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Intreduction.

These notes cover several interrelated topics in the dynamics of gemeral
relativity. The main thrust is to present informally the Hamiltonian approach
of Dirac [1, 2] and of Arnowitt, Deser and Misner (3] in a new way and to in-
vestigate the results which can be obtained from this approach. We write the
evolution equations in the compact Hamiltonian form

' Z(9) = seoig, a0 (3):

T
0
J=( y
—I- 0/

N = lapse function, X = shift vector field, § = 3-metric on a spacelike hyper-
surface, n = conjugate momentum and P(g, %) = (H#(g, =), F(g, A)) = 0 are
the constraint equations. This form of the equations is useful in understanding
the Hamiltonian structure of the evolution equations, their relationship to the
linearized constraint equations, recent splittings of Moncrief [4] and the space
of true gravitational degrees of freedom.

Consideration of the map D&(g, 7)*, the L,-adjoint of the derivative of &
at (g, ), first arose in the authors’ investigations of linearization stability of
Einstein’s equations [3, 6], i.e. in the validity of first-order perturbation
analysis. This and Moncsief’s beautiful contributions [4, 7] are presented in
sect. 5 and 6.

The presence of the matrix J in the equations and indeed their Hamiltonian
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nature suggests that the machinery of symplectic geometry be used. Ve show
how the various splittings (e.g., Deser’s [8] transverse-traceless decomposition
and Moncrief’s generalization [4]) can all be obtained by using a universal con-
struction on symplectic geometry, and how this construction gives insight
into the space of gravitational degrees of freedom (see [9-14]).

This paper is a preliminary version of 2 more extensive work in preparation.
We thank Prof.J. EHLERS for the invitation and opportunity to present a more
current version of our work than is presently available, and for his many pene-
trating comments. Some of the material here was also presented at the Départ-
ment de Mécanique, Université de Paris, in May and June 1975. We thank
Prof. Y. CHOQUET-BRUHAT for her arrangements and many helpful com-
ments, and J. M. ARMs whose lecture notes and comments were of great
assistance.

We also acknowledge the valuable comments of P. D’EatH, G. GIBBONS,
S. HAWKING, K. KUCHAR, V. MoONCRIEF, R. SacHs, A. TAUB and A. WEINSTEILN,
and the hospitality of Cambridge University for support during part of the
preparation of this work.

1. ~ Sobolev spaces and decomposition theorems.

We shall take the general point of view of considering geometric objects
such as the Ricci tensor Ric (g) of a Riemannian metriec g as functions defined
on the space of all Riemannian metries .. Variational derivatives of these
objects can be computed by using differential caleulus on these function spaces.

Thus, before beginning geometrodynamics, it is useful to recall the basic
function spaces and some of their key properties, which we shall need.

Let 2 be an open bounded region of R* with smooth boundary. For any C®
function f from R" to R™, we define the W+»(2, R*) norm of f to be

i e = Z I?Daff:l.,lﬂ) ’
0%ake

where D* is the total derivative of f of order « and ] !z, denotes the usual
L, norm on Q:

8 L= ( f g(z)pr ax)”" .
2

By definition, W+»(Q, R™) is the completion of C(Q, R™) (= restrictions of
C> functions on R" to Q) with respect to this norm.
Note:

1) We consider f € C® on R* rather than just on © because we wish to
have differentiability on the boundary.



324 A. E. FISCHER and J. E. MARSDEN

2) We shall shorten W+(2, R™) and similar expressions to W*» when
there is little chance of confusion.

For a compaet manifold M with no boundary and a vector bundle E
over M, W+?(E) gshall denote the space of all sections of E that are of class We»
in some (and hence every) covering of M by charts. For real-valued functions
we shall just write W*», but for other tensor bundles we shall make up special
notations for W+»(E) (see below).

In case p = 2 the spaces W»? are denoted H*. In this case, and only in
this case, do we get Hilbert spaces.

The spaces H* (not W»» in general) are the basic spaces for existence
theory for nonlinear hyperbolic equations. As we shall see, general relativity
has equations of this type. For elliptic equations it is useful to allow p to
be general.

The Sobolev spaces have the following properties (sce, for example, [15, 16)
or [17] for proofs):

1) Soboler embedding: If s > njp 4+ k, where n iz the dimension of M,
then the inclusion of W*» into C* is a continuous, and in fact compact, embed-
ding. The latter fact is called Rellich’s theorem; this theorem also tells us
that W+~ is compaectly included in W** if s > g'.

2) Multiplication: If 8> nfp and 0<a<3s, then any pointwise bilinear
map « - » induces a multiplication W» x We-a» . W22 which is continu-
ous and hence C=.

3) Composition: If the function f satisfies either of the eonditions below,
then the map W+ — W*?; g\ gof is C%, k0. The conditions are

a) f is C***, or

b) / is a diffeomorphism and is of class W++*», where &> nf/p + 1.

Now suppose we have two vector bundles B and F, over the same
manifold M, and a linear differential operator D of order &,

D.C7(E)—> C>(F).

A linear differential operator of order % is a map such that, for given
charts on E and F (and hence for all charts), the operator takes the form
D= 3 a,(r)D* where D*=¢&"!/3z*... 922~ is a partial derivative on the model

lal<k n
space for M, o = (o1, ..., &), |@| = > a;, and a,(z) is a linear function from
f=1

the model space for the fiber E. to the model space for the fiber F, over x € M.
We can regard D as a map between Sobolev spaces:

D: Witk o Wsar |
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D has an L,-adjoint D* defined by the equation

(Df9 g);, = (f’ D*g)z,, ’
that is,

j<o1, ou=[<t, D>u,

N

where u is some preferred volume element such as that associated with a metric
ulg) = Vet (g,)dxr' " ...Adx", and {,) is an inner product on the fibers. This
strueture is not needed if one uses spaces of tensor densities, e.g., if D maps
vector fields to 2-covariant densities, .D* would map 2-contravariant tensor
fields to 1-form densities. These adjoints are called ¢ natural adjoints » and
will be discussed later.

In practice, one computes D* by integration by parts, and in faet this leads
to the proof that D* exists and yields a local formula for it [15].

Definitions. An operator is elliptic if it has injective (principal) symbol. For
each r in M and for each &€& T: M = the fiber of the cotangent bundle, the
symbol ay(D) is & linear map from the fiber E; to the fiber F,. In the expression
of D in charts, oy(D) is obtained by substituting the components of §e T, M
for the corresponding partial derivatives in the terms involving the highest-
order derivatives. Thus for each co-ordinate on F,, o:(x) is a homogeneous
&-th degree polynomial in the components of £. For example, the symbol of
the ordinary Laplacian V= Y (&%/r) is 6(V3) = &2

im]

For elliptic operators we have an important splitting theorem.

Fredholm alternative theorem. If either D or D* is elliptie, then W-r(F) =
= range D @ ker D*, where the sum iz an L, orthogonal direct sum.

The proof of the Fredholm alternative uses the elliptic estimate
F“fyrd-#<0(i1D"iwhv+ xi“:u.') ’

where 1< ¢< oo, and Rellich’s theorem (W+? is compactly included in W**
for s> s'), to show that an elliptic operator has a finite-dimensional kernel
and a closed range. The L, case, where s = 0 and p = 2, then follows immedi-
ately from the defining equation for D*; the L, orthogonal complement for range
D is ker D*, because

0 = (Df, g>,,= <f, D*g},, for all fe W~(E) if and only if D*¢=10.

A regularity argument extends the result from L, to W+*»; see, for instance,[18]
for proois and [19] for extensions.
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Applications of the Soboler space properties.

1) Suppose M is a compact manifold with no boundary. Let S;® be the
set of symmetric ecovariant two-tensors of class W+» and .#%» be the subset
of Riemannian metries, i.e. the positive definite symmetric tensors of class W+r.
We choose s > n/p so that, by the Sobolev embedding, W**< C° and the set
of Riemannian metries is open in §;°. Thus the fiber of the tangent bundle
to .#>-* will be the linear space 8},

Consider the maps

Ric..#** — 8§*; g— Ric(g),
the Ricei tensor formed from g (in tensor notation g, R,(g)), and
R:f+» - W*r; g R(g),

the scalar curvature of g. The map B will be smooth if Ric is smooth, for R
is the contraction of Ric; symbolically, R(g) = g-''Ric (g9) = ¢’’R,;. Because
differentiation is a continuous linear map between the spaces involved, the
smoothness of Ric depends on the multiplications that occur in computing
Rie (g). The second-order derivatives appear linearly with components of g
as coefficients, so, by the multiplication property for Sobolev spaces, s > n/p
suffices for the second-order terms. But the first-order derivatives appear
quadratieally. so s> nf/p + 1 is necessary to make these maps C*. Thus
Ric: A" =87 and R: M*»— W*2» are C* if s> n/p + 1. The deriva-
tives of these maps are given by a calculation of Lichnerowicz [20] which we
shall study later. Sign conventions on the curvature tensor are an ever-
present problem. We follow the conventions of [21].

2) Let @*»= {y|n and 75~ are diffeomorphisms of M of class W<}
If s> n/p 4 1, then 2+» c W~>» jg open, so that 2+?is a C* (Banach) manifold
and the composition property for Sobolev spaces implies that composition is
continuous and 2+*® is a topological group.

3) The first step in the main decompesition theorems for 2-tensors that
we shall give later is the canonical decomposition.

Canonical decomposition. Given a fixed C® melric g on a compact manifold M,
any symmelric 2-tensor h can be split into two paris,

h=h+Lxgv

where h has zero divergence, othy = — (71),’“= 0, XeZw= W~r(TM) (the
Wer vector fields), Lyg is the Lie derivative of g,(Lz9),= X,,+ X, (= co-
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variant derivative with respect to g) and the two pieces are L, orthogonal and
unique (so X is unique up to Killing vector fields).

Proof. The proof is a straightforward application of the Fredholm alterna-
tive to the operator

&, TP 87 X > Lyg.

