacees, not in M7, spaces. This is apparently not serious however, for the main
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difference is that M7, allows a variable M/r term, while this is » « constant of
the motion » in the evolution of a space-time from Cauchy data,

The second difliculty is more serious. It is that the splitting theorems for
differential operators do not hold in general and great care is needed in their
application. Thus, to show that D@(g, ) is surjective and that its kernel splits,
we must proeced direetly, rather than appealing to injeetivity of the adjoint
Dd(g, m)*. Thus in the following theorem we must use special arguments to
show that D#(g, 7), D7(g, 1) and DD(g, 7) are surjective, and that their
kernels split.

Using this direct approach, we prove our results in case x=0, that is
on the time-symmetric initial data set; for the case tr  a constant, see COQUET-
BRUHAT, Fiscukr and MArsDpEN [71]. For Friedman models, see IVEATH [72].

In the following 1heorem, one may use either weighted Soboleyv or Hélder
spaces.

3.1. Theorem. — Let (g, 1) € (6,¢)2,. Then H(g, ) = 0 is linearization stable
at (g, ) and (%,)", is a smooth manifold in a neighbourhood of (g, 7).

If (g, 7)€ (6,)? 15110 then Jly,7) = O is linearization stable at (g, ) and
(€5)°_ 15, 15 ¢ smooth manifold in a neighbourhood of (g, 7).

Let

(‘f,a = (%er):,a q ((ﬁo)f—l,m-l ’
and let

(é.‘.’.n": {1 e M2 x 87 40 |R(g) = 0 and 7 = o,

the sel of initial data for time-symmelric space-times. Then the equation
D(g, 1) = 0 is lincarization stable at (g,0) € €*°,, and €7, is a xmooth manifold
in a neighbourhood of (g,0)€%€?,.

Proof. Ax in the compact case, it is enough to show that DX (g, 1), D7 (g, )
and D@(g, 0) are surjective and that their kernels split. The linearization sta-
bility results and manifold assertions for these maps will then follow from the
implicit function theorem for the spaces M? ;.

Let (R, @) be an infinitesimal deformation of (g, 7). We shall consider
special (&, m) to prove that DA(g, =), DJ(g, 7), Dd(g,0) are surjective,
First let kb = fg, fe M?(R%. Such an f represents a pointwise conformal
deformation of 4. Then, using the general formulae from 1], we have

DA (g, 7)-(fg, ) = Y#(g, M} — 2D ulg) 4 2((7') — L (tr 7' g} .
Sinee (g, 1) = 0, we get

D3t (g, )+ (fy, 0) = — 2(A, ) plg) -
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Since A, i M7,(R®) — M?_, . (R®) is an isomorphism (unlike the compact ecase),
the map

[>D#(g, 7)-(fg, 0) = — 2\, ply)

is an isomorphism. Heuce D#(g, 7) is surjective.

We now show that we can split 874 X 82141 @5 8 topological sum E, @ E,,
where E, = ker D#(y, @), and E, is a closed complement. Indeed for (k, w)e
€ 873 X8, 511y let f Dbe such that DA (g, 7)-(fg, 0) = DA(g, ) (h, m). As
above, there is a unique solution f. Then split (h, w) as

(hy ) = (h— fa, w) + (fg,0).

The set of such (fg, 0) forms the closed space Z,.
For the equation f(g,1) = 0, we proceed similarly. 1f we take 7(g,2) =0
and h =0,

D7y, 1) (0, ) = — 28,0,
Which is surjective on deformations o = (Lyg)*u(g), where X e2? (RY), sinee

8,02, AR~ A7 s R7)

3

N3, (Lyg),

is an isomorphism as we saw in seet, 1. (In the compaet case ker 8,0, = Kil-
ling vector fields on M.)

Again, from surjectivity of 1f(g,7), we can split K2y %82 4ea topolo-
gieally as

Spa X8 s =kerDJ (g, 1)@ E,,
where F,= {0, (Lyglu(g)|X e2*

2,0
*(k, w) for some (k, w)}.
Now we consider the equation ®(g,7) = 0. For h = fg,

(R*) and X solves — 2 3,(Lyg) = D#(g, 7)

DG, 2)(fg, ©) = (3 (g, 1)f — 2(AN)plg) +-

+ 2((x’yY — Mtra')g) o, — 2(8,0 + 8,7 + L{tra)(grad ) — .-z-df)) =

= (—— 2N u(g) + 2(=) — J(tra')g) 0w, —28,0— (tra) aradf - :.’n-dj) ’
where the second equality uses the fact that (g, 7) satisfies the constraints, The
problem here is to show that D®d(g, ) (fg, @) is surjective. This difficulty is

related to the use of the tra’ = const condition to get surjectivity in the
eompaet case (sce, in [1], theorem .5'3) Our present argunients assume = 0.
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Then
Dd(g, 0)-(fg, ) = (—' 2 (Al),lt(!]), -2 89(’)) ’

which we have just seen is surjective onto M?_, ;. , %A%, .., with o’s of the

form (L) ulg), XeZ?,. As in the previous cases, the spaces split:
Sy K 87,4 = ker Dd(g, 0@ E. .

This splitting is obtained as before: namely (k, w) e 8%, %x8; ,,, can be
t . A ’ 68 S Ps-1,041
written as

(hy ) = (h—fg, ©— (Leg)’pel)) + (fg, (Leg¥ ulg) ,

where (f, X)) satisfy
Dad(g, 0)-(k, w) = DD(g, 0)- (fg, (Lx9)’ u(9) = (— 2N pelg), — 28, LxgV’p(g)). O

Remarls. Let

M2, = {ge 2, R(g) = 0} .
Then
€= M5 {0}

If we use the same method of proof as for (4,7, it follows that jf.‘, is & smooth
manifold, since, for R(g) = 0, DR(g)-fg = 2A,f is surjective. Hence one can
use this argument to show that ’}ffﬁ, the time-symmetrice initial Cauchy data,
is & smooth manifold. Note, however, that this procedure is not sufficient to
conclude that @(g, 1) = 0 is linearization stable at such a (g, 0) eé’;‘,d, since
one must set 7 = 0 after one takes the variation of the divergence constraint.
This is the reason the full argument of theorem 3.1 is needed. Here is an al-
ternative, slightly more flexible argument that the time-symmetric initial data
sets are a smooth submanifold of .#7 .

Proof. We consider the subset R(g) = 0 of .#],. The mapping g+ R(g)
is C*. Ttz derivative at any point g is

DR(g)-h = A(tr k) - 83k — Ric(g)-h.

We show that it is surjective and its kernel splits, Indeed

1) Take h =k 4 gz, with 7 a sealar funetion in M2;, and k€87,
given. Write

DI(g) b = 3\, + A -+ 88k — Ric(g)- k.

The mapping 7> DR(g). k is then surjective by the invertibility of A,.
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2) We show that we can split ke 87, as a topological sum
h="0ho h

with k,eker DR(g) and h,e K,, where E, is the closed subspace of S} 5 consisting
of tensors of the form Ag, with a scalar function chosen so that

h— g'g eker DR(g),

which is always possible, in a2 unique way, by what we have just seen. O

In 3.1, the choice @’= (Lrg)u(g)— =r allows one to treat the case
trx = constant, See [71].

Using the method of proof of theorem 5.4 of [1] and theorem 3.1 above,
we have the following linearization stability theorem for time-symmetric
asymplotically flat empty-space solutions to Einstein's equations.

3.2. Theorem. — Let (RY, Wg,), Wgye Z7,, be an asymplotically flat Einstein-
flat space-time, Bin (Wg,) = 0.

Let iy: R*—>R* be an asympiotically flat spacelike embedding of R?® into R* such
that Xy = iy(R®) is a moment of time symmetry, ks = 0 (and gx,€.42,(R%)).
Then the Einstein empty-space field equations

Ein (‘"#g) = 0

are linearization stable at ‘g, on RY, regarded as the mazimal Cauchy develop-
ment of (gs,,0). In particular, flat space is a point of linearization stability.

Itemarks.

1) For linearization stability in the asymptotically flat case we restrict
ourselves to spatially asymptotically zero deformations Whe S87,(RY), and then
we find & curve of asymptotically flat exact solutions in Ly

2) The space-time condition corresponding to the conditions here is the
absenee of a timelike Killing field. Compare sect. 5 of [1] and theorem 4.1
below. - e

3) In the asymptotically flat cases, an extra argument is needed because
the Cauchy data lie in M?, spaces, whereas the evolution oceurs in H-
spaces. However, since the Cauchy data (g, ) are in My X844 they are
in (We», We-t#) (ordinary Sobolev spaces) on each compact set of X, ar R3,
On the other hand, we know that on a compact set of R, Hss W=» if p>2.
The evolution of the Cauchy data is governed by hyperbolic cquations and
the corresponding existence theorem is in fact. valid in H* (function H* on

27 — Rendiconti S.I.F. - LXVI1
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each compact set). Thus, one gets linearization stability in this sense. (The
problem of finding a suitable function space which captures the asymptotic
behaviour and which is preserved by the evolution equation remains open,
however.)

4) For a study of existence of solution to the constraint equations on
a noncompact manifold using conformal methods, see [17, 29, 73],

4. - Geometric applications of maximal hypersurfaces.

In this section we shall use the evolution equation for tr &, and also the
expression of trk itself as an elliptic differential operator, to derive some
theorems concerning maximal (or constant tr k) hypersurfaces.

We first give an old result of Lichnerowiez [65] concerning stationary space-
times, which is related to the Komar expression for the mass of a stationary
space-time [13]. We stress, however, that the results of Lichnerowiez do not
assume the existence of maximal hypersurfaces.

A space-time (V,, W) is said to be stationary if it admits 2 one-parameter
isometry group, acting cffectively on ¥, with timelike trajectories. It is sup-
posed moreover that there is a diffeomorphism which maps 17, onto X' xR,
where X is a differentiable 3-manifold and where the timelike trajectories nre
the pull-back of the lines {x} % R.

A stationary space-time is said to be static if the trajectories of its 1-parameter
isometry group (equivalently of its Killing vector field £) are hypersurface
orthogonal.