The symbol of «, is aple,): V> EQ@ V' + V’® &, where (V*),=g,Vi=T, is
the covariant form of V. gpla,) is injective, for, if § £ 0and E@ V + VP R & =
=§V,+ V=0, then, by contraction, &1, = 0, so &V, + &V, E =
= &8V, =0, 50 V,= 0. Thus «, is elliptic. (Note that since the proof of
the Fredholm alternative theorem includes a proof that the kernel of an el-
liptic operator is finite dimensional, we have as a corollary the classical result
that the Killing vector fields are a finite-dimensional subset of Zwe) Since

(Ls9, ), = [ (X4 X, ) Wuig) = [ (— 2X,49,) plg) = (X, 26m),,,
N X

we get a0 = 24, and the splitting &k = & + Lrg therefore follows. [J

The canonical splitting has a natural geometric interpretation as shown
in fig. 1. Consider the action of the diffeomorphism group 2+1» on #*»* for
suitable choices of s, p, where a diffeomorphism 7 acts on a metrie by push-

Fig. 1.

forward, i.e. by pull-back via its inverse: g (n7')*g = n4g; thus g trans-
forms «in the same direction » as the point map n. This is only a C° action,
but the orbit of g is a smooth manifold [22].

The infinitesimal generators of this group action at g are the gsymmetric
two-tensors — Lryg, where X is a vector field of Sobolev class We+1s. Thus
the tensors — Lyg are tangent to the orbit of g under this action. Any tangent
vector to .#*? at g is a symmetric two-tensor & that can be split in a part that
is tangent to the orbit, L;g for some X, and a part £ that is L,-perpen-
dicular to the orbit 0, in the sense that f <ﬁ, Lxg>u(g) = 0. If we want to

M
consider the orbit space .=#/@*+1» of #*» by the action of Prhre, A is an

obvious candidate for a tangent vector to the orbit space. Metrics (n~')*g
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on the orbit of g are isometric to g and hence are geometrically equivalent to g,
so b represents infinitesimal directions of nonequivalent (i.¢. nonisometric)
geometric deformations.

The splitting theorems of Deser, Barbance and York make a further decom-
position of 3, as we shall see later.

2. ~ The Hamiltonian structure of geometrodynamics.

We shall begin by showing how the Arnowitt, Deser and Misner (3]
Hamiltonian formulation of general relativity can be written in a compact
form using the IL,-adjoint operators of the linearized constraints. Here we shall
restrict ourselves to space-times with a compact spacelike hypersurface. The
noncompact case is rather different, as indicated in [23].

Let ¥V, be a 4-dimensional manifold with Lorentzian metric ‘g which is
oriented and time-oriented. Let M be a compact oriented 3-dimensional man-
ifold, and let i:M — V, be an embedding of M such that the embedded
manifold {(M) = X is spacelike; i.e. the pull-back ¢*('g) = ¢ is & Riemannian
metric on M. Let E*(M, V,,‘¥g) denote the set of all such spacelike embed-
dings. As in [24], this is a smooth manifold. Let % denote the second funda-
mental form of the embedding, defined at m € M, for X, ¥ € T, M, by the
usual formula

kalX, ¥) =—Wgoi(m):((Tni- Y), "W _, n,'"Zs0i(m)) ,

where Z.oi(m) is the forward-pointing unit timelike normal to X at i(m).
Thus k,;=—Z,, where ; denotes covariant differentiation using “'g. Co-
variant differentiation using g is denoted with a vertical bar.

Let = = #' ® u(g) be a 2-contravariant tensor density, whose tensor part 7’
is defined by a'= ((trk)g— k)*, where § indicates the contravariant form
of a covariant tensor with indices raised by g* = g'/; similarly b denotes the
covariant form of a contravariant tensor. In the Hamiltonian formulation
of Arnowitt, Deser and Misner, % plays the role of a velocity variable and =
is its canonical momentum in the DeWitt metric (see [25] for this latter inter-
pretation). Note that =°™™ = a**>@r.

Now suppose we have a curve in E*(M, ¥V, g), i.e. a curve i, of spacelike
embeddings of M into (V,,'g). The A-derivative of this curve defines a
1-parameter family of vector fields WX, on the embedded hypersurfaces by
the equation

di .
ﬁ = WX;oi: M TV,

(see fig. 2). The normal and tangential projections of ‘X, define a curve of
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functions ¥, = “X, : M — R and vector fields WX, = - XM —~TM on M
by the equation

WX, 0i,(m) = WX (1, m)9Zy 0iy(m) + T, iy X, (2 m)

Fig. 2.

where “WZ, is the forward-pointing unit timelike normal to = IfE N, >0,
then the map

FIXxM—>T; (4 m)es i(m)

is a diffeomorphism of Ix M onto a tubular neighborhood of (M) = X,,
if the interval I = (— B, ) is chosen small enough. In this case we call either
the curve i, or the embedded spacelike hypersurfaces T 1= (M) a slicing of T°,.

The functions N, and the vector fields X, are the lapse functions and shift
vector fields of Arnowitt, Deser and Misner [3] and Wheeler [26] (see fig. 2).
We have changed the sign of the shift vector field for various reasons, but
basically our conventions give a shift vector field X . Wwhich generates a
1-parameter family of diffeomorphisms f,: M —> M, defined by f,= id, . and
df,/% = X,of;, such that the new family of embeddings i, = i,of, has zero
shift (and lapse N, = N,of,). To see this, note that

di, di . d . D A
d—z'; = d—zifoh-*- T‘l,\'d—f; = (N;“'Zg‘ol;,)Of),—Tu'l;ofg-*- Tisn-Xaofa =

= (N20f2)9Z 5 08s0fs = Na9Zy 01, .

In the convention of Arnowitt, Deser and Misner [3), one has to consider the
flow of — XATX to transform the shift away. As phrased in Wheeler's way
(as in [21] egs. (21)-(39) and p. 21-49), the s perpendicular connector » between
two neighboring hypersurfaces has components

(dt, — XADM) —_ (dt, Yoursy

shitft sbift
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For «dynamical » reasons for the change of sign of the shift vector field,
see [25], p. 357.

Our change in sign of the shift forces us to change the sign of the diver-
gence constraint (see below). This, however, gives an object which conforms
with a certain universal tensor, constructed for general field theories inde-
pendently by KUCHAR [27] and FiscHER and MARSDEN [28). For the scalar
field this tensor is — 7, Ve and for the electromagnetic field it is essentially
E~B. In Kuchat’s conventions, where the shift is that of ADM, his universal
tensor gives the negative of these objects.

Using F:I x M —V, as a co-ordinate system for a tubular neighborhood
of Ly in 1. co-ordinates (2), i = 1,2, 3, on M, and (2*) = (4, 2'), @ = 0, 1, 2, 3,
as co-ordinates on I x M, we can write the pulled-back metric F*“} in co-
ordinates as

(F*'Y), 0 daf = — (N1 — X, X")dA?— 2X,d2 dA + g, du' d!,

where g;; = (g,),, and g, = i}‘¥g.

Let %, be the curve of second fundamental forms for the embedded hyper-
surfaces I, = i,(M), and let 7, be their associated canonical momenta.

The following theorem contains the basic geometrodynamical equations
due to Dirac [1, 2, 29] and to ARNOWITT, DESER and MISNER (see [3] and refer-
ences thercin).

2.1. Theorem. — Let the vacuum Einstcin field equations Ein (‘%g) = 0 hold
on V. Then for each one-parameter family of spacelike embeddings {i,} of Vo,
the induced metrics g, and momentum w, on X, satisfy the following equations:

c o1 .
ég._ =2\ ((-—z )—5gitra ))—ny ’
(erolution | ¢~ N 1 s 1..{., . 1 ,
equations)| =3 = — Y| Ric @) —;R@g)pg) + 539\ m — 5 (tra’)* ulg) —
— 2N (:z’x:z' —% (tr:z')n’),u(g) + (Hess N + gAN)®u(g) — Ly,
and

(constraint [ Hg,n) = (v’ — }{tra')*— R(g))ulg) =0,

equations) | (g, m) =—2(8,7) = 22,/,=0.

Conversely, if i, is a slicing of (V,,'%g) such that the above evolution and
constrainl equations hold, then g satisfies the (empty space) field equations.

Our notation in the theorem is as follows: (7' xa')¥= (n')*(xn').,
a-a'= (a')(a'),, Hess N = N AN = — g“‘l\yuu! and Lyn= (Len') ulg) +
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-+ a'(div Y)u(g) is the Lie derivative of the tensor density 7=z’ g, (note
Lyp,= (div X)u(g)). The Ricei tensor R, of g is denoted Ric (‘'g) and
that of g by Rie (g9). R(g) is the scalar curvature. We write Ein (g) = Rie (g) —
— 1R(g)g, the Einstein tensor of g.

A sketch of the proof of theorem 2.1 is given below.

These evolution and constraint equations are the same as those of Arnowitt
Deser and Misner ([3], equations (7-3.15)); recall that our shift and divergence
constraint are the negative of theirs, and that our ¥, # and # are tensor densities.

The 12 first-order evolution equations for (g,n) correspond to the six
second-order equations G/ = 0, while four of the other Einstein equations
WEP = 0 and WG°, = 0 appear as the constraint equations. More explicitly,
in co-ordinates determined by a slicing +,, *Z, has components #Z = (— N, 0).
If we define the «perpendicular-perpendicular » and « perpendicular-parallel »
projections of the Einstein tensor by

“'G—; —_ Z-‘ Zﬁ (JUGJﬂ —_ ‘\".‘ (.NGOO

and
WG = — Z WGz, = NG, ,
then
H(g,a) = — é“'(ﬁ_ uig)
and

JG ), =—29G, ulg) .

The evolution equations of this theorem are well posed. The proof of this
makes use of harmonic co-ordinates, i.e. a special choice of lapse and shift
determined implicitly. With the choice N =1, X = 0, the equations are

8’0«;‘
cr*ca’

pt ] ~a -
E:g'! -‘S zg,“ + gﬂb ..,c -gab — g > E.’_.g‘" — g"b
carecat cricri ¥ or*ext

+ lower-order terms .