4.1. Theorem (LICHNEROWICZ).

i) A stationary space-time, vacuum or satisfying the strong energy con-
dition, and with X compact, is static. If it is vacuum or if ¥R, ;= 0 implies
DR, =0 (mixed energy condition), then il is flat.

ii) A stationary vacuum space-time with X complete and |§|* = — £.£* lond-
ing uniformly to 1 from below at infinity is flat.

Proof. Suppose first that the space-time is static. Choose the slicing
(lapse N, shift X) of the space-time to be associated with the Killing field,
i.e. X = 0. In such a slicing * = 0 and ¢ is independent of A. Thus the evo-
lution equation for tr & (see proposition 2.1)

% (tl' ’v) = (N’p ok ’}' AN)— X d(tl‘ k):~}_ AY“‘R,L.L

reduces to

AN 4 NWR, = 0;
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if the spacelike slices ¥ are compact, this equation implies YR, . = 0 and
N = const; the evolution equation for & then gives N@R ., = 0. Therefore,
since N 0 and k=0, the Gauss equation and the mixed energy condition
gives Rie(g)=0, so ¢ is flat. The whole space-time is thus flat.

When the spacelike sections are noncompuct, the equation for ¥ has a
unique positive bounded solution N if WER,,>0and appropriately approaches 1
at infinity. Only in the case R, =10 can we deduce from the equation
that ¥ = const, and the flatness of the space-time follows as Dbefore.

Next we consider the stationary ecase. The equation of cvolution for tr k
still gives the result in the case I is compact under the added hypothesis that
trk = 0, but even with this supplementary assumption it will not lead to a
conclusion in the noncompact case.

The hint, in the stationary case, is not to use the evolution equation for
tr & but another equation obtained by taking as 4-vector off the 3-manifold
not its normal but the Killing field (and here X should be considered as the
quotient of V', by the isometry group rather than as an embedded hypersurface),
A straightforward computation, using for instance orthonormal frames, gives

AU~ Uk'h ++ UWRic(§, &) = 0,

where U= — £,£% is the square length of the Killing field, %-£ is the square
of the vorticity tensor associated with its shift and A the Laplace operator
(A =—V-V) in the positive quotient metrie on X, In the case of compaet X
we deduce from this equation that, in the vaeuum case, U= const and »=0.

The space-time is therefore static, and the above conclusions apply.

If X is noncompact the conclusion follows from the maximum principle,
if U is to be a positive funection attaining its minimum on X (and not at
infinity).

To complete the proof, we note the further identity for stationary space-
times:

URyé*n#t=—V-(grad U +- X-n),

which implies Ry, = 0 if X is compact and if Ry, &Anx vanishes only for vacuum
space-times (mixed energy condition). [

If the space-time is asymptotically flat and if U has the form

the above identity implies

J.UR;y.flh"‘u(g) = 8

X
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and, thevefore, M0 if the sources satisfy Ryp&2hn = 0. Such an inequality
is satisfied by the perfeet fluids. In the static case it is a consequence of the
strong energy condition. If we restriet our attention to space-times which are
asymptotically spherieally symmetric, i.e. have a Schwarzschild-type asymp-
totic behaviour, the mass we have just computed (called the Komar mass)
is identical with the usual, or ADM mass. However, in general, they are dif-
ferent and the above proof of positivity of the (Komar) mass does not help
much with the proof of positivity of the usual mass. See [23] for further details.

A straightforward consequence of the evolution equation for tr % is the
following theorem due to KoMair [15], which does not assume stationarity:

1.2, Theorem. — Suppose (Vy, Vg) is a space-time satisfying the mixed cnergy
condition and which admits a slicing by compact maximal hypersurfaces. Then
the spacetime is flat.

Proof. If trk = 0 for each Z of the slicing, we have on each slice

AN + N(Ek 9k, ) =0.
Therefore, if the slices are compact,
k=0, PR, , =0 and N = constant on each slice .
The evolution equation for k and the mixed energy condition then implies

Ric(g) =0, i.e. g is flat .

The space-time being empty, with Cauchy data (¥ =0, ¢ flat) is flat. O

We note that the same proof shows that the theorem is still true if we re-
place « maximal » by « with a given constant tr ko

It is also implicit in Komar’s work that maximal hypersurfaces must be
isolated or be moments of time symmetry. The following holds:

4.3. Proposition. — Let (Vy,Vg) satisfy the strong energy condilion and*have

a compact Cauchy surface X on which tr k= 0. Then no other nearby hypersur-
4 . 3
face can have tr k = 0 unless X' is a moment of time symmetry.

Proof. Again, examine the evolution equation for tr &
d . . S
a (trk) = Nk-k + AN+ NOR,, — X -d(tr ¥)

e iRy z .«
at A=0 in any curve of spacelike embeddings, N 7 0. This equation implies

’ah]
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d d
i ftrl;,u(,})] . J.(Tlr ),u(J)\ - >0

or k=0 (and N = const, PR , = 0, as above). Thus, if k%0 on any
(nearby) hypersurface, ftr ku(g) must be greater, so the result follows. O

that either

From these ideas we can also see where the term « maximal » {or « minimal »
depending on conventions) arises. Indeed, in a slicing,

(\'ol 2) = —-—J.,u(/) ~J‘., tr( )p(g) = —-f;\r(tl".)/l(.]) y

Y
sinece dgfdd = — 2Nk~ Lyg and Y, is compact. Thus at X, i trk =

the function Vol (X3) has » critical point. Also,
v ¢
1 (VoL L) = — f = (e byu) =

- _f N2k kplg) — f (VN )plg) — f N2R ., p(g) <0

it & and N are not zero.
This argument gives the following variation of this type of result.

4.4 Proposition. — Suppose (Vy, V) is a space-time with Ric Vg=0 and X,
a mmpa('t Cauchy surface, with \v k = 0. KEither every compact Cauchy surface
X near Xy has volume Vol X' << Vol X, or else X, is @ moment of time symmwietry.

Remark. In{70], p. 527, there is an isolstion result related to this one.
Namely any perturbation of a flat space-time (with g flat, & = 0 on o) whiceh
sabisfies the weak energy condition and which has a maximal hypersurface
is flat. In faet, any perturbation of a flat space-time which preserves a
timelike Killing field is flat (ef. theorem 4.1 above and the equation R(g) =
= kek— (trk)? 4 239G, ).

The results of Komar may be considered as a weaker version of a uniquencess
(or isolation) theorem obtained recently by CHOQUET-BRUHAT [37-39] and
BriLn and FLAHERTY [41] for compact spacelike hypersurfaces with tr k = a,
a given constant. While BRILL and FLAHERTY base their argument on a fourth-
order variational argument {suggested by work of FRANKEL in 1961 ), CIIOQUET-
BrunaTt uses a maximum prineiple argument. The result is as follows.

4.5, Theorem. — Suppose that (V, Vg) is a nowhere source- /rec space-time
(i.e. ORic (u, 4)>0 for every timelike vector field w). Suppose that X, is a compact
spacelike hypersurface with trl: = a a qw('n constant. Then there exists no other
such hyperswrface in a neighbourhood of X,.
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Prooj. Consider a Gaussian normal co-ordinate neighbourhood 7 about Y.
There is & one-to-one correspondence between hypersurfaces X, near X, and
functions ¢ on Xy; in fact 2o can be taken as the graph of ¢. Suppose that
P(q) = a, where P(g) is the trace of the second fundamental form of Xy, Now
P(p) is a second-order (nonlinear) elliptic operator on ¢. At a critical point
T of ¢ where Vg = 0, this operator reduces to

Pp)E) = (Ag + trk)(T) = a,

where 1 = @(T) and ky is the trace of the second fundamental form of the
Z = t slice in the Gaussian co-ordinates. If K, , > 0, tr ks is a strictly increas-
ing function of 7, as above. Thus ¢ cannot have a positive maximum Z nor
a negative minimum; thus ¢ must be identically sero if Xy is compact, O

The arguments of BriLL and FLAHERTY [41] also show global uniqueness.
An anglogous argument proves that a Robertson-Walker space-time, i.e.

Ti= M %R, Wg = — dtz-{- f({) ds?, admits a maximal spacelike hypersurface if
and only if it admits a totally geodesie submanifold (i.e. a moment of time
symmetry).

A different method gives the following theorem [39] which includes the case
of flat space-times:

1.8, Theorem. — Let X, be a marimal spacelike hypersurface of a space-time
(Ve W) with constant Riemannian curvature ¢30. Then X, is lotally geodesic
(i.e. « moment of time symmelry; k = 0) in the following ecascs:

1) X, is eompact,

2) Xy is complete and k- tends to zero at infinity.

Prooj. A computation using standard identities in Riemannian geometry
shows that for a maximal hypersurface in a space of constant curvature

Alk k) + VE-Sk 4 kk(k-k—e) =0,

which gives the result by the maximum principle. [l

In the case ¢ = 0, ;= Rt aml ¥g = » (Minkowski space-time) the above
theorem is » weaker version of the Bernstein-Calabi theorem (which makes no
restrietion on %-% at infinity, but has a more involved proof); see CHENG and
Yav [69].

It is possible to give a stronger version of theorem 1.5 which also includes
the case of flat space. Namely theorem 4.5 remains valid if WRie (1, ) > 0 is
replaced by either the mixed energy condition or a generie condition (see [64]).
For the proof see TrpLER and MARrSDEN [43].
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5. — Derivation of the mass formula.

This seetion reviews the textbook derivation of the formula for the mass
and total momentum of an asymptotically flat space-time. The derivation
here is to be compared with the more intrinsie deseription of mass as the gen-
erator of time translations, given in sect. 10. Here we shall follow the descrip-
tion of Misner, Thorne and Wheeler [74], Chapt. 19 and 20, although we shall
use the linearized Einstein tensor to give a more compact presentation. (The
book of Weinberg [75] is also a useful reference.)

To define energy and angular momentum the space-time must be asymp-
totically flat. Co-ordinates can then be chosen so that asymptotically they
are the standard co-ordinates on R*; in these co-ordinates, g will be asymptotic
to the Minkowski metric 7.