In this form the equations are not strictly hyperbolic and the known ex-
istence theorems do not apply. The use of harmonic co-ordinates makes the
4-dimensional field equations strictly hyperbolie, from which it follows that
they are well posed, the result and proof of which is due to CHOQUET-
BrUHAT [30). This can also be based {31] on the strictly hyperbolic systems
of Leray, and FiscHER and MARSDEN [32] treat the equations as a symmetric
hyperbolic first-order system. The sharpest results, using H* spaces with the
smallest possible s, are due to HUGHES, KATO and MARSDEN [33)].

In the formulation of theorem 2.1, the lapse and shift are regarded as
freely specifiable. In the « thin sandwich » formulation, one regards g and ¢
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as Cauchy data, expresses z a8 a function of (§, N, X) and solves for ¥ and X
from the constraint equations

‘#(g’n(g.!Nix)) =0,

F(g,alg, N, X)) =0.

Upon linearizing, it is easy to see that this is not an elliptic system, so, even
if it is solvable, there will be some technical problems; in particular, regularity
must fail. Thus, the thin-sandwich formulation is rejected by most workers.
For other difficulties with the thin-sandwich formulation, see [34].

It is important to recognize various combinations of terms in the ADM
evolution equations as Lie derivatives, and we have done so in the way theo-
rem 2.1 is written. It is also useful to write the quadratic algebraic part of
ct/c2 as

Sol, 1) = — 2{a’ xa' = Y (rx)a}ulg) + (a7 — Y (tr ) ulg) .

This is the spray of the DeWitt metric, i.e. the terms in J# quadratic in =';
see below and [25]. Thus the terms in the evolution equation for = may be
interpreted as follows:

= NS, (x1,7)— geodesic spray of the DeWitt metric,

QY

— XN Ein (9)*u(g) + force term of the scalar curvature potential,
+ (Hess N + gAN)u(g)—  «tilt» term due to nonconstancy of N,

— Ly «shift » term due to a nonzero shift.

The evolution equation for g may be regarded as the defining equation for .
We refer to {25, 35,36] for more information. In this section, we shall be
primarily concerned with the Hamiltonian structure of these equations.

We consider again the space .# of Riemannian metrics on M and the dif-
feomorphism group 2. For the compact case, we should use .#*° with ¢ > » [Py
that is, Riemannian metrics of a certain Sobolev class; the diffeomorphisms
and other maps and tensors we use also should belong to appropriate Sobolev
classes. Similarly, in the noncompact case, the various tensors or dif-
feomorphisms should belong to the appropriate M, spaces described in [23).
For ease of notation, however, we shall restrict ourselves to the C* case.

Let T/ ~ # x 8, denote the tangent bundle of A, where 8. is the space of
C® 2-covariant symmetric tensor fields on M. Let 83 denote the space of C*
2-contravariant symmetric tensor densities on M. Define T*.# ~ .4 X8 =
= {(g,#)|lge#, ne 83}. We shall think of T*.4 as the « L,-cotangent bundle
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to M. For keT, # ~ 8,, ne T, # ~ §}, there is a natural pairing

(7, Ky, = [k
i

Thus T*.# as defined is a subbundle of the « true » cotangent bundle. Since
T*4# is open in 8,x 8], the tangent space of T*4 at (g,n)eT*4 is
Tto.n)(T*"I,) ~ Sa X S:

We now show that 7™ carries a natural symplectic structure in which
the evolution equations of the theorem are Hamiltonian. In order to include
the lapse function and shift vector field into this scheme, it is necessary to de-
velop the notion of a generalized Hamiltonian system.

On T*.# we define the globally constant symplectic structure

Q= Q2. Tom(T* M) X Ty 2 T* M) — R
as follows: for (h;, w,), (ks, W) € Ty a(T* M) = 8, X 8%,

g(n,m((hl’ wy)y (R, wz)) =Iwa'hl —wyhy.
I

Let
0 I
J = ( )ZSiXS,—»S,XSﬁ

be defined by

80 that
0 —7T h h —w
Ji= (I )ZSgXS§—>S§XS,, »J“( = .
0 w w h

k.
-Q((hnwl)a (hu w,)) =_f(hl! wl)'J_‘ (w) .

Then

We shall return to J shortly.
Let

C® = C®(M; R) denote the smooth real-valued functions on M,
C; = smooth scalar densities on M,

& = smooth vector fields on M
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and

A} = smooth 1-form densities on X,
Consider the functions

H.T* M —CF: (g, 1)~ H(g,7) = (22" — §(tr')2— R(@) ulg)
F =—20.T* 4 — A; (g, ) — 2(3,7) = 27,
and

D= (X,/)T‘./{*C: XA;; (9,7!)'*(‘95’(9, ﬂ)’j{gs 3]) .

At this point it is necessary to compute the derivates of ¢, # and @ and
their L, adjoints. The results are collected in the following

2.2, Proposition. — If we let (g9, ) € T* M, (h, w) € Ty, o(T*MH) = S, xS; and
(N, X)e C™ xZ, the derivatives of ¥, ¢, D (as defined above)

Ds#(g,n):8, X 8; > C7
D7 (g, n) :S,XS:—M’I:,
Dd(g,a) :8, x 83— C,xA;,

and their natural adjoints

D#(g, x)*:C°—> 85 x 8, ,
Df (g, m)* ¥ — 85 % 8,,
DP(g,n)* :C° X T~ 8; xS,

are given as follows:

Di#(g, 7)) (hy w) = — 8,(z,n)-h + (Ein(g)-h— (33k + Atrh))ulg) +
+ 2((=')" — }(tr')g) o,
D#(gx)*N = (—NS,(,7) + [V Ein(g)— (Hess N + gAN)J ulg) ,

2N((x') — 3 (tr7)g)) ,
DF(g, ) (hy ) = 2(w/;+ hynt, + by, — 3hy,)
Ds(g, =)* X = (Lra,— L.g),
Dd(g, ) (hyw) = (DH#(g, ) (h, ®), DF(g, )" (h, »))
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and
Dd(g, 2)*- (¥, X) = Da#(g,7)* N + DJ (g, n)* X =
= (—N8,(x, ) + (¥ Bin () — (Hess ¥ + gAN) ulg) +
4 Lym, 2N ((') — }(tr')g) — Lzg) -
Remark. \We are of course indulging in some abuse of notation, mixing in-

variant and index notations. \We shall often use indices when it saves expla-
nation and is easier to see.

Proof. To compute the derivative of 5,
DH#(g, ). T T* M) 2 8, X 8 = Ty O ~ C7
we use
Ds#(g, n)- (R, w) = D,#(g,7)-h + Da¥(g, ) w .

One must be cautious here and take the partial derivatives of # as a function
of » and not »’. We do this by writing

.?f(y,.‘!)=(

—_’—-dlet: . (Vdetga'-Vaetgn') "':]3 (Vdetg tl‘”')z) a*z — R(g)p(g) -

Then the partial derivatives are given by

1 1 1 1
D,#(g, n)-h = \/—d—ef?] (2 (zxn—§ (tr:z)n)—é (:z-n—é(tr :t)’)g)°h —

_Vdetg(SSh + Atrk—Ric(g) + .1191?(9))'.), ,

where zxn = a’' xn'vdetg-vdetgdir and 7-7==n'-7’' Vdetg-+/detgdsr. In
addition,

Dadf(g-a) o = %,?{; (:rm —é (tr z)(tr w)) =2 ((n’)’— .1‘; (tr :-z’)g)-w ,

s0 that

D#(g, A1)+ (h, w) = — 8,7, 7)-h + (Ein (g)- k) u(g) —

— (38h 4+ Atrh)u(g) + 2((=') — d(tra')g) o
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In computing the partial derivatives we have used the following expressions:

Dou(g)-h = }(trB)ulg),

D,(\-i__t—;)-h=—§vdi“?trh,

Dyn-n) h=2(nXA)h,

D,(trn) k= Dyg-7)-h = h'n
and

D,R(g)'h = Atrk + 88h— h-Ric(g) .

The last equation is the classical variation formula for the scalar curvature;
a convenient reference for these variation formulae is [20]. See also appendix I.

As usual, the L,adjoint of Do#(g, m)*:(CX)* ~ C° — (8, X 84)* = 85X 8,
is defined by

J' ND#(g, ) (h, w) = f (DX(g, n)** N, (h, ),

where the last inner product is the natural pairing between 83 x 8, and §, X §;.
A straightforward integration by parts of the — (38h + Atrh)u(g) term
shows that

Ds#(g, x)* N =
= (— ¥ 8,(m, %) + (¥ Ein (g) — Hess N — gAN)* u(g), 2N ((x')" ~ § (tr a')g)) -

(We may integrate freely by parts since M is compact without boundary.)
e now compute the derivative of

f(gv n) = 27"“: 29(:(71“.1 + n"l",‘,) [}
i.c. the map
D7 (g, 7). 8, xS; > A}
For (k, w)€ S, xS}, we write, as above,
D7 (g, ®)*(h, w) = D, f(g, 7) -k + D» #(g, n) w.
Since #(g, x) is linear in =,

Dz f(g, 1) 0 = 2w/, .
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The partial derivative D, #(g, #)'h is computed as follows:
Dn(”;’l,) th= Dg(giknuu)'b = h“,ﬂ”“ + gqu(“u.! 4+ ::"P,‘;)'h =
= by + g "' D (L) b =

= kyaty + g} (W, + RY) — k't =

= ket + Ak, — athy, = — b (dn)* + Ak, — Lhy) ,
where we have used the variational formula for the Christoffel symbols

D,{I"};)«h = é(hk;u'}' B, — h.n"‘) .
Thus

DF(g, ) (hy ) = 2(1c}; + by, + wMhy— dhy) =
= 2(— (dw)’ — hu(dn)* + (R — 3 hyyl)) -
The adjoint map
Di(g, n)*. T - 8; X8,

can be computed by integrating by parts, but it can be more easily computed
as follows: note that for all vector fields X € 2,

f X-Jlg)=2 fI’a, = —J.-'z""(Xu, +A,)=— f {7, Lrg)> .
M X o M
Since the contraction X-#(g, ) is natural, i.c. does not depend on the metric,

D( [<X, 516, 2)(h, @) =[<X, Dr(g, m)-(hy w)) = [ DS (g, m)*- X, (h, ),

and so

DX, £1g, 2> (h, @) = —[D(¢x, Leg))-(h, @) = —[ <@, Lrg> — [<m, Lehy =

= —[¢@, Lag +[<Zen, 1y = [<(Lam, = Lrg), (B @) -
Thus
Dfg, a)* X = (Lym,— Lzg)€ S5 %8, .
For the map @ = (&, 7):T*# — C3 x A}, the derivative is clearly given by
D¢(g: ”) = (D‘”’(y’ 7‘), Df(g, 7‘)) :S¢ X S: - C: XA;.
To compute the adjoint

Ddb(g, 7)*.C xT - 85 x8,,

22 = Rendiconti S.I.F. - LXVIX
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note that, for all (%, w) €S, x Sj,

J by ), DOlg, 2)"¥, X)> = [<DB(g, )- (h, w), (¥, X}> =
=[<Da#g, 3)-(h, w), N> +[<DFg, 7)-(hy ), X, =
=[<th, ), D#(g, )% ¥> + [<(h, w), Dy (g, 2+ X

So D@(g, =)*(N, X) = Ds#(g, n)*: N + Df(g, n)* - X. Substitution of the ex-
pressions obtained for Di#(g, x)* and D#(g, #)* completes the proof.

It is important to note that the L, adjoints we have been computing are
just the physicist’s functional derivatives. To see this, suppose

FT* M~ C?
is a scalar density. Let F.T*.#/ — R,
Fig,n)=[#(,).
M
Then, for (k, w) € T, a(T*.H),
dF(g, )+ (k, w) = [DF(g, 2): (h, 0) = [DF(g, %1, (h, w0}y =
=[®.F@ 221, 8 + [Daslg, 211, 03

In physicist’s notation, k = 8¢, w = 8a, dF = §F,

—

8F 3F
Day(g’ n)*- = -8? and Daf(g, 7[)"1 = s_z ,
so that
7= ('85’ i‘;) = (D.F(g, 2)*1, DaF (g, m)* 1) = DF(g, 1)*-1.

1f, for example, F(g, r) depends on at most second derivatives of the met-
ric, then

3F —
-53'89=f<o,.r(g,n)*-1,h> =J'D,f<y,n>-h -

=J CoF b+ 8oy F -8k + o,y F 0,0,k =

= [ @F — 220 F) + 8,8,@00,,F) 1,
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which gives the usnal expression for the functional derivative, namely

3F
5 CoF — 0i(Ce,e F) + 0:04(Ce)e F) .

Thus the adjoint is a convenient way to write the functional derivative.
For a scalar function f: M — R, we also have

3% (156, ) = D,(fF1g, m)*1 = (D, &g, 1)*,

as can easily be checked.
In terms of the maps #(g, 1), J (g, x) and D(g, =), we have the following
correspondences with the physicist’s notation and our adjoint notation:

(m 8‘{(3&1) = (D,J[’(g, a)*-1, D.-..?i‘”(g, '.,)#.1) i D.?t"(g, T)*-le S?,XS, ’

8¢ ' 3=z
}{(NoF(g, ) S(NHg,:- .
( ( 8:;!; ) 3 8:(zy 1)))___1).{(9,_1).,3 '

3(X-#lg, 7)) 3(X-£g,: i .
(_(" '{g(g 1))1 ( {'(Zg 1))) == (va(gs -1')"-1, D?](Q, ﬁ)"A) =

=DJF(g,m)* XY eSix S,

and
(5 05 + X, £ 5+ X-0) =
89" I "
= (DJNF + X 7)1, Da(No#F + X-7)*1) =
~ D(Y# + X-f)*1 =D (w,/)-(‘}))*-l = (o, =) )e Six s,
where @ = (¥, #).

As is shown in [3], the evolution equations of theorem 2.1 are Hamilton’s
equations with Hamiltonian No#¥ 4+ X -7, i.e.

g= %Nf+mﬁ,
c S .. -
a——s—g(z‘#+lf)-

By using the symplectic structure on I*.# defined by

0 I w w h
J=( )ZS}XS,»S,XSL )HJ( )=( )
—I 0 h h —
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and the correspondence
3 . - e
(55 + X0, g 0 + X)) = O, ) ),
g T T

the Hamiltonian equations above, i.e. those in theorem 2.1, can be written in
a very compact form.

2.3. Theorem. ~ The Einstein system, defined by the evolulion equations and
constraint equations of theorem 2.1 can be written as

, , c (g N
(evolution equations) 5l = Jo (DP(g, 7))*- x)

(constraint equations) D(g, n)= (X(g, ), F(g, n)) =0,

where (N, X) are the lapse function and shift veclor field associated with the slicing,

is given by proposition 2.2,

and where Dd(g, x)*: (i

Remark. In this form of the evolution equations, the symplectic structure
of the cotangent bundle enters explicitly. The principal interpretation of this
theorem is that the evolution equations are generated by the adjoint D®(g, x)*
to the linearized constraints. We shall explore the consequences of writing
the Einstein equations in this form in the sections to follow.

Sketch of proof of theorems 2.1 and 2.3. The Lagrangian density which gen-
erates the empty-space Einstein equations is

1

ggwtﬂ(“)g) = ié;_ R(“)g)”(u’g) b

where

plg) = V—det Wgdiz = NVdetgdirdl = Nu(g)da .

A computational part of the proof, which we shall not do, is to show that &

geom

can be written in the (3 + 1)-dimensional form as (see [3], eq. (7-3.13), and [21],
eq. (21-90))

16n_?“°m((l)g) p— R((l)g) "(“)g) P L’R((C)g),‘(g) d;. -_—

= (2T _N#(g, 1) — X 19, 7)) d7 +
¢z

+2 ((-"";X’—,]-;X‘ traz— (grad N)t”(g)) —a% tr .-:) di.
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Here i, is a slicing of V,, so that ¥V, can be identified with Ix 3. Note
that our = = 7'u(g) = n'Vdetgdir = T, e @3z contains the d*z term to com-
plete +/detg to a volume element, whereas the Typu does not. Similarly, the
volume element u(‘“g) contains d‘z = d*zdJ, explaining the overall multi-
pblicative factor dA. Also note that, although our shift X‘=— N¢, our
Flg, m) = 273, is also the negative of the ADM H,=—2x,, §0 that the
overall term X-¢ has the same sign.

Set f = = 2(a’,X’'— } X'tra— (grad X)'u(g)), a vector density on M;
note that g’ = B, = divp. The action for gravity can be written as

4 618‘“,.(“'9) =1 61‘]‘ '? eom(“)g)

_J'J'(,, S —N#(g,2)— X j(g,*:))d} +jf(dwﬂ—-§-tr-z)d).

Integrating the div £ term to zero on M, and dropping the total time deriva-
tive term (after changing the order of integration)

f f (6% tr n) di= ff da (a% tr :z) = I (tr 72) 3ms —f (tr 7z)jme
J={a,0) X a7 a K]

as & constant that will not enter into the variation of 8., we have

a \g
16:28,,0a('0g) = ff (:m%’— N.?f—X-j) di = ff (n -g—g-— (g, n) (f;.)) dz
I M 1y

Varying the action with respect to g in the direction 2 which vanishes
on {a} X M and {b} x M induces a variation of (g, ) in the direction (k, w), and
(h, w) also vanishes on {a} x M and {b} x M.

Thus, taking the extremum of the action for an arbitrary variation (h, w)
vanishing on the end manifolds {a} x M and {b} x M gives

0 = 167d8,uua(t99)- 01 = f [(oF+aZ)a-
[ oo ()i e -
[
o (52w
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where the term involving the total time derivative

[[(G#m)ar=[ @ mw— @b
T i o

integrates to zero (in the A-variable) by virtue of the vanishing of A on the end
manifolds. Since the variation (k, w) was arbitrary, we conclude that

o ¢ N
(_E'—-;’ -\_g) = (D¢(g, n))"(x) ’

c/A
80 that
—on\ (o
o4 oA N
A P o P =Jo(D¢(g,n))‘°(X). m|
7 c/

Actually, the form of the Einstein equations as they appear in theorem 2.3
can be extended to include fleld theories coupled to gravity. This extended
form is at the basis of a covariant formulation of Hamiltonian systems [28, 36].
For example, the canonical formulation of the covariant scalar wave equation
O¢ = m*¢ + F'(p) on a space-time V,=Ix M,¥g in terms of a general
lapse and shift is as follows:

Consider the Hamiltonian

g, ) = {}((x,)* + Vo[t + m2e?) + F(g)} ulg)

for the secalar field (the background metric is considered as implicitly given
for this example). We can construct a 2-covariant symmetric tensor density
J obtained by varying (g, n,) with respect to g

T = —2D,#(p, n,)*1
and a 1-form density (@, n) from the relationship
[<x, 59,205 =[x Ls9d
so that f(p, =) = — 7_-dp. This condition expresses ¢ as the conserved quan-
tity for the co-ordinate invariance group on M [25]. If we set @ = (¥, F),

then the Hamiltonian equations of motion for @ in a general slicing of the
space-time with lapse N and shift X are

° (o) _ N
5 (7)=vepoigar(3),
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exactly as for general relativity. A computation shows that this system is
equivalent to the covariant scalar wave equation given above.

If we couple the secalar field with gravity by regarding the scalar field as a
source, the equation for the gravitational momentum on{0A in theorems 2.1
and 2.3 is altered by the addition of the term 4N, and the equation for
Cg/cA is unchanged. The constraint equations become

‘#;wm(g! :t) + ‘;f;ulu(g’ ¢7 nq-) = 0 and };eom(gi n) + -y-u!u(w’ nq) = 0 M

More generally, if one considers a total Hamiltonian K= o+ K
and a total universal flux tensor F1= Fpeom + Fuuesy d0d if the nongravita-
tional fields are nonderivatively coupled to the gravitational fields, the general
form of the equations

& {9 Fa N
ec—;' (:z ) = Jo(Dd).r(g, Fay Ty -7‘4))*'(X)1

y T4

Pl gy T, 74) = 0

remains valid (see [28, 36, 37)). Here, @, represents all nongravitational fields,
7* their conjugate momenta, and D, = (#;, %). These results provide a
unified covariant Hamiltonian formulation of general relativity coupled to
other Lagrangian field theories and in fact allow the empty-space case to be
extended fo‘rmally to the nonderivative coupling case. KUCHAR [36], in his
series of papers, gives the other side of the coin by spelling out in detail the ca-
nonical formalism for covariant field theories initiated by DIrAC (see [29]) and
the references therein).