For an arbitrary isolated gravitating system described by a stress-energy
tensor Ty, let g be an asymptotically flat solution to the full nonlinear field
equations

(";u' = 8x 'I’;w ]

where g is taken in asymptotically Minkowskian co-ordinates. In such co-
ordinates, the gravitational field for the full nonlinear equations with arbitrary
isolated strong sources has the same 1/r fall-off as in the linearized theory for
weak sources. Thus the flux integrals from linearized theory can be used to
calenlate the total linear momentum Pr gnd angular momentum J#* for any
isolated source, weak or strong, in full general relativity. These flux integrals,
in either the full or linearized theory, represent the total linear and angular
momentum of both the sources and the gravitational fields.

Since g is asymptotically Minkowskian, we can compare “¥g with the
Minkowski metric 5 on R* by writing

By =9 - .,
Expanding Einstein's equations in a Taylor series about 7, we have
8aly = Ein (Wg) = Ein (5 -I- ‘¥h) = Ein (z) - D Ein (5) - 198 -
-~ nonlinear correction terms =
=0+ D Bin (5)-h— [D Bin () -9k — Bin (%)) = 0 -4~ Sn‘T;'v'— 8t

e

where 1,7 and ¢, are defined by

81" = D Bin () ¥k ,

i

8at, = Ein (g)— D Ein (3)-k ,
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50 that

_r[vo" — 11 + ‘”” .

pur nr

Thus SnT;‘,f is the first-order approximation of Ein (‘%g), expressed in terms

of the linearized Einstein tensor avound Minkowski space and Vb = g — 9.
Note that

D Ein ()-"h = D Ein (5)-(‘*Pg— ») = D Ein(y)- Vg .

The nonlinear correction terms, defined by 8al.., are a «stress-energy
pseudotensor for the gravitational field», as quoted in[74], p. 465. Also
T4 =T, +t, represents the total stress-energy tensor for both the isolated
gravitating sources and the gravitational fields.

By the linearized contracted Bianchi identities (theorem 4.2 of 1]) and since
Ein(p) = 0, ’l,','; automatically has zero divergence in the Minkowski metric

ty v 2
(7, , = (T4 1,=0,
where indices are raised with respect to n#r. These equations are the flut-
space equivalent of 7' = 0.

nav

Also from sect. 4 of [1], we know that
D Ein () Wh = %(_7)“’“’7;.14!./4,1 + u)ﬁ“;«‘".ﬁ,{_ “)?;ﬂ”.un — Ol )

where again all indices are raised with respeet to »#; from this expression we
can see directly that for all A

3,(D Bin ()-¥h) = 0.
Remarkably, D Ein(y)-®k also has ¢ potential, namely
(D Bin (i) -Wh)wr = Q™7 5,
where Q«r8, antisymmetric in »f, is defined by
Q;u'ﬁ —__ nmpm,_l,u-ﬂ + N Jﬁ(l)ﬁarr‘ + nw u)ﬁyﬁ‘n_ nm- u)zaﬁ"‘ .

Sinee the 1/r fall-ofi of full general relativity for the gravitational field of
arbitrarily strong isolated sources is the same as for the linearized theory with
weak sources, asymplotically the linearized theory around # and the full general
theory are « the same». Hence the flux integrals from linearized theory can
be used to ealeulate the total linear snd angular momentum of both the isolated
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gravitating sources and the gravitational fields. Thus, we define P# by

t l [ 10 j . ] "’ ?,
" — o 4)(‘)/“'41.5;: —-lﬁn‘l‘("“’f,-(l”.r = - f()’ Tdhe = ~fl',,d
] R

R!
and similarly

I = , (ot Tp — " T3 de
As

An examination of #,, shows that it is O(1/r'), so is integrable; thus, P« is well
defined for finite sources. Jwr is a surface integral of something O(1/r?), and
$0 it is well defined as well [7T4, ex. 20.2].

These formulae nre valid in full general relativity for an isolated source,
provided the closed surface of integration § is taken in the asymptotically flag
region surrounding the source and the space-time metric (Mg is taken asymp-
totically in Minkowskinn co-ordinates. P+ and J# are then tensors in the
asymptotically flat region surrounding the sources, i.e., utuler a co-ordinate
transformation asymptotic to the identity at infinity, # is invariant, and,
under & Lorentz transformation, Pr transforms as a 4-vector (see [73], p. 169).
Similarly J/# transforms as an antisymmetrie 2-tensor.

Moreover, if the evolution equations are taken with lapse asymptoticslly
one and shift asymptotically zero, the momentum P is conserved on ¢ = const
hyperburf.we.s (in partieular the mass is conserved). This fuet follows formally
from T%7 = 0, but a rigorous proof requires a careful examination of the

‘auchy problem.

The expression for P°, which defines the total mass-energy of the isolated
gravitating system and the gravitational fields, and referred to as the mass
of the system, is given by

m = P‘): T §(hu./ tii, n)d‘\ ]()’l § (0-; i Ju.:)dhl -

= 16 f(!"f-i-“gij,;,;)d3.n .
R?

Note that m involves only the metric coefficients of the induced metric on the
= const hypersurface and not the second fundamentsl form of this
hypersurface,
Interestingly, the integrand in the volume expression for m is just

DR()’) h = ”R(}’) g = A fl.,y 8 8., = - ()’""Iu) hi o i

where y is the Euclidean metric on R and & = g — y. Thus we can write the
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mass formula as

1 .
) = e——— e . 3r
= J.Dla(y) gdir.
Rl

Note that, if the volume integrals converge absolutely, it proves via Gauss’
theorem that the surface integral expressions have unambiguons meaning;
the integrals over spheres of radius B will converge ag I — oo,

In order 1o sec that m defines a smooth funetion on .#7,, it is necessary
to rewrite the formula for m as a quadratic expression in Christoffel symbols
of g. This will be shown in detail in sect. 7.

6. — Time-symmetric initinl data sets as minima of mass,

In this seetion we deseribe an important contribution of O’MURCHADHA
and York [29). They show that the time-symmetric vacuum initial data sets
(rt = 0) are minima of the mass function among tr x = 0 initial data sets. Sinee
we have seen that every space-time (near flat space) has such a4 maximal hyper-
surface, this will reduce the question of positivity of mass to the time-symmetrie
emply-space case,

Their first result compares the mass of conformally related 3-metries on R3,

6.1, Lemma. — Let g be asymplotically flat on R3, ic. ye.#2,. Lel ¢>0
and let ¢ be asymptotically 1, ¢ —1e M?,. Lot § = @'g (i.e. § is conformally
related to g). Then § is also asymplotically flal (i.e. Je. /#},) and

16m(y) = 16am(y) — Scﬁ(gmd ¢) dS; = 16am(g) -+ 8 ‘.A,tp,u(g)
« i

(grad ¢ and the swrface integral are with respeel lo cither g or y on R3).

Proof. That § = ¢'ge. /], follows from the fact that, if¢ — 1e M?,,
then ¢'—1e M), Henee, if g—ye8},, then §—yeS?,. Thus m(G) is de-
fined. Moreover, (8, = dS, is & conformal invariant. Hence the proposition
then follows by this computation:

1 S
W) = | g PIT Gt — 150 Vo1 715, =

1 N

= ldn ff)qr GGG ), — (g4 g0)a 10" Vet g s, —
1 , —

= Tom P99 gari — gisa] Vet g S, -
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o % GGG p, Gai— G0 g:5] Vdet gds, =
167

x

8

1 )
— —_ =21 °g Y dS, = _—— rpy 0)2 daS,
= m(g) + Tom fj)q (1 —3)grad ¢)*dS, = m(g) ™ i_(,nl,‘jldq)‘d -

where the last 2 steps have used the fact that geM?,. U

Secondly, O'MureiApHA and YORK prove the following

6.2. Proposition. — Let g be an asymplotically flat metrie on R?, g — y €8],

such that R(g)>0. Then there exists a unique ¢ >0, p— 1€ a3 ,, such that
the pointicise conformally related asymptotically flat metric § = 'y, §— yeS?,,
satisfies

R@G =0.
Moreover,

m(g) << mly) .

If g is in a S?, neighbourhood of flat space, then so is §.

Proof. ¥From Lielmerowiez’ famous formula [32], if g=¢'¢, ¢>0, then
R = 8p=(Ap + R(g)) .

Sinee R(g) =0, by the elliptic theory from sect. 1 and the maximum prin-
eciple, the system

A+ Riglg =0

has a unique positive solution ¢ such that ¢ — 1€ M?,. For this solution ¢,
Rig'g) = R(F) = 0. Hence A,y = — R(g)g, so from lemma 6.1

1 1
m(g) = m(g) 4- 5 f A ulg) = mig)— e f g R(g)u(g) .
A’ R

Since @ > 0 and R(g) >0, m(G) <m(g). The integral = 0 if and only if Rig) =0
if and only if ¢ = 1 if and only if § = g.

1f g is in a 87, neighbourhood of flat space, R(g) is in a M7_, 4. neighbour-
hood of 0, and so, by regularity of the Laplacian and continuous dependence
of solutions on coefficients, ¢ is in a M7 5 neighbourhood of 1. Henee § = ¢ty
is in a 87, neighbourhood of flat space also. a
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Note that in 6.2, the space-time plays no role.
The following main result correlates the previous discussions.

6.3. Theorem (O'MURCHADIA and YORK [29]). = Let (Vs, Wg) be an asymp-
totically flat space-time satisfying the weak energy condition LTin (\Vg) > 0. Let
Y = i(R? be « maximal asymptotically flat spacelike hypersurface. Then there
exists a unique asymptotically flat conformally related melric § = q'g on Y sueh
that R(G) = 0 and m(G)<mlg). Furthermore, m(F) = mlg) i and only if

OG,, =0 and ky= 0.

Remark. Thus (§, 0) is 2 solution to the empty-space time-symmetric con-
straint equations with m(F) < m(g). Thus, this theorem proves that the mass of
maximal Cauchy data in space-times that satisfy the weak energy condition can
always be bounded below by the mass of a conformally related metric g, such
that (7, 0) satisfies the empty-space time-symmetric constraint cquations. It
will be important for us later to observe that § is in fact near flat xpace if g is.
This requires an analysis of the continuity of the solutions of the above differ-
ential equations for ¢ as a function of the metric g.