Finally, we mention that the formalism of this section can be extended
to the case where M is noncompact. This case has many technical problems
but there is one basic difference: the fall-off rate for asymptotically flat metrics
is not fast enough to allow integration by parts. This has led REGGE and
TEITELBOIM [38] to conclude that the proper Hamiltonian actually generating
the evolution equations contains an additional surface integral term correspond-
ing to the mass. Thus, in the asymptotically flat case, the mass can be inter-
preted as the « true » generator of the evolution equations after the constraints
® = 0 are imposed. These ideas are discussed further in [23).

3. - The constraint manifold.

Let € = {(9, 7)€ T*#|#(g, n) = 0} denote the set of solutions of the
Hamiltonian constraint and let ;= {lg e T*A| f(g,7) = 22,3, = 0} de-
note the set of solutions of the divergence constraint. Thus € — CxN€scT* Y
is the constraint set for the Einstein system.
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Two important facts about €, ¢, are that the constraints are main-
tained by the evolution equations for any choice of lapse function and shift
vector field, and that, generically, €,f) ¥, is & smooth submanifold of T*./.

From the space-time point of view, maintenance of the constraints is equiv-
alent to the contracted Bianchi identities, differential identities generated
by the covariance of the field equations, as will be discussed below. Of course,
this maintenance is necessary for the consistency of the evolution and constraint
equations. (Otherwise, a projection, or Lagrange multiplier, would be pres-
ent in the evolution equations.)

The manifold nature of %€, ¥,, while intrinsically of interest, is the key
to understanding the linearization stability of the field equations, as we shall see,

We begin by noting that the Hamiltonian and momentum functions are
covariant with respect to the infinite-dimensional gauge group Z(M) of dif-
feomorphisms of M. That is, for any 5 € 2(M) and (g, n) e T*A,

H(n*g, n*n) = n*H(g, 7),

Fp*g, n*n) = n* flg, ),
and hence

Pn*g, n*n) = n*P(g, 7).
Here 5* denotes the usual pull-back of tensors.

If 5, is a curve in 2(M) with #,= identity, and we define the vector
field X by X = (dn,/d1)|,,, then differentiation of the above relations in 4
at i = 0 gives the infinitesimal version of covariance:

Di#(g, n): (Lrzgy Lxn) = LI('#(Q! 7:)) ’
Df(g! 7)) (Lzg, Lz®) = I’x(j(gy ﬂ)) ’

and hence

DP(g, 7)(Lzg, Lrm) = Lz(P(g, 7)) .

The next theorem computes the rate of change of 5# and # along a solu-
tion of the evolution equations for a general lapse and shift. The infinitesimal
covariance accounts for the Lie derivatives in the resulting formulae.

3.1. Theorem. — For an arbitrary lapse N(A) and shift X(A), let (g(2), 7(4))
be a solution of the Einstein evolution equaiions

(%_ (z) = Jo(D®(g, ,-:))*-G;) .
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Then (#(4), F(A) = (.?f’(g().), a(4)), £ (9(%), n().))) satisfies the following system
of equalions:

o

1..
51‘+fo+me(1\7’/)=0

and

L L+ @nr=o.

If, for some 2, in the domain of exisience of the solution, (g(%), (%)) =
= (90, M) € Ep( €, (i.6. D(go, 71,) = 0), then (g(2), (%)) € Cp\E, for all A
for which the flow exists.

Remark. Thus, if a solution of the evolution equations intersects €, €,,
it must lie wholly within €, ¥,.

Proof. Using the infinitesimal covariance of 5#, we have

2y, - 2 & N
¢ éi' 7) a_g,a—:)=Dx’(g,n)-Jo(D¢(g, n))*-(x)=

= Dit’(g, n)- Jo[(DH#(g, x))* N + DfF(g,=)* - X] =

= D#(g, n): JoD#(g, n)*- N + D#(g, x)- (— Lrg, — Lr) =
= Dof(g, ) JoDIH(g, n)*- N — Ly H#(g, 7) =

(Das#(g, ))* - N

= D, ,,,.(

= Di#(g, 7)- (
— (D,J["(g, “))"N

= D, #(g, 7)-((Da#1g, ))*-¥) —Da# (g, ) (Do H# (g, 2)*- N) — LeH (g, 7).

)—Lx”(g, :‘) =

Since (g, r) is algebraic in =,
D25#(g, n) = 325#(g,n) and (Dai#(g, 7))* N = N S25#(g, ) .
From appendix I,

D,#(g, n)h = aa';?(g! I'ya)h— (Atrh + 88}')”(9)
and
(D, #(g, @))*-N = N 8,#(g, I z) — (AN + Hess N)u(g) .

The first two terms in the expression for 25¢/cA are evaluated as follows:

D, ((Dadf)* N) — Dadl- (D, H)* N) =D, (N 836) — 8a- (D, #)* - N) =
= 3,5¢(g, I', 2)+ (N 32¢) — (A tr (N 0:) + 38(N 825¢)) pulg) —
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— 82+ (N&,00(g, I', 1)) + €20+ (gAN + Hess N)u(g) =
= — (Atr (NT250) + 33(NS2)) ulg) + Ca#-(gAN + Hess N)u(g) =
= —3§(N(Ca¥ — g trdai¥))u(g) + Hess N+ (2 —gtr 02 ¥)u(g) =

= —83(2N2) + Hess N+ (27) = — 3. 3(N*5(27)
In this caleulation we have used these subcalculations. Firstly,

Cadt = 2((a")— }(trz')g) = — 2k,
50 that
Cadl — gtr (Ca ) = — 2(k—gtrk) = 2(x')°.
Secondly,
3(Na) = (Na')y, = (N + Nai,), = N+ Nty + (Nad), =
= Hess Nz + %N(Nn”,,)u = Hess N-zt + %S(N’(Sn)) .
Thus we arrive at

CHF 1 . 1 ..
e—;" =—F8(o '8(27:))—L,.9£’=—Fd1v(N’}')—L,d’.

The evolution equation for #(g, =) follows from infinitesimal covariance of
D(g, 1) as follows:

Let Y €& be any vector field on M (independent of 1). Then
_d_ Ad — d/(g’ n) — » . a_g ait —_—
di f(l 1 F (9 ) —J-<Y; TA - > —J.<1: Dy(g, xt) (az’ az)) =
. N
= f(l,Df(g, )-Jo (D@P(g, n))"(X» =

= f<<D¢(g, a)-J*e(DJ(g, )*- ¥, (AC» -

= —J‘<D¢(g, a)-Jo(D (g, 1))*- ¥, (i)) (J*=—=J)
- f {D®P(g, )+ (Lyg, Lym), (N, X)) =

= J-'(L;@(g, ) (N, X)) = (chain rule)
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- f NLH(g, 2) + (X, Ly fig m)> =
= —J {(LyN)o¥ — f LpX, f> = (integration by parts)

- [ Y(@N)# + f I, 0> = — | Tamar— j (Y, L > .

Since Y is arbitrary,

ot Leg + @M =0,

Considering the evolution equations for (5#(2), #(4)) as a linear first-order
system of partial differential equations, we see that, if (#(4), F(4,)) starts
out zero, then by uniqueness for such a system it must remain zero for the en-
tire flow. O

Remarks.

1) An interesting feature of these equations is that the A-derivatives of N
and XX do not appear.

2) In appendix IT we show that these equations are equivalent to Dirac’s
" canonical commutation relations for general relativity.

The following infinitesimal versions of 3.1 will be important in understand-
ing and interpreting a splitting due to MONCRIEF [4] and in the construction
leading to the space of gravitational degrees of freedom.

3.2. Proposition. ~ Let (g, 7)€ €p()€s. Then
range Jo(D@(g, ))*<ker Dd(g, =) .

Proof. Let (h, w)€erangeJo(D®(g, n))* and (N, X)e C*x& be such that
(h, w) = Jo(Dd(g, 7))*-(N, X). Let (N(1), X(2)) be an arbitrary lapse and
shift such that (¥(0), X(0)) = (N, X). Let (g(4), %(4)) be the solution to the
evolution equations with lapse and shift (N(2), X(4)) and with initial data
(9, 7) €€ ,r (| €. Since P(g,n) =0, by theorem 3.1, B(g(1), n(4)) =0 for
all 4 for which the solution exists. Hence

d cg(4) on(d
0 = 5 P(9(), 2DYnco = (Dw(g(z), ah)- (4, ’;—;’))M_o -

(2)
= DO, 1)-JeD(g, 2)-(3 ) = DO, )- (b w) .

— (D¢(g(;_), 7(A)) -Jo(D¢(9(A)s 3(1)))'(1;()))) =
|Am0

Hence (k, w)ekerD®(g,x). 0O
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We now examine the manifold structure of the constraint set €, %,.
We introduce the following conditions on (g, 7)e T*.#:

Cyp: if z =0, then g is not flat;
Cs: if, for XeZ(M), Lyg= 0 and Lyx = 0, then X = 0;
C,:tra’ is a constant on M.
We consider the constraints one at a time; first, the Hamiltonian constraint.

3.3. Proposition. — Let (g, n) € €,p satisfy condition C,. Then €, is a C°
submanifold of T*.# in a neighborhood of (g, =) with tangent space

T,

(g,m)

€= kerDs#¥(g, ).

Proof. Consider the map 5 :T*.# — C7; (g, #) > 3#(g9, n). We shall show
that, under condition C,,

Do#(g, n). Ty fT* M) = 8, X 8} — Ty, ., C5 = CF

is surjective with splitting kernel so that ># is a submersion at (g, 7). If we
use Sobolev spaces and the implicit function theorem, and then pass to the C®
case via a regularity argument, it follows that €= 5#-1(0) is a smooth sub-
manifold in a neighborhood of (g, ).

From the elliptic theory (sect. 1), it follows that Di#(g, =) is surjective
provided that its L,-adjoint

DH#(g, =)*.C° - 8; X 8,,
(D'*(gy J't))*N=
= ((— ¥8,(z, x) + N Bin (9)— Hess N + g AN)* u(g), 2N((w') — } (t ') g))

is injective and has injective symbol.
The symbol of Di#(g, n)* is

o,(Dot(g, 7)*) = ((— E® & + g|§[%)*ulg), 0) :

R~ (T2 U @ T3 M), p(9)(T. H ® T, M)E)
for £ T* M. For seR, £5£0, (— £® & + g£]?)s = 0 implies, by taking the
trace, 2[[£[*s = 0, s0 3 = 0, 80 that the symbol is injective. Thus from the

Fredholm alternative theorem (sect. 1) we have the L,-orthogonal splitting

7 = range D#¥(g, ) @ (ker (Do#(g, 7)*)) ® plg) -
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Thus if ker D#(g, n)* = {0}, DH#(g, =) is surjective. Any N € ker Do#(g, n)*
satisfies

a) — X8,(x,2) 4+ (N Ein (g) — Hess N — gAN)*u(g) = 0,

b) 2X((=)— $(tra’)g) = 0.

Taking the trace of b) gives N(trn') = 0 and so from 3) again Nz = 0.
Thus from a)

¢) N Ein (g) — Hess J\’f gAN = 0.
From the trace of ¢)
2AN + iR(@N=0.

However, from (g, 1) = 0 and Nz = 0, it follows that NER(g) = 0. Hence

AN=0

and so N = constant.

If 750, then Nn = 0 implies N = 0, since N is constant. Thus Ds#(g, n)*
is injective and hence Di#(g, n) is surjective.

If =0, then, from a), N Ein(g) = 0 implies N Ric (g) = 0. Thus, if
XN 0, then Ric(g) = 0 and hence g is flat, since dim M = 3. But a flat g
and x = 0 is ruled out by condition C,.. Hence ¥ =0, and again Ds#(g, 7)
is surjective. 0O

Remark. If g =g, is flat and n = 0,
ker Do#(g, 7)* = {constant functions on M} = R.
Next we investigate the divergence constraint.
3.4. Proposition. — If (g, n) € €s= {(g, 7)| 7 (g, 7) = O} = T* M satisfics con-

dition Cs, then €s is a smooth submanifold of T*.4 in a neighborhood of (g, )
with tangent spaces

Ty x%s= kerD g (g, 7)*.
Proof. The derivative of #(g, 7) and its adjoint were computed in sect. 2:
Dj(g, )% X = (Lzx,— Lyg) .
The symbol is injective (from its injectivity in the second component alone).

The kernel of D#(g,n)* is {X|Ly7x=0,L:g= 0}, so that injectivity of
D# (g, 1)* is exactly condition C,. O
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Remark. The regular points (g, x) satisfying condition Cs are just those
(g, =) having discrete isotropy group under the action of the diffeomorphism
group 2(M) acting on T*4 =~ 4 x 8; by pull-back (see [6], p. 258).

To show that the intersection &€ = €, %, is a submanifold of T*.#,
we need additional restrictions beeause there may be points at which the
intersection is not transversal. At this point it is necessary to assume that
(g, ) satisfies the condition tr=’ = const.

3.5. Theorem. — Let (g, ) €6 o[\ ¥, satisfy the conditions Cy, Cy and C,,.
Then the constraint zet € = €, 6, is a C™ submanifold of T*.# in a neigh-
borhood of (g, ) with tangent space

T(,':ng = kerD¢(g, :1) )
where @ = (¢, 7).

Proof. We want to show D®(g, z) = (D¥(g, =), D7 (g, 7)) is surjective for
(g9, x) € € and satisfving the given conditions. The adjoint
DP(g, 7)* . C° x X -8 x 8,,
(N, X) > DO(g, 1)* (N, X) = DH#(g, x)* N + Di(g, )" X
is given in proposition 2.2. For §eTT M, §+=0, the symbol of this map,
o,(D®Plg, 7)*), &€ Tt M, may be shown to be injective, as above (xec, however,
remarks on various types of ellipticity in [19]). Thus it remains to show that

Dd(g, 7)* is injective. Let (N, X)ekerD®d(g,7)*. Then from the formula
for D®(g, 1)* we have

a) — NS,(x,1) + (N Ein (g) — (Hess N + gAN)) pu, + Lex = 0
and
b) 2N((n')— 4(trn')g) — Lyg = 0.
Taking the trace of a) and &), we get
N .
6) —S#(g, 1) + AAN ), —tr Lyz =0
and
d) — Ntra' 4+ 25,X = 0.
Now

trLyz = X-dira—zx-Lyg + (div X)(tra),
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since

Lyz = (Lra Y& p, + 2" & (div Ly,

(in co-ordinates, (Ly7)'= X*aty, — a* X, — ahXi, + Xx, 7).
Since (g, 7) = 0, ¢) reduces to

&) 2{AN)u(g)— (X-dtra—a-Lrg + (div X)(tra)) = 0.

Using ) and d) to eliminate Lyg and divX regpectively in e) gives
N 2AN)—X-dtra’+ a'-Leg— (div X)(tra') =

A’ od ’
=2AN 4+ ‘).N:z’-((:-:')’—% (tr:z’)g) + 5 tra’)tra)—X-dtra’ =

N . .
=2AN + 2Ng'- '+ S(tra’)—X.dtra' =
= 2AN + ‘.3.-\'(.1’-.1'—} (trn')’)—.l'-d tra’=0.

Since
Py a') gea-a'— J(tra')t= (2’ — }(tr=')g) ‘(n'— §(tra)g) ,

we note that the coeflicient of N is positive definite. Thus, if tra’ = const,
/) becomes

2AN £+ 2P/, 2'Y)N =0,

which implies N = 0 unless =’ = 0, in which case N = const. In this case,
from a), Eiu (g) = 0 and so Ric (g) = 0, i.e. g is flat since dim M = 3. However,
the case (g,, 0), where gr is flat, is excluded by condition C,y. Thus, a'%0
and N = 0. Then, by a) and b)y, Lyg =0 and Lyx =0, which by condi-
tion C, implies X = 0. Thus (¥, X) = (0,0) and so D@P(g, m)* is injective,
under conditions C,., C, and C,. 0O

Remark. That one must impose the condition tr:z’ = const to show
that the intersection €€, is a manifold is an annoying feature of the
analysis. One suspects that under conditions Cx and Cs alone the system a)
and b) is injective, The difficulty is that in the system, say f) and &) for
(N, X), the X-d tr n’ coupling terms seems to be sufficient to prevent one
from showing uniqueness for this system. The results of Moncrief, discussed
in sect. 4, will shed light on this point.

In the following paper it is shown that many space-times with compact
spacelike hypersurfaces that satisfy the weak energy condition Ric (‘“g)>0
have tra’' = constant hypersurfaces. Thus these preferred hypersurfaces will
be the place to check conditions C, and C,.
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In the following sections the above theorem will be the main tool in proving
that generically the Einstein empty-space field equations are linearization stable.

4. — The linearized Einstein system.

Preparatory to studying linearization stability of the Einstein equations,
we study the linearized Einstein system

. ‘D Ein (‘¢g,)-“h = 0,

where '9g, is a solution of the (empty space) field equations, Ein (‘¥g,) = 0.
VWe shall consider these equations from both the space-time and dynamical
points of view and then discuss some relationships between them.

Given a space-time (V,,Wg) let O, denote the Lichnerowicz Laplacian
acting on symmetric two-tensors Yk e Sy(V); in co-ordinates {x*},

(DLmh):ﬂ =—g" hsﬂ:u:v + ‘Ra“ hﬁﬂ + Rﬂ“ hlm— 2R“a'ﬁ hl-lr .
Let (O‘0h),;=— g""h,

our sign conventions),
We collect three useful variational formulae in the following

guw D€ the usual d’Alembertian on two-tensors (note

4.1. Proposition.
a) D Ric (¥g)-wh = }{C,Wh— %y, 3., 'Vh — Hess tr (‘OR)} =
= é {Dr.“’h - &y, 8“,'(“'h —3tr (mh)u)g)} ,
b) DR(‘Wg)-"h = T tr (“Wh) + sw' 8.0, "h— ‘Wh-Ric (g) ,
¢) DEin (') Wk = } {[ij]", -, 8“,'“’5— (8“,' 8“,'(05) gl 4
+ }{(“’Z'Ric (wg)) wg — R(‘vg) R} .
Here, as usual,
am'(“‘I) = L(i)xmg = Xc:ﬁ + Xﬂ:a '
8“}' wh == haﬁ:ﬂ 1]

Otron =—g*w, 4,

and where 'k = Wh— } (tr'0h) g, i.e. Z.p= hy— 3W,9,5-

These formulae in the Riemannian case have already been alluded to in
sect. 2 during consideration of D¢. It is instructive to derive b) and ¢) from
the more primitive formula a). For the method to prove a) and a direct proof
of b), see appendix 1.
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Proof of a) = b). We suppress the superseript ¥:
DR(g)-k = D(g~'-Ric (g))-h =
= D(g7*)-k-Ric(g) 4+ gD Ric (g)-h =
= —h-Ric(g) + 3{g U h~ «, 5,h — Hess (tr b))} =
=—h-Ric(g) + 3} {Otrd + 25,5,h + O(tr b)} =
=0(tr») + &, 82— h-Ric(g) .