Proof. The following is an identity for any spacelike hypersurface in any
space-time (174, Mg):

Rig) = k-k— (tr k)24 206

L
where (g, k) are the metrie and second fundamental form on X oand
[R3r4 L= (4)(;L; _\") -= Kin ((ny) '((‘”Z.‘.‘s (.nZ_‘__) .

Thus, if X is maximal, trk = 0, and the space-time satisties the weak
energy condition G, -0, then

R(g) = k-k +20G, »0.

The result then follows from proposition 6.2, dJ

Basically, theorem 6.2 says that, if we add matter to an empty-space time-
symmetric asymptotically flat solution of the Einstein equations such thai the
weak energy condition is satisfied, or if we add momentum to the time-
symmetrie Cauchy data such that trz = 0, then the mass is inereased.

The fact that this theovem reduces the (local) positivity-of-mass question
for asymptotically flut space-times near flat space that satisfy the weak and
strong energy conditions to the case of Einstein-fiat asymptotically flat time-
symmetric space-times near flat space will be exploited in subsequent secetions.,
Sce [47] for further discnssion.
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7. — Positivity of mass for space-limes satisfying the weak and strong cnergy
conditions,

We now come to the question of local positivity of mass. Again, local here
means in a M7, neighbourhood of Minkowski space. We first prove positivity
for an asymptotically flat time-symmetric empty-space solution to Einstein’s
cquations, and then for a general asymptotically flat space-time that satisfies
the weak and strong energy conditions.

Before proceeding to prove the positivity of mass we mention the important
work of Regge and Teitelboim [12). Their work is relevant here because they
show that for asymptotically flut space-times the Hamiltonian which actually
generates the field equations in dynamical form must eontain the mass. The
mass arises in their Hamiltonian becanse, in taking the variational derivative
of the sealar curvature, the second derivatives of the metric coefficient give
rise to a surface term which does not go to zero at infinity, and in fact is just
the negative of the mass. The mass is then added to compensate for this sur-
face term (see proposition 7.1),

Thus, they show that the Hamiltonian which generates the dynamical
equations for empty-space asymptotieally flat spaee-time is

Gprlg, 1) = 167m(g) + f (Not(g, 7) 4 X J(g, 7)) = 16am(g) -+ Gy )
Rt

where G, = ﬁN%’—{— A7) is the generator of the dynamical equations for
space-times with compact Cauchy hypersurfaces; see sect. 2 of [1] for the other
notation.

In the time-symmetrie case, the relevant generator reduces to

16am(g) = Gy, 0) = 167um(y) — | NR{g) u(g)
Rl

for a given lapse N >0, and N asymptotically 1, N — 1 ¢ M2, (R%), so that
m is taken as 2 map

M, —~R.

The importance of #(g) is that it does not contain second derivatives of the
metrie coeflicients. Indeed, from the volume integral for the mass,

16am(g) = f (N g G — ) Vdet g) 32,
A ' .

we sec that the second-derivative terms of the metric tensor that oceur in the
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formula for 16zm(g) are exactly the sceond-derivative terms that oceur in the
scalar curvature

R(g) = 90" Gy — o) + D3 00" — D6

Hence #i(g) contains only first derivatives of g and these oceur ax produets.
These product terms are in I, by the lemmas from sect. 1. It follows that
m{g) is a C® function of g. Also, since m and 7 agree on j:‘,, m restricted to
.//0;’,., is & C® function of g as well.

Now we compuie the derivative (with respect to g) of m(g). This is the cru-
cial computation in the Regge-Teitelboim analysis. The asymptotic conditions
that we use are reealled as follows:

gis = 0u+ 0(1) '
Jise =0 (,Tl,) ’
guni=0(3),
hy = ()(%) ,
hije = 0(;1;),
N =1+ o(lr'),
X, =0 (rl)

1
N,i,i =0 (;3) L

One can use the lemmas of sect. 1 to verify our assertions, or, to see the
results quickly on a first reading, one can use the following two elementary facts:

as r—o00.

1) A volume integral J'j.u(g) is convergent if f = 0(1/r**), ¢>0 (and
Rl
may or may not be convergent if f = O(1/r)).
2) A volume integral which is & divergence
J.div X ulg) =§X*"d&
R* ®

converges if X =:O(1/r=), and converges to zero if X = O(1/r**%), ¢> 0.
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©.1. Proposition. —~ Let Wi../2,— R be defined by

1627(g) = 16zm(g) —lec(g},c(g) .
Rl

Then, for heS?,,

16z dnmi(g)-h =J'N LEin (g) - hu(g) —J'(Hess N 4+ gAN)-hulg) .
R} A*

Proof. First we compute the derivative of — J‘Nlt’-(y) w#lg). From p. 387 of [1],

A [¥Rigyut@)) b = — [N DR(g) - utg) - J¥R@) 3 g =
R) RI

- J‘N(& Sh 4+ A(tr b)) u(g) + fNEin (@) Tyelg) -

A f-3}

Now Ein (g9) = 0(1/r3), h = 0(1/r), N = 1 - O(1/r), so N Ein (g)-h = O(1/rY),
and hence the last integral converges. The first integral, however, involving
second derivatives of % like 88k = O(1/r%), may or may not converge. If
N = const, then this integral is a divergence and so does converge,

To evaluate this first integral, and to see if it does converge, use the identity

(7.1) — N33k 4 Atrk) =— (Hess N + gAN)-h—
— §(Nd(trh)— (trk)dN + h-dN 4 N 52)
to get

— J'N(s 8 + Atr h)u(g) = — [(Hess N + gAN)-hu(g) —
R? R

— [8(N(3h +- d tr k) u(g) — [3(h-ax — (or iy am) i) .
R* R

Consider first the last integral. Since h = O(1/r), trk = O(1/r), dN = O(1/r?),
the integrand is a divergence of something O(1/r%). Hence converting it to a
surface integral shows that it is zero. The next to last integral is the diver-
gence of something of the order 8k = O(1/r®), since N =1 4+ O0(1/r). Hence
the next to last integral is finite, and in fact is exactly — 16zxdm(g)-h, as we
shall see.

The first integral, involving second derivatives of N y like Hess N = O(1/r3),
contracted with h = O(1/r), is O(1/r%) at infinity and hence is a convergent
integral,

Thus — f N(33h + Atrh)u(g) is convergent.

Rl
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Althogether, we have

(1(—-[ NRig)ulg)) -k = [N Bin (g) - Iyelg) —
S Lo

— [(Tess ¥ + g AN)-hu(g) ~ J' S(N(Sh -+ dtr k) ulg) -
R‘I RI
To evaluate dm(g) -k, we use the volume expression for m(g) to get
lozdmig)-h = —f (N("‘”.’I“(.‘hk,i—!Iu,k) + IR (Gur s~ Gi1.0)) Vdet Q).! dsr +

Rl
[ Ot — by Vit ) 0 +

RS
-1 J‘(Ng”g“(g,-‘._,- —Giix) % (tr h)Vdet g) a3z .
2 W
R’

Now the terms involving derivatives of ¢, gu., == 0(1/r?) are all multiplied
by h = O(1/r). Henee these terms are the divergence of something O(1/r?)
and hence integrate to zero. Similarly, we can complete kb, ,—hk,, to
By — By BY products of terms like k15, = O(1/rY). Since these terms oc-
cur as divergences, they integrate to zero. Hence

16z dm(g)-h = | (Ngigsithip,; — hisp) Vdet (}),,(laa: =
R

= ‘ (.\'g“g;"(l:,k,,—Jz.-m.)\/det ) dir =
R

= | (¥ (W — g(tr b)) Vdet g), dor = | S(N(3h + d(tr k) ulg)
A A
thereby identifying 16z dm(g)-kh with exactly the negative of the «extra

term» that occurs in the variation of —J'N.R(_q)/z(g) in the noncompact
(asymptotically flat) case. O R

Remarks.

1) Perhaps the main point of this proposition can be summarized sche-
matically as follows:

(variation of g)-(Dg) = () Dg = O(1/r?),
and so the integral of its 1ii\'ergence is zero. But

(g) - (variation of Dg) = (g)-(Dk) = O(1/r%),
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and so the integral of its divergence is finite, and is the mass integral. This
difference arises in the behaviour of these integrals because g,;,= 8, -+ O(1/r),
and these constants are annihilated in Dg = 0(1/r?). This is the reason why
the terms appearing in dm(g)-k behave so differently. If ¢ = O(1/r), then
there would be no difference, all of these terms would be zero. Similarly,

J3(8-ax — (tr hyax)utg) = 0,
RS

whereas

[3(N(3h + der)) p(g) #0 .
R

2) The variation of the combinations of ¢'s that oceur in the integrand
of m(y), riz.

970 G — Gis) Vdet g

is not a tensor. Note that the variation of an expression involving first deriv-
atives of g may or may not be a tensor, c.g. D(I'})-h is a tensor, whereas
D(g*! ")k is not a tensor. Since the ¢’s that occur cannot be written as an
expression invelving Christolfel symbols alone (the criterion for the variation
to be a tensor), the variation of the above expresion is not a tensor. What
we have shown however is that it differs by a tensor by terms that integrate
to zero.

3) The identity 7.1 is analogous to the identity used in potential theory
Py — pa Ay = div (. Voo, — 9, Vi) .

As in proposition 7.1, the difference of an operator and its formal adjoint is
the divergence of an antisymmetric bilinear form.

The above proposition contains a key part of the Regge-Teitelboim analysis.
In taking the variation of the ADM Hamiltonian, the second-derivative terms
of the sealar curvature gave rise to two surface integrals. One of these ranishes,
but the other is 16z dm{g) %, which does not vanish. Thus the ADM Hamil-
tonian does not generate the evolution equations. To get local differential
equations from Hamiltonian equations, REGGE and TEITELBOIM thus conelude
that the ADM Hamiltonian hus to be supplemented by 16zm(g).

Now we return to the positivity-of-mass question and restrict ourselves
to N =1, so that

16 4 (g) - b = J‘Ein @) hulg) -
RO

28 - Rendiconti 8.1, - LXVIL
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Thus ge.#?, is a critieal point of m if and only if Ein (g) = 0 if and only if g
is flat. _

The same is true of 7 restricted to J?j’.‘,. However, because we are restriet-
ing ourselves to a submanifold, we need a further argument.

7.2, Proposition. — Let m:./?f'a—>R be ™ vestricted to J?:,,. Then _r/e../;:’t,
is a eritical point of m if and only if Rie (g) = 0 if and only if g is flat.

Proof. For a critical point geh/?f‘(, of m, we require
dm(g)-h =0
for all
he T, M7= the 8, |A(tr k) + 88— k- Ric (g) = 0} .
Thus since dm(g)+h = dinifg)-k, we have
16adm(g)-h = ,(8 Sh 4+ Atrh)uly) =J‘h-l{ic (Hulg) =0
R‘l Rl
for all he T, Jf:d.
For he 2, we do not have a L, orthogonal splitting. However, as in
sect. 4, we do have a topological splitting
87,= 52, {fgif € M2 (R*)}
and §%, = ker DR(g).

Thus we can split ke 87 as
h=h-+1g,
where h € ker DR(g) and f is the unique solution of
DR(g)-h = DR(g)-fg = Altr fg) + 38(fg)— (fg)- Ric (g) = 24f

(since R(g) = 0).
Thus, if

dm(g) -k =fﬁ-Ric g =0
Rl

for all he 7, J?;,d= ker DR(g), then for any Ahe 87, with a j satisfying the
above, i = k— fgeker DR(y), and so, since R(g) = 0,

am(g)-h = [(h— 1g)- Ric (g)ptg) = [h- Rie ()pig) = 0,
o A

for all ke S?,. Thus Ric(g) = 0. ;]

™
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By arguing as in [70], sect. 4, we see that the flat metrice gy in proposi-
tion 7.2 is isometric to y by a diffeomorphism f:R? - R? asymptotic to the
identity, 7.e. g, is in the orbit of y by Z,(R%).

We want to prove that there is & neighbourhood # of y in A2, such that,
for all ge #, m(g) >0, and m(g) = 0 if and only if g = f*y for fe & (R3). For
this we shall need the second derivative of m.

©.3. Proposition. - The second derivative of m:../4,— R, by, hoeS2,, is
giren by

16 d*m(g)(h,. hy) =
=} J'(th-\*h:— 2 8,y 8,y — (L tr by d tr hy— Shy-d tr by — d tr by k) pelg) -

RQ
-4 é"l{i(- (@) (By X hy + by < Iy plg) — él.Ric (9) - (b tr By 4 By tr hy) p(y) -
A A

+ ‘l'J‘R(y)(m- a)(tr ho)pe(g) -
RS

Remark. Another useful expression for the sccond derivative is

16 (2mi(g) (hyy o) = :% ‘(h‘l A’_'e_ by o, Sai;'.'_ trky 3, Sahﬁ)ﬂ(g) -+

R!
-4 .‘_.—'Hi(-. () Chy g - By 5By pe(g) — é[Ri(e:(g)-(Ic, trhy - hytr b)) pulyg) -
A A

1 A R ) )
A*
wheve b= h— 1(trbyg.

Proof. ¥From proposition 7.1,

167 ATi(g) - by = f(Ein (@), b plg) -
Henee

163 d=m(g)(hy, hy) = '1‘\1) Ein (g) - by, by ulg) —

—[<Bin(g), by xhs+ hexch p(@)] - 1[<ED (1 by 1 plg)

where the middle integral comes from variations of the ¢'s which contract
Ein(g) and 2

<Ein(g), B> = g*g'(Bin(g)).; b
and
(hy X hy)y; = (kl)ik(hz)kj

is the product of symmetrie tensors.
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From proposition 4.1 of [1]

D Ein (g)-hy = (AL, — o, 8,k — Hess (tr ko) —
— (A(trky) + 33h)g 4§ ((he-Ric (9) g — Rig)h;) ,

where
Aph = Ak 4 Ri*hy;+ R hei— 2R ha®

is the Lichnerowicz Laplacian and where Ak = — g*h, .\,
For a 3-dimensional manifold,

Ry, = 0 Ry— &, Ry -+ g, RO— gan Be; 4 FR(G)( 90— 6%60) -

1<y, AR = Y by, Ay ++ Y Rie (g) - (hy Kby + he X hy) — R (he) (M) =
= L by, Ay + L Rie (g) - (hy X by + ho X By) —
— ((tr h)(RyRie (g) -+ (0r B)(Re-Ric () — Rie (9)- (X ha + ke X I) +
+ Y R(g) By Ry — (tr Iy) (T hg))) = 3y ARy 4 § Rie (g) - (hy X By 4 by X by) —
— Rie () (Ia(tr ky) + Ro(tr hy)) — LR(g) (b - by — (tr By)(tr hy)) .
Thus
hy D EIn(g) - by =
= L(hDhy+ hya, 8, — by Hess (tr ko) — tr iy(Atr by 3 8h,)) +
+ 1 ((I:a-Ric () tr by — R(g)hl-hg) -+ 3 Ric (g) - (b X b 4+ By < By) —
— Ric (g)* (Ma(tr hy) + oty k) — Y R(g)(hy - he — (tr &y) (B0 hy)) .
Also
— Bin (g)+ (hy < hy + by xBy) = — Ric (g)(hy > hy + by X By) + R(g) Ry~ he
and

1{Bin (g), b tr b = 3 ((tr k) Ric (g) - by — S R(g)(tr Iy)(tr h.)) .
Putting these three terms together gives the pointwise expression

D(Iin (@) k> pelg)) he = § [hy- Dby Ty -0t 85—
— Iy Hess (tr hy) — tr =y A(tr ko) — (tr h,) 3 8ky] -
+ L Rie () (R 5 g+ b X hy) — L Rie (9)- (Raltr g) 4 Ro(tr ) 4 T R(g)(Er Ry)(tr ba)



MAXIMAL HYPERSURFACES AND POSITIVITY OF MASS 437

Finally, integrating by parts over R?* gives the proposition. Note that for
these second-order terms we may freely integrate by parts because the divey-
gence term can be converted to a surface integral which vanishes at infinity.
For example

J.h, Ah, 1(g) =J'Vh,~Vh=y(g) +J.8(h,-th)/4(_r})
RI Rl

and

[ 8(hy+ Vho) gy = —3§(h,)-‘f(h2),,,,,d‘s'~ =0
R?* @
because hy Vi, = O(1/r3).
The form of the second derivative given in the vemark follows from

D Ein(g):h = } (A — o, 8]~ (5,8,k)9) + 1 ((A-Ric (9)) g— R(g)h)
and nothing that

(% Ric () g— R@E) = ((b-Ric () g— Rig)h)
and

Ah = Ah— LgAltr k) = Ak + RiFhy + Rty — 2R k00,

s0 that the algebraic terms remain the same. O

The formula simplities greatly in certain cases of concern. If Ein {(g) =0
and 8,2, = 0, then

1628mg) " (s, o) = &y~ Asgutg) = 3 [l pulg) — & [t by At ho)plg) =
A A A
= }|Vhy- Vhopu(g) — }J (d tr Ry)(d tr Ry pe(g) .

A R?

It Ein(g) = 0, hy= 0 and tr h, = 0, then

163 AT (g)hy, h) = §[Vhy-Shoplg) = 3R, hed,y

m

which is just the «energy » inner produet. The estimates in sect. 1 show that
this is well defined.
Now we wish to factor out the group of co-ordinate transformations D11
by constructing a slice to this action. We do so by using harmonic co-ordinates.
Let § = {ge ]|l = 4"}, = 0}, ie. those metrics on R® for which the
Buelidean co-ordinates are harmonie. We let ['= I"'= ¢g“I'*, and do not
decorate the S with ?,.
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The next step is to show that & and S ﬂ,/?:'_d are submanifolds and that
their tangent spaces are summands in an (,>,, orthogonal decomposition of
tensors. The argument is similar to that for 47, and 47, given in sect. 3, only
considerably more technical

7.4. Lemmu. — In a neighbourhood of the Euclidean melric y on R% 8 <./,
is « C* submanifold of M7, with tangent space at y given by the Banach space

T,8 = E = {heS},3, (h— (tr, h)y) = 0} .
Proof. We first show that 8%, splits as a (,»» orthogonal topological sum

S0s= B\ ® E;,

where
Ey= {(h)y = + 1A7Y@,u, — S,u)—} (A710,1,)0,lu, € M4 S82,.
Indeed, let ke S7,. Let

a’j = a‘ h,‘,‘ - %81 h“ € M:—l.l)‘i'l
and let

w; = —2a,— 30,A7'C, q,.

Note that &;u,= — 3 3,a; since A,=—¢,¢; and ¢; and A;‘ commute since we
are at flat space. (V, and A" do not, in general, commute for g=y.) Define
he as above and let &, = h— h,. Then k€ E, since

Sphy— ddtry by = 8 hi;— 30, hii— Sulke) s+ 304k =

= Q;hy— 30 hii— §S, AR, u, + O, u) +
18,0542, 140, + 18,871 @,u, -+ 8, u) — §8,(A)'8, w) 6, =
= a,+ H u, -+ 30,47 8, a,—58,A7'0,a,—

-}

by definition of ;.
If hye E, and h,€ Iy,

Chy, hedr = J'Vh.-vn, & = J.h,-A, hy A3 =

=— f{— Lhy-Lyy - diryly Su} d%r = — [(8-, hy— 4dtryby)ud’e=0.
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Thus E, and E, are {,>, orthogonal. Thus the splitting is algebraic. Since E,
is the image of a continuous linear map and E, is closed, E, is closed and the
sum is topological (see, e.g., [76], lemma 1.3).

In a neighborhood of y any ¢ can thus be uniquely written ¢ = y + h, + kg,
where h; € E;. Consider the mapping p of a neighborhood of zero in E, ® E,
to 27, ,., (vector fields of type M7, . by

(Byy hs) > (y <4 b+ he)'r(}’ + i+ k).