Here we have used trO.h = Otrk.
Proof of a) = ). Since Ein (g) = Ric(g)— 3 R(g)g,

D Ein (g)-h = D Ric (g)-h— }(DR(g)-h) g— } R(g) D(g) -h =
= } {0 h— , 8,(h— } (trh)g)} — ${0Otrk + 3,3,A— h-Ric(9)} g— 3 R(g)h =
= 3{O b~ 3g0trh)— &, 8,2 — (3, 3,k + g0 tr &)} +

+ 3 {[h-Ric (9) — % (tr b) R(g))g— [R(g)h — & (tr k) R(g)g)} .

These are the corresponding five terms in the expression ¢). [

If Ein(‘“g) = 0, then Ric(‘g) = 0 and R('9g) = 0, 50 ¢) becomes
D Ein (9g) -0} = ‘}{DL“”—‘_ %, 8«;,“%_ (8(4), 8«),“’2)(“9} .

We shall now derive a useful second-order variational formula due to
TAUS [39].

4.2. Theorem - Let Bin(‘g,) = 0 and WheSyV,). Then
8“,'.(D Ein (‘“g,)-Wh) = 0 .
If, moreover, 'Ok satisfies the linecarized equations, D Ein (9g,) Wk = 0, then
8,.,,.(D’Ein (“g0) : (“Wh, b)) =0,

Proof. Let 'g(g) be a curve of Lorentz metrics, such that ‘¥g(0) = t9g,
and (6/00)'9g(g)],-, = “h. Now differentiate the contracted Bianchi identities

{1) 8¢,y EiD (Wg(0)) = 0

23 - Rendiconti S.I.F. - LXVII
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with respect to g and set o = 0:
(2) (D(3,p,, ) -%) Ein (‘g,) + su,,.(D Ein ((9g,)«9h) = 0.

Since Ein ('Vg,) = 0, this gives the first result.
For the second, differentiate (1) twice with respect to ¢ and set ¢ = 0:
D:(gm. )+ (19k, Wh)-Ein (‘vg) + 2D(8“,,°)-“’h'(D Ein (“’g,)-“'h) +
+ 8‘“' (D: Ein (“’g,)(“’h, “’h) <+ 8‘.,'.(1) Ein ("’go)""g”(O)) =0.
Using the first equation in 4.2 and the conditions Ein(“g)=0 and
D Ein (‘%g)- Wk =0, this gives the second result. O

The second-order result just obtained will be useful below in our discus-
sions of linearization stability.
We next discuss the « canonical » decomposition

h = wfy + memg ,

where 8“,.(“%—- } tr (Wh)Wg) = 0, in the Lorentzian case. Such an ““X must
satisfy

Sw,(wh — tr (\Wh)'vg) = sm,(memg— 3tr (memg)(ng) =

= 8“)'memg_. db'“,'“'X = Y — 2 Rie (0g) o X
A solution to this hyperbolic equation is determined by a set of Cauchy data.
Note that solutions are not unique, and the decomposition is not unique,

although it does exist. In fact ‘“4 is nonunique up to terms L, ‘“g, where
Y is a solution to

8y
OwYy — 2 Ric (9g)-0Y =0

(or X" is nonunique up to such ‘*Y). The situation is to be contrasted with
the Riemannian case where X' is unique up to a Killing field.

To nail X down we shall single out special Cauchy data, namely zero.
We summarize this discussion.

4.3. Proposition. — Let (V,,'%g) be a space-time with a Cauchy hypersur-
face I,. For “Whe Sy(V,) there is a unique decomposition
Wh = Wk 4 L, g
such that
i) 8, (“h— dtr(wh)wg) =0
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and

i) if x,€eX,, 9X(x,) =0 and DWX(x) =0, ie. “X(x,)=0 and
Vig'*X(x0) = 0, where ‘WZ is the unit normal to I,.

For any diffeomorphism F:V,—7V,, we have the covariance property
Ein (F*¥g,) = FP*Ein ('g,) .
From this it follows (as earl.ier) that infinitesimal covariance holds:
D Ein (“g,) - L,,, Wg = L, Ein (9g,) .

Thus, if Ein (‘%g,) = 0, any gauge perturbation L, ‘“g satisfies the linear-
ized equations.

If we put this together with the above decomposition, the linearized field
equations about g, for wh = W} L Ly, g become

DL“'Ti =0,
where

wh — wf _ ltr (u)[‘)m s and 8“".04)7” =0.

We now recall the existence and uniqueness theorems for the full nonlinear
and then the linearized Einstein equations; see [40] or [41).

1.4. Theorem. - Fix a compact M and let (Gos ) EC o[V €5. Then there is
a space-time (V,,Yg,) and a spacelike embedding i,: M —V, such that

i} Ein (‘) =0,
ii) the metric and conjugate momentum induced on Zo=i( M) i3 (go, To),

iii) (Vy, '9g,) is maximal (i.e. cannot be properly and isometrically embed-
ded in another space-time with properties i) and ii)).

This space-time (V,, '%g,) is unique in the sense that, if we hare another
(V,,"g,) twith i)-iii) holding, there is a wunique diffeomorphism F :V,—»V;
such that

i) Frigy = Wgy (ie. F is an isometry)
and

. - o
ii) Foi,=i,.



356 A. E. FISCHER and J. E. MARSDEN

Remarks. The local existence and uniqueness is found in, e.g., [30, 32, 33],
as was mentioned earlier. The maximality part is due to CEOQUET-BRUHAT
and GERoOCH [40]). The uniqueness of F uses the fact that an isometry is de-
termined by its action on a frame at a point.

4.5. Theorem. — Let (V,'Mg,) be a vacuum space-time, i.6. Ein (‘Yg;) = 0
with a compact Cauchy surface X,= i,(M) and with induced metric and ca-
nonical momentum (go, 7o) €€ €s. Let (ho, w,y) € 8, X 8} satisfy the linear-
ized constrain! equations, i.e.

DD(gy, 7te) * (hoy wo) = 0 .
Then there oxists an 'Ok, € Sy(V,) such that
D Ein ("Wg,)-“h, = 0

and such that the linearized Cauchy data induced by Wh, on X, are (R,, w,).
If Wk is another such solution, there is a unique vector field ‘WX on V,
such that

mh: =Wh 4 L u)go

(Ox
and WX and its derivative vanish on X,.

Remark. The linearized Cauchy data are defined in the same manner as

the (g, ) are defined. In fact, if ‘“g(o) is a curve of Lorentz metrics tangent
to 9k at g, then

= (%92}
(hu’wo)—( ag

' B0
where (g(g), 7{0)) are the induced Cauchy data from ‘g(o).

o—o,

Theorem 4.5 is proved as follows: one begins by working in the linearized
harmonie gauge 3, ‘“h,= 0 for which the linearized equations are the hy-
perbolic equation

For uniqueness, one notes that, if ¥k, and ‘“'4; are two solutions, “A, and 9§
both satisfy [J ‘“A = 0 and have the same Cauchy data. The result then fol-
lows by using proposition 4.3.

Now we consider the linearized equations from the dynamical point of
view. Recall that, if dx/dd = A(z) is a nonlinear differential equation, the
linearized equations about a solution z(1) are

dy

& = D4@E@)-y.
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These may be obtained by supposing there is a curve z(4, g) of exact solutions
with z(4, 0) = (1) and (¢/do)=z(4, o) l=o = ¥(4) and differentiating 02/02 = A(z)
in o and evaluating at g = 0.

The linearized Einstein dynamical system js obtained by the same pro-
cedure. Specifically, let Ein (‘%g,) = 0, Wk € 8(T",), and let Wg(o) be a curve
of exact solutions, Ein (‘9g(g)) = 0, with “Wg(0) = Wg, and “Wh = o'9g(0)/Co,
so that ‘“h satisfies the linearized equations D Ein (9g,)-@Wh = 0. Let
4, e E°(M,V,, “g(g)) be a fixed slicing of V,; for o sufficiently small, 5, will
remain spacelike in the varying metrics g(g). By theorem 2.3, for each o,
we have

cg(2, o)
o2 JoD®(a(A . . N(4, o)
eaid0) | = oDP(g(2, 9), (7, ) o e))

ci
and

D(9(2 0), a4, 0)) = 0.

The lapse and shift depend on e even though the slicing is fixed, because
the decomposition of X depends on the normal to S and hence on Wg(p).
Also, g(4, 0) = g(2), =(4,0) = (%), N(4,0) = N(2) and X{4, 0) = X(2), where
(9(%), 7(4)) are induced on =, by ‘g, and (N(2), X(2)) are the lapse-shift de-
composition of X, in the metric Wg,.

Differentiating these equations with respect to g, interchanging p- and
A-derivatives, letting o = 0, and letting

wi = B0 S SO

dg
and
oN(2, 0) . oX(4,0)
7 —_ 7 L = e———
U(2) 3’ V(4) 3
gives the following:
ehis)
» . - . 3 e;' —
(linearized evolutions equations) e‘?ﬂ )—) =
<l
N(A) h(2) U'(2)
= JoD [D(D(g().), .-:(i.))*-( )]( ) + JoDd(g(4), n(l))*-( ) ’
X(A) () V(4)

(linearized constraint equations)  D®(g(2), a(2)) - (k(2), w(4)) = 0.
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Remarks. Since J and the (natural) adjoint operator are linear and inde-
pendent of the metric, they contribute no terms. (Here is a computational ad-
fantage of natural adjoints.)

As in the full nonlinear case, one regards U(Z), V' (1), the infinitesimal
variations of the lapse and shift, as arbitrarily specifiable (possibly zero).
Then (i), w(i) are determined by the linearized evolution equations and
their valwe at 1= 0.

The maintenance of the linearized constraint equations in 2 is guaranteed
by the linearized contracted Bianchi identities (see theorem 4.2 and what
follows).

We now discuss the relationship between % and (h, w, U, V). Let a slicing
be fixed, giving co-ordinates {x*} and let ¥g(0), g(2, ), 1(%, o), etc. be as above.
The following formulae are derived directly:

gil2y 0) = Wg, (2, 0),  Wgodd, 0) = — gu(4, 0) X4, 0),
wg(z, 0) = — 1/(X(4 9))*,

hid) = Why,,  Oh(2) =—hyXi=T1,

W) = 2T (XN (2),

WZ,=(—XN,0), Wz = '1% 1,Xn,

0. = "’Z.“"Z,“’h’ﬁ = 2U/N  (the perpendicular-perpendicular projection),
(Ph_.), =—WZ20)  =TV,IN (the perpendicular-parallel projection),
(‘Yh.,)., ="k, (the parallel-parallel projection).