By the multiplication and eomposition properties of weighted Sobolev spaces,
p is clearly C®. The partial derivative with respect to k. at (0, 0) is the map
E,—Z7 4., given by b 8,(h— 1 (tr h)y). This map has kernel zero since
E, and E, are {,>; orthogonal and the map is onto. Indeed, given a,€ 4 18419
define u,= — 2a;,— $8,A-19,a, as above and let h, be as in the definition of E,,
then 8,(h— (tr h)y) = a as in the above caleulation.

Thus, since p is a submersion by the implicit function theorem, § is a man-
ifold near y. O

The same type of reasoning will prove that, near yp, ulff,dﬂ S is a sub-
manifold of .#?;. However, since we shall need the {7 orthogonal decompo-
sition for the subspace Ty(y/?‘:dﬂ S) explicitly, we shall give some additional
details.

7.5. Lemma. — There is a neighbourhood V of y in M?, such that, for ge V. y

875 admits the {,>, orthogonal decomposition as a topological sum

87,= Bilg) @ Bulg),
where

Bi(g) = {he87,4,(h) = A,(tr, k) +
+ 8,3,k — Ric(g)-h = 0 and a,(h) = §,h — ddtr, h—2-I'(g) = 0}
and By(g) = {he 82,|, there is a Ue My and we 22, such that
h = k( U,:u) =—gU— A]Y(Hess, U — Ric (g) U) +
+ ¥870L,9— gd.u) 4 ATH(I(g)-u)} .
In faet, .,/?,’_d_r] SNV is a submanifold of M 5 with tangent space given by
T(A25N 8) = Big),
ie. he IT,(.42, 8) if and only if

Ay(tr, k) 4 83h— Ric(g)-h =0
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and
3,h— Yd(tr, by —h-I'(g) = 0.
Remark. We are working near y since that is where we shall use the result.
However, the proof works on the orbit of y just as well. At y itself, 7. (A7, S)

consists just of the transverse traceless h's, as is easy to see. Thus, on this
space, 32xdm(y)(h, h) = k5= V]

Proof. First of all we note that By(g) and Bi(g) are (), orthogonal. Let
h, € By(g) and h,€ By(g). Then

Cyy Bodo = | Vol Ve prlg) ==, hoalg) =

AR R
— —J.{-{- trk, A, U + hy-Hess, U— ky-Ric(§) U—
Ri
B é (h‘.]lug _ f,]'g hl . 8,,“) _ kl . (P(g) . u)} [1(9) = —J {A.y(’h) U + aa(hl) . “} nu(.q) =40 .

RS
Now define for ge.#?, the linear mapping
Aa . Mf,a X g‘:—l,dﬂ - M7 2842 X 'OZ‘:"*I,O )
AUy u) = (L(U, w), (U, %)),
where
LU, u) = — AU — VATV . ¢,U) + VIVIA'R,, UY -+
4+ VWA AV, + Ve, — )

and
(LU, )= — VAT, ;U — Ry U— 4V, — §Vu) +

4 VAT ) — 10,A7'V 0 — (I ho( Uy ),

As in [70], sect. 3, one sees that /A, is a C funetion of ¢ with values in the
Banach space

&£ (*'H:,é ~ 'JZ‘:-I.‘):—U M :—2.&: X £.f~l,6+l)

of continuous linear maps.
The maps L, ! are defined so that

Aylhs) = LU, u)
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and
a,(hs) = L(U, ),
where h, = (U, u) is given in the definition of B,(g). This can be verified
by a straightforward caleulation.
For g = y we have
,Ily( {f’ “) = — BA):II—‘ a“u;
and

At ou, .

A\ b4 1
(I-"(l ’ u))l = ell’ - ':Iful —%_ "a; i s

Sinee L, (U, u) = I and l(I", u) = f have a unique solution, namely

U7 == — A;‘(%Ir‘ — 23
and

w;=2{—C, AP + ;A8 -5,

we see that /1, is an isomorphism.

Therefore, since the isomorphisms are open, there is a neighbourhood V
of y such that, for ge ¥, A, is an isomorphism.

Given heS},, geV, let (U,u)=A"(A,(h),a,(h)) and h,= hy(U, u) e
€ B:(g). Then h, = h— h, clearly belongs to Byg), since A, (k) = A,(h)—
— Ayhs) = L(U, u) — A h,) = 0 and, similarly, a, (k) = 0.

Thus we have an algebraic splitting and, as in lemma 7.4, the splitting is
then topologieal as well,

Finally, we consider the map

Sy MY XA s
2lg) = (Rig) g-T) .

As above, Mg) is C° and has derivative DX{g) given by

DX(g) =0 on By(g),
DX(g) = (4,, a,) on B.(g) .

Therefore, by the above, DX(g) is an isomorphism on B.(y) for geV.
The lemma therefore follows, O

This argument also contains the proof that u/?f_!, is & manifold near y (sect. 3).
In the sequel .#2, S will stand for .#°, S V-

-
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As in [33], .47 has a smooth connection ¥ induced by ¢, »,. From lemma 7.3
N . . 13 <
we have a smooth orthogonal projeetion; for ye.#?, M1 8

P10 T (M )

Therefore, .#?, M S has & smooth connection, namely PoV. Thus,

- . - O’
7.6. Lemma. — The weak Riemannian structure {,>, on #7501 S has a smooth
connection.

» . < e~ .
The next step is to prove that m >0 loecally in A% 8. This can be done
in one of two ways:

Method 1. The conneetion guaranteed by lemma 7.6 can be used to join g
near y to y by a geodesie g(7).
By the mean-value theorem,

d:
dz

| -

mg) = m(g(r))

-

L

at some intermediate 7. One now has to write out this seecond derivative ex-
plicitly and estimate terms.

Note that (d2/dr2)m(g(r)) = d*m(g(1))-(k, k) + dm(g(x)) -k, where b =¢'(7),
k = g’(r). This expression can be written out explicitly from our earlier expres-
sions for A and d*@. The leading term is §|A]3 = 3| Vh]i..

A typical remaining term is estimated in this way:

J‘ja R" ‘lau‘p
R’

<713\ Ric (g7, < (H8lder)
<C|fI3 Rie ()], ~ (see sect. 1)
SO Eig—ius,.

The last estimate comes by writing out Ric (g) explicitly. Since g(r) is a geo-

desie, k = g"(7) can be expressed in terms of A Putting all estimates of this
sort together, one gets

Im"(g(r)) — 31 F<Clg—y up, b},
from which we get, if jg— | up g is small,

mig)>ClrissClg—yI3,

S0

m(g) >0 if ged?, NS, g=y.
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Method 2. The second method uses the Morse lemma on Banach manifolds.

Notice that — m has a smooth ¢,), gradient on A4, namely A-? Rie (g).
By projecting this to u/l)f,,,ﬂ S by the projection constructed above, we estab-
lish that —m has a smooth ¢(,)>, gradient on .ﬂofﬂ,ﬂ 8. (This requires the
proofs above, since in general a ¢* function need not have a smooth gradient
relative to a weak metric.) This remark together with lemma 4 enables the
following to be applied:

7.9, Lemma. — Let M be a Banach manifold and {,> a weak Riemannian strue-
ture on M iwchich has a smooth connection. Let {:M—R be C* and let Y be the < yo
gradient of {; we assume XY exist and is C> veclor field on M. Assume that x,
is a critical point of f and that DY(wo):T, M T, M is an isomorphism. Then
there exists a co-ordinate chart about a, in which

fe) = f(@o) + § (o)« (2 — @, & — i) -

This result is due to TroMBA [25]. We present a self-contained simple proof
following the method of Moser-Weinstein (see [77]).

Proof. We work in an exponential chart (normal co-ordinates) and assume
o= 10 and f(x) = 0. Now join the one-forms df = w, and w,, defined by
wy(@) b = {2, DY(0)-h)o= (DY (0)-z, h)e, by a straight line: o, = lw, -
+ (1—t)w,. Note w,= dg, ¢lx) = {x, DY(0) a), and find a vector field Z,
(with Z,(0) = 0) such that

izo,+ (f—¢)=0.

That there is such a Z, can be seen by writing

t 1
CY(@), Z,)d, = | TV p(s), T2 (x)), ds = f (@, TV 5, Y(82) 008
[ (] 2

where 7 denotes parallel translation to zero, and by using invertibility of DY
near 0 and smoothness of the connection. If F, is the flow of Z,, we have

d
@ (Fim,) = FAdigm,+ iz dw, -+ o, —wy} = F? dfize0, 4+ (f—q)} =0,

80 Flw, = w,. Then I, gives, near 0, the required co-ordinate change. ]
1@, 2 1 £ y y Z

In particular, if d%f(z,) = 3Dy (i.6. DY(x,) = identity), then f(z,) is a
strict local minimum of f (on this neighbourhood). However, we eannot con-
clude that this neighbourhood contains a ball in the {,y> norm. Thus we cannot
conclude that there is an ¢ > 0 such that f increases to value £ as 2 moves away
from &,. To do so would require the hypothesis that the Lipschitz constant
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of Y varies continuously as & varies in the {,) topology. This point is one of
the cerucial difficulties in the global theorem, as we shall see in sect. 8.

So far we have shown that m is positive in j/;’_,,ﬂ 8. The final step, to
(,omplet,e the proof, consists of showing that § really is o slice. That is, any
ge.#’ 75 can be bl'ought into § by a co-ordinate transformation ¢. This trans-
formation leaves M 78 Invariant and m unchanged, so would prove m > 0 from
positivity on A 230 S.

Let us summarize:

7.8. Lemma. — There exists an ¢ > 0 such that, for g € ui”on 8, [g— v, <e
and gs=y, mig)>0. If facl, mig)> Cllg— yi} for @ constant C> 0.

7.9, Lemma. — 1f ¢ is sufficiently small and jg — plup, < &, then g*ge§
for some q:ef'_'&fﬂ',,_.l-

Proof. Let, in Euclidean co-ordinates, ¢ have components @/ - fi(x’/). Then
p*ge S if Ap'=0, ie Af'=1T}g" Now I'jg* is not in M?,, . neces-
sarily, so we cannot yet apply A,". However, we can differentiate, letting F*
be the differential of f/, so F'¢ is a one-form, and denoting by A, the Laplace-
DeRham operator on forms, to obtain

A, Fi=aH',
where Hf= I'j,¢".
Remark. ¢ is a harmonic map from (R?, g) to (R? y) so general invariant
formulae are available [78]. However, it is just as easy to proceed directly in

this case. Since &, is an isomorphism of M2, to M?_,, ., there is a unique solu-
tion F'e M?,. However, since s>3 we can assert

A, AFi = dA, Fi= ddH) =0,

so AF =0, Thus Fi= df' for some fi. (Explicitly, we can choose

fit) =J'F'(w) xdl

0

from the proof of the Poincaré lemma.) Since ' e M2,, we see that df e M?,,
so, for ¢*I'j small in M7 .., df' will be small in M’,, 50 @ will be o C' dif-
feomorp]usm Thus g€ 2, ,. 0

Putting lemmas 7.8 and 7.9 together gives the main local ])Osll'l\li.) -of-
mass theorem.

7.10. Theorem. — Let Y be the Euclidean melric on R3. Then there cxists
a M?, neighbourhood J//C.//”‘, of y such that, for g€ ¥, m(g)>0. If mig) =0,
then g is flat and in faet g = f¥y, where fe@m‘,_,(R)
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Remark. The fact that m(g) = 0 implies ¢ is flat is analogous to an isolation
theorem in geometry for the compact ease, except the mass case is more delicate.
The geometry theorem referred to states that, if g, is a flat metric on a compact
manifold and if ¢ is a metrie near g, with R(g)> 0, then g itself is flat. In fact,
the proof we have given here uses a second variation argument and the con-
struction of a slice in & manner similar to that given in [70].

Now we come to a space-time version of 7.10.
1

7.11. Theorem. — There exists a M?, neighbourhood 4 of the Minkowski
metrie 3 such that if Vge U satisfies the weak and strong encrgy conditions,
Ric (") >0 and Ein (¥g)=0, then on any asymptotically flal spacelike hyper-
surface X

mig.)=0.

If m(ge) = 0, then Vg is isometric to flat space 7.

Remark. We are assuming implieitly that G, =8al,, so the mass is
hypersurface independent (°), and that “g is uniquely determined by suitable
Cauechy data in & maximal development (the Cauchy data would include non-

gravitational fields as well as g., ko).

Proof. From sect. 2, there is a maximal hypersurfiace near {0}. Since m
is hypersurface independent, we can therefore assume that Y is maximal and
$0 2 whole neighbourhood of X is filled with a slicing by sueh hypersurfaces.
Write g = ¢...

By theorem 6.3, there is a vacuum initial data set § = ¢tg, £ = 0 with
m(G)<.mlg). Now (§, 0) is in a neighbourhood of (y,0), so by theorem 7.10
m(g)>0. Thus m{g):>0. Next assume m(g) = 0, so m(g) = m(F) = 0. Thus,
from theorem 7.10 again, § = f*y. Thus g is conformally flat.

From the equation

- | 1
mig) = m(g) + 7 J.A,rrmy) = my)—5- f(/l-’(y);t(y)
R? R

and R(g) = kb - 206G, >0, ¢ >0, we find R(g)=0, k=0, 9G,, =0,

Henee the equation for ¢, namely A,p = — R(g)ge gives ¢ =1, Thus ¢ is
flat and & = 0. The result therefore follows. O
Remarks.

1) One can alternatively work, as in [24], in the space of all g’s and ='s
and avoid the use of theorem 6.3. However, the present method seems a little
simpler.

(*) The hypersurfaces here must be asymptotic to a standard ¢ - const hypersurface.
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2) As @ special case of the above arguments, we note the following:
if X is a maximal asymptotically fiat spacelike hypersurface in Minkowski
space, then g. is flat and k= 0.

7 . N o g .
3) .42, is globally & manifold. Since .# has a eritical point only at flat
space, it is reasonable to econjecture that .,7/:’6 is topologieally trivial and has
a global slice.

8. — Discussion of the global problem.

Now we make a few remarks concerning the important question: is
m >0 on all of v/)f_d, or its component containing p? The local positivity
and the fact that any critical point of M is flat is very suggestive that m >0,
As we pointed out in the introduction, this is not a proof, however.

There are some simple sufficient conditions for global positivity of a fune-
tion on » manifold. Although they do not seem to directly apply to m, they
may shed some light on the difficulties and emphasise the depth and importance
of the work of ScHorx and Yau [52].

Let us grant that we have 2 global slice, or that A 17 is » manifold, so we
have a well-defined space to work on. In this eontext, the following elementary
theorem seems to be suggestive:

8.1. Theorem. — Let M be a connected Hilbert manifold and m: M - -R a C®
function with a single critical point at x,. where d2m(ny) is positive deiinite. Let
Y be the gradient of — m and assume has « complete flow and there is, for any
neighbourhood U of r,, an &> 0 such that Y(r) > ¢ outzide U. Then xy is «a
global minimum of m.

Proof. Let A = {ee Mthe Y-trajectory starting at », say 2(l) tends to &,
as { — - oo}, Along these trajectories m is decreasing since

;(111 m(r()) = <dm(e(D), @'ty = — ¥ (x()), Y{e(0)> 0.

Thus m(x(l)) >m(r,). Therefore, it suffices to show A = M.
We show that A is both open and closed. That A is open follows from two
simple faets:

i) any trajectory of Y which enters a small neighbourhood of x, converges
to i, as t— - o0 since dm(ag) > 0,

ii) the solution curves are continuous functions of the initial data (for
fixed ?).
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To show that A is closed, let r, €4, x,—x. Let &), x(f) be the
Y-trajectories starling at &, and @ Let U7 he a neighbourhood of x, inside
which trajectories --uxy. Outside U,

d
™ (ra() = —¢,

50 m decreases at a fixed rate. Thus, after a fixed time 7, x,(t) must enter T,

namely after 7 = m/e, where m — supm(e,). By continuous dependence on
n
initial data 2(f) then enters U after time T, so xe A. O

In the mass problem one can find a Y sueh that — dm- Y > 0 away from
flat space, such as

— Y(g), == ¢ IR — ;'g(i;A—'(RM;A WM — N,V AV Ry |

Here, — dm-Y = <A 'Rie(g), A ' Rie ()0, > 0 if Rie(g) 0.

This Y is 2 smooth veetor field in the M 5 topology on .4‘2:"0. There is a
neighbourhood U of the orbit of flat space @, in whiel integral curves of Y
converge to €. The problem, then, from the zbove theorem is:

First sufficient condition., = If —dm- Y =e>0 uniformty outside U, then m
is globally positive.

One can contemplate more sophistieated methods, such as @ « minimax
principle » [79].
The recl difficulty seems to be the following, stated somewhat loosely.

Second sufficient condition. — 1f there is a <y dp netghbourhood U of €, inside
which trajectories of Y converge to @, as t — oo and on the boundary of which
m>e> 0, then m is globally positire.

Actually, WINICOUR [80] has pointed out a similar fact as a crueial issue,
However, the proof of local positivity does not establish this sufficient condi-
tion beeanse of the difference between the M7, topology and the {5, to-
pology. It is conceivable, however, that the argument giving local positivity
ean be strengthened,

To back up the second suflicient condition, we present, for completeness,
the minimax prineiple we have in mind. We thank A. TroMBa for discussions
on this result,

8.2, Theorem, ~ Let M be a connected Banach man ifold and <, . « weak Rieman-
nian struclure with a smooth connection. Let vl and d(-,+) denole the norm
and distance in this structure. Let §:3 >R be C* bounded below and salisfy

i) | has exactly one critical point at ay; f(r) = 0, df(r,) = 0;

ii) there is a C* (,) gradient Y for f;
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iii) there is an e> 0 such that, if d{x, ) <e¢,
ed(e, 1) 2 f(a) < Cd(r, xp)*, ¢, C>0;

iv) if 'X(xn)! 0, then @,y in d(-,) (¢« condilion C»);

v) if a(l) is an integral curre of —Y chick is d-Cauchy as t >, then
x(l) is t-cxtendible beyond B;

vi) there is an e > 0 such that d(x, x,) << ¢ implies that the inlegral curve
of — Y starting al x converges (M) to x, as t -> 4~ oo,

Then f(x)y>0 for all ve M, » #ux,.

Remarks. In the example discussed earlier (p. 399), it is condition V)
which fails.

For relativity, one is to imagine M = J?: JZ and xp= €, f =m, {,) the
energy inner product and Y as given above, Condition iii) appears hard, while
iv) and v) seem possible to verify.

Proof of 8.2. Assume there isx a y,€ M with f(y,) <0, o # 2. Let, ac-

cording to the minimax method,

¢ = inf {supf{a()|o is & C° curve joining y, to o} .
te(o,1]

By iii), ¢> 0. Choose 0 <<d<<e. Let

Ni=fY=o0,c— &) and N,=fY = co,¢ - 9)
and
N = No N, =fYe— 0, ¢+ d).
Lemma. — N, is a deformation retract of Ny, i.e. there is a C°map H:[0,1]X
X Ny=> N, such that (0, 2) = x, H(1,2)e N, and H(s,x) = x if x€N,.

Proof. Let H{s,x) =2 if xe N,. If reN,, let a(f) be the Y-trajectory
starting at 2, with domain [0, 8[, # > 0 chosen maximally.
Suppose z(!) never meets N,, and < co. Then from

d e
G10) = — v,

we get, by integration and the Schwarz inequality,

Ha®) — o) <—['(r), aral VR,

[]
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80

¢

J. (7)) dr VB (20)
0
and

d(z(l), 2(s)) <v/|s —1]-26 .

By v) we can continue beyond §.

Thus, if @(f) does not meet N,, f = -+ oco. However, gp(f) =j(a:(t)) is
decreasing, bounded below, so ¢'(f) =0, ie. |Y(2(l))] 0. Thus () >,
in d. Using vi) we get a contradiction.

Thus x(¢) meets N,. Let ¥ (x) < co be the first time it does so and set
H(s, «) = x(s¥(x)). This gives the required II. O

To complete the proof let o(f) be a eurve joining y, to x, in N, and let
o(t) = H(1, a(1)). Since y,, r,€ N,, this is a curve joining y,, z, in N, which
contradicts the definition of ¢, 0

A simple sealing argument shows that if m is anywhere negative, then
it is unbounded below. For this reason, theorem 8.2 is not useful as it stands.