For gauge perturbations vk = Ly, Y9, if we let WY = ¥, WZ —TioY,,,
write out the Lie derivative in co-ordinates and project, the formulae #,,
and k., become

ax,

-\?(Lwymg);; =2 ( d) + I‘-l' YJ._ Ll'.hmx) =2U ’

‘\):’
N(Ly V9., = CTN;""! + LiYpue+ Ngad V', Y, gd N =1,

where Y, = —1Y,. Note the special case (Y = .X'; then we get
v, _ o e _ -
d/ ’ al
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(KUCKAé [36, II] has general formulae for projecting the covariant deriva-
tive and hence the Lie derivative; see his equations (2.5) and (2.6).)

The next proposition details some of the relationships between the space-
time and dynamical equations for the linearized system.

4.6. Theorem. - Let Ein('g) = 0 and X, = ij(M) be a spacelike hypersur-
face with induced (g, 7)) ECp(€,. Let “Vhye 8x(V,) and let (hy, wo) be the
deformations of (go, 7,) induced on I, by Wh. If WY, 18 a vector field on X,,
WYy =Y, ,0Z, 4 TioY,, then

{— 2(D Bin (“gy)) -9k~ (0¥, WZo)} ulge) = (Y., — ¥,), DB(gy, 1) (ho, w5) -
If, moreover, Wk, satisfies the linearized equations
D Ein (‘g,) - (“hy) = 0,
then (hq, 0x) satisfics the linearized constraint equations
DP(ge. 715) (hoy o) = 0.

Proof. Let 'g(o) be a curve of Lorentz metrics tangent to (¥%, at o = 0.
For each g, we have the following identity on X,:

(3) — 2 Ein (“g(0)) (Y=, *Z (0)) u(gs) =
= T _(0)#(g(0), n(0)) — Y, (0) - #(g(0), 7(0))

(from the formulae on p. 331 above).

Differentiating this identity (3) with respect to o and cvaluating at o=10
gives the differential identity

() —2(D Ein (9g,)-Wk) - (9T x,, Zc,) p(gy) —

—2 Bin (%) (T, L2 4ig)— 2 in (950 (9T, @22t Bt =

f(go: T,) + Y,LD‘#(QM o)+ (o4 g) —

_&Y,(0)
e

_2¥,0)
)

'f(goy T)— Y, D}(go, o) * (I wg) .

Since Ein (‘g,) = 0, #(go, %) = 0 and £(g,. 7,) = 0, (4) reduces to the
first desired conclusion:

(5) - 2(D Ein (u)go) '“’h) .(my:., mz:')ll(go) =
=Y, — ¥,), DB(go, 7t5)  (ho, o)) »
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If ‘“h is a solution to the linearized equations, D Ein (*¥g,) -k, = 0,
then (5) becomes

XLy — X,), DD(goy 7o) (ho, o)) = 0.

Since this is true for all WY: ,
DP(gy, 7o) (hy, o) = 0. DO

Remark. Note that (3) in the proof is an identity in Lorentz geometry,
i.e. it is true for all space-times whether or not they satisfy the empty-space
field equations. This equation is one key for relating the space-time point of
view to the dynamical point of view.

Now let us consider infinitesimal deformations of vacuum space-times ‘g,
of the special form Wk = L, ‘Yg,. Deformations of this type automatically
satisfy the linearized equations

D Ein ('9g,) 'Lm,wgo = ng(Ein (mgo)) =0,

as we have seen.

Let X, be a compact Cauchy hypersurface in V', and let (g,, 7,) be the met-
ric and momentum induced on ZX,, (k,, w,) the deformations of (g,, 7r,) on 2,
induced by “h = L, 'Yg, and (Y,, ¥,;) the tangential and normal compo-
nents of WY on X,. These quantities are all related together quite simply.
As has been shown by MONCRIEF [7), the relationship is simple, but the original
proof involved a long computation. Here we give a geometric proof based
on the adjoint form of the evolution equations. The idea is to replace a de-
formation ‘9g(p) of ¥g, by a family of embeddings and then use the evolution
equations.

4.7. Theorem. — On V,, let Ein('Vg,) =0 and let Z,= t,(M) be a com-
pact spacelike hypersurface. Let *Y be a vector field on V, with flow F, and let
ia= Fi0%, (for |A| small, this is a one-parameter family of spacelike embeddings).
Let Wk = L, g, (g(2), 7(A)) be the metric and momentum on X, = iy( M)
and let (h(2), w(A)) be the infinitesimal deformation of (g, n) induced on Z,

by ‘¥h. Then
h(2) Y, (4)
( ) = JoD®P(g(4), :'t(;-))"( ) y
cu(}.) Y-hm(l)

Proof. Consider the curve 'Wg(g) = Fy'¥g, through g, with tangent
Wh = L, 'Y"g.. Let g(4, o) and =(4, o) denote the metric and canonical mo-
mentum induced on I, by 'Wg(p), so that h(2) = (Sg/0p)(1,0) and w(i) =
= (3n/de)(4, 0).
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Now (g(4, 0), a(4, g)) induced on X, by “g(g) is equal to the metric and
canonical momentum induced on X, , = F oF,0i(M) by the space-time (¥g,.
For example, for the induced metrics,

(% o) = i79g() = (F,0i,)* Fi(g,) = (FooFrotg)* Vg, ,

which is the metric induced on =, in the space-time ‘Yg,.
Now fix 2 and consider the curve of embeddings i(g, 1) = FyoF,01,, and
note that its generator is

ct . oF . , ,
6—9— (9, 2) = 53001"‘010 = WYoF 0F 0ty = WYoi(g, 1) .

Since this is now a l-parameter family of spacelike embeddings in the par-
ameter o (for o sufficiently small), by the evolution equations in adjoint

form we get

g2, 9)

ae _ J D¢ . ; )‘ Y.L(;" Q)
oz, | =7° (9(2, 0), (4, @) (_ Y0, 9)) !
de

where Y (4, o) and Y,(Z, 0) are the normal and tangential components of
@ Yoi(g, 2), respectively.
Evaluating at ¢ = 0 gives

h(2) Y, (4)
( ) = JoD®(g(1), :z(z))*-( ) .
w(4) —Y,(4)

Remark. This result amounts to an integration of the linearized evolution
equations in the special case that Wk = L,,'Y9, and ‘“Yoi, is chosen as
the generator of the 1-parameter family of spacelike embeddings ix= Fioi,,
where F, is the flow of ‘Y. The lapse and shift for this family is (N, X) =
= (Y, — ¥,), so that

. og(2)
h(2) Y, (4) N(4) FY)
( = J,DD(g(1), m(A)* ( ) = JoDD(g(2), z(4))* ( ) = a2y
w(A) — Y, (2) X(2) ;‘5;_-

4.8. Proposition. — (h(Z), w(2)) in theorem 4.7 satisfy the linearized Ein-
stein evolution equations.
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Proof. Recall the equations dY,/d2 = U and d7¥,,,,/dA = V derived above.
Hence differentiating

h(2) Y, (A)
( ) — JeD&(g(), .-«;.n*( )
e(7) Y,unl4)
with respect to 7 gives
chiz) eg(2)
e JoD [DD(g(2), a(4))* Y- o +
== 0 >)s o o * -
Eo(2) Ty (i) ] | €A
ci ) &z
Y ()
‘\ .
+ JoDP(g(4), (4))* Y ()
i
Y,(2) h(2) C()
=JoD [Dq)(g(;.), a(2)* ( )]( ) +JoDD(g(4), :r(l))‘( ) )
Youal2) w(2) V(4)

showing that (k(4), w(4)) indeed does satisfy the linearized equations. O

Using the results of this section, we now go on to study linearization sta-
bility of the empty-space field equations.

3. — Linearization stability of the vacuum Einstein equations,

Linearization stability concerns the validity of first-order perturbation
theory. The idea is the following. Suppose we have a differentiable fune-
tion F and points r, and y, such that F(zr,) = % . A standard procedure for
finding other solutions to the equation F(r) = %, near r, is to solve the linear-
ized equation DF(x,)-h = 0 and assert that z = Z, + ok is, for small g, an
approximate solution to F(z) = y,. Technically this assertion may be stated
as follows: there exists a curve of exact solutions x(g) for small p such that
F(x(0)) = %o, 2(0) = z, and x'(0) = h. If this assertion is valid, we say that F
is lincarization stable at x,. It is easy to give examples in which the assertion
is false. For instance, in 2 dimensions F(z,, x,) = 2} 4+ 2} = 0 has no solu-
tions except (0, 0), although the linearized equation DF(0,0)-2 =0-h=0 has
many solutions. Thus it is & nonvacuous question whether an equation is
linearization stuble at some given solution, or not. Intuitively, linearization
stability means that first-order perturbation theory is valid near z, and there
are no spurious directions of perturbation.
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The question of linearization stability is important for relativity. In the
literature it was often assumed that solutions to the linearized equations do in
fact approximate solutions to the exact equations. However, in [42], BRILL
and DESER asserted that for the flat three-torus, with zero extrinsic curvature,
there are solutions to the linearized constraint equations which are not ap-
proximated by a curve of exact solutions. They gave a second-order per-
turbation argument to show that, subject to the condition trz = 0, there
are no other nearby solutions to the constraint equations, except essentially
trivial modifications, even though there are many nontrivial solutions to the
linearized equations. Since then, FISCHER and MARSDEN [6] have given a
rigorous proof. It is analogous to and is proved by techniques used in the
following isolation theorem in geometry.

5.1. Theorem. (FISCHER and MARSDEN [19).) - If M is compact and g, is
a flat metric on M, then there is a neighborhood U, of g, in the space of metrics A
such that any metric g in the neighborhood U,, with R(g)>0 is flat.

The proof amounts to a version of the Morse lemma adapted to infinite-
dimensionil space with special attention needed