9. — The mass function as a Liapunov function.

The fact that m is positive and conserved leads one to try using m as a
Liapunov function for the Rinstein evolution equations, i.e. to use it to obtain
a priori bounds on the solution in a convenient norm. One can diseuss dynamical
stability of solutions to the nonlinear evolution equations.

First of all, we recall the classical role of Liapunov functions in the following

9.1. Theorem. — ILet E be a Banach space and F, a local flow on E with 0 a
fized point. Suppose that for any bounded set B<E there is an ¢ > 0 such thai
integral curves beginning in B exist for a time interval > ¢.

Let H E— R be a smooth function invariani under the flow.

@) If H(u)> Cllul® for some C> 0, then the flow is complele.

by 1If H(0) = 0, DH(0) = 0 and DH(0) is posilive or negalive dcfinile,
then there is a neighbourhood U of 0 such that any integral curve starting in U
is defined for all t; moreover, 0 is dynamically stable.
Proof.

a) Let e E. Sinee H is conserved we have the a priori estimate
uj*< constant, so u remains in a bounded set B. But, beeause of the assump-
tion on the flow, the integral curve beginning at « ean be indefinitely extended.

(ﬁmx 20 - Rendiconti S.LF. - LXVIL
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5) From the assnmptions, there are positive constants «, f# such that
apw P |D2H(0) (u, w)| <.
Henee, by Taylor’s theorem, in a small neighbourhood U, of 0, we have
y wit< [ H)|<dlul.

Because H is conserved, this shows that there are neighbourhoods U and ¥V
of 0 such that, if e U, it remains in 17 as long as it is defined. Ience we
have completeness as in a). Since 77 can be arbitrarily small, we also have
stability. (1

This theorem may be used to prove the existence for azll time of solu-
tions to certain semilinear nonlinesr wave equations (sec [81]).

In relativity, the difficulties center around the «strong» nonlinearities
in the Einstein equations (they are quasi-linear) and the fact that the second
derivative of m is only weakly positive definite; the same difficulty we encoun-
tered while proving m>0. Similar difficulties occur in eclasticity (82].

However, under very limited circumstances, one can pass from the linear-
ized stability to the full nonlinear stability [83]. This general idea was first
suggested by DEsER in an attempt to find out if there are any vacuum
solutions of Rinstein’s equations which are nontrivial and noncollapsing.

We state the eriterion somewhat loosely. At this stage we are only concerned
with the idea. The details can be nailed down when more is known zbout the
possible examples.

9.9, Nonsingularity criterion. — Suppose there is a curve (y(o), (o)) of solu-
tions of the (vacuum) constraint equations on R* with g(0) =y, a(0) = 0, and
with tangent pointing in a nontrivial direction, i.e. ™" +# 0 where h = dg[de at
o = 0. Assume that cach g(0), (o) has a global co-ordinate system which is har-
monic and in which g(o) and (o) depend on only one of the co-ordinates. (In
particular, then, (o), (o) have two Killing fields.) Then for o sufficiently small,
the Cauchy development of g(p), (o) is a geodesically complelc space-time which
is C° close to Minkowski space.

Initial data sets like those desired here may or may not be obtainable.
For example, if (g, ) is chosen spherically symmetric (so the one variable is 7,
the radius), Birkhoff’s theorem will foree the space-time to be Schwarzschild.
However, from work of Marder [84] it appears that asymptotically flat initia
data with toroidal symmetry in R® may be possible (it is not clear thet his
solutions are everywhere regular; one could use his solutions for > 0 as an
initial data set and apply the above criterion to generate n singularity-free
space-time) ().

(*) Marder's ¢ > 0 solution corresponds to the entire implosion, explosion of the Weber-
Wheeler eylindrically symmetric wave bent into a toroidal shape.
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An idea for the proof of the criterion 9.2 is as follows: by the proof of
theorem 6.3, by using harmonie co-ordinates for the evolution cquations, there
is a neighbourhood of (y, 0) in which m gives a bound in the /' x L, norm
of (g, ). Choose o small enough so ¢(), (o) lies in this neighbourhood. For
quasi-linear sccond-order hyperbolie evolution equations (such as Einstein’s
equations in harmonic co-ordinates) which depend on one space variable and
for which the coeflicients of the second-order terms do not involve derivatives
of the unknown, an @ priori bound on the H'x L, norm guarantees solutions
global in time (sm' [85]) (*). Since C°>SH! in one dimension, the solation is C°
close to Minkowski space, since it starts off that way. The higher H* norms,
however, may be unbounded (but they cannot blow up in & finite time),

Geodesic completeness follows from the uniform closeness to the Minkowski
metric and the preservation of 4-lengths and angles by geodesies.

10. — The mass function as the generator of time translation.

In[1] we described the space of gravitational degrees of freedom. This
space regards 25 equivalent all (g, #)’s which occur on slices of the same space-
time. In the case of compact hypersurfaces, this process divides out all the
dynamies. However, for the asymptotically flat case the structure is much richer.

We will deseribe this structure very briefly in this section. As we pointed
out in the introduction, the process described here was suggested by WALKER
with the ultimate goal of linking the ADM mass to the past limit of the
Bondi mass.

Consider the space of all possible g's and =’s with 1/r and 1/r* fall-off,
respectively. (We dispense with the formal M?, spaces here for the sake of
exposition.)

We recall from sect. 1 that there is a diffieulty if we try to take the orbit
of (g, ) under the group of co-ordinzte transformations differing from the
identity by terms of O(1) ot oo; this orbit is not in general » manifold and the
decomposition theorems fail,

What we have to do to fix this problem is to demand tighter asymptotic
behaviour at infinity : namely, we must restrict to co-ordinate transformations F
which differ from the identity by terms O(1/r) at infinity. The orbit @(m,
under these co-ordinate transformations will be a manifold and will consist
of (§, @)’s which differ from (g, %) by terms of order 12, 1/r* 2t oo,

More formally, we write (§, @) ~ (g, @) if (§, ) and (g, #) are solutions of
the constraint equations on R? with (1/r, 1/r%) fall-off at infinity and if there
is an empty-space asymptotically flat space-time (¥, “9g) and two asympto-

(*) The evolution in harmonic co-ordinates does not preserve trzz = 0, 8o onc would
have to interplay between harmonic co-ordinates and trz = 0 co-ordinates.
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tieally flat spacelike embeddings
iR > V,, i1:R* =V,

which induee, respectively, the data (g, 7) and (§,7) and which are asymptotically
identieal, i.e.
ix)— (@) = 0(1/r) as r— oo

(see fig. 1).

' _/ z

Fig. 1. - Two asymptlotically flat spacelike embeddings which arc asymptotically
identieal.

Using this notion of equivalence, we form the quotient, the space of grav-
itational degrees of freedom,

Gasa = Cor 1 o~

(as in seet. 7 of [1]), and show that it is a smooth symplectic manifold. Note
that the extra fall-off at infinity is erucial in order for this space to cven have
a formal tangent space, since this depends on the splitting theorems.

Notice that now not all (g, z)'s from the same space-time are identified.
In fact (ef. [11]), there is still dynamics on ¢, . Indeed, as REGGE and TEITEL-
BONM [12] have pointed out, diffcomorphisms which are asymptotically a Poin-
caré transformation, denoted Z,(R?), are allowed as permissible deformations
of the hypersurface (*), and hence act nontrivially on %, . Note that an
asymptotic Poincaré transformation composed with a transformation that
is asymptotically the identity plus terms O(1/r) has the same ellect on ¥,
as the asymptotic Poincaré transformation itself. Thus, in reality, it is Poin-

(*) Thero is a problem with « boosts» because the maximal development of (g, @)
conceivably might not he large enough for it to be defined. We ignore this here.

~
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wré transformations at infinity, or the Poincaré group
P = G (R)/Z (RY)

that zets on 9, . where Z,(RY) represents diffeomorphisms that are asymp-
totically the identity.

If we use the group Z.(Rf), the lapse and shift functions Nw=— (¥, )
have the asymptotic behaviour

1
Nt~ gt - ﬁ"a -0 (;) ’

where (at, ) represent a Poinearé transformation of RY. As REGGEE onild
TEITELBOIM [12] show, supertranslations can be omitted. Also, and which is
clear from the Dirac theory (see [86]), the generator of the dynamical
equations is

v ] .
Gpr= Gypy— 0 Py + 1B

where Py and Jyu are defined in sect. 5. Thus a trausformation pe &, (R*)
induces a canonical transformation on the (g, 7)’s. Thus, from seet, 6 of [1)»
p also induees a canonical transformation on G yur Conscquently, the Poin-
eard group itself P = & (R")/Z,(RY) acts on G iu Dy symplectic transformations.
It would be of interest to link these ideas more firmly with recent work on
spatial infinity, especially that of HANSEN and ASHTEKAR [87].

We can summarize the situation as follows:

10.1. L'heorem. ~ The generators of the Poincaré group P of sympleclic trans-
formalions on %, are the momenta Pu:G, RS and the angular momenla
die G > AR (the antisymmetric S-lensors on RY), where P# and Jw are
defined in scet. 5.

In sympleetic language, Pr and J# are the conserved moments of the action
of the Poincaré group P and the equivariance of its moment expresses the fact that
Prand Jw transform as tensors under asymptotic Lorent: transformations and
are invariant under infinitesimal co-ordinate transformations asymplotic to the
identity (gauge transformations).

As a special case of this result, the mass m = P° is the generator of time
translations in 4, . The proof of this special case is implicit in proposition 7.0,
where following REGGE and TEITELBOIM we have shown that H , has to be
supplemented by 16:zm(g) to generate the Einstein equations.

Put another way, theorem 10.1 says G, generates the Einstein evolution
equations, and when restricted to &, ., only the Poincaré group is left as
generators.
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Although it seems reasonable to suppose that the past limit of the Bondi-
Sachs mass is the ADM mass, which is positive, this still does not exclude the
possibility that the Bondi-Sachs mass may deerease Lo a negative value.
In fact, such examples seem Lo have been constructed by MILLER [88] and
STEINMULLER, KING and Lasora [89].
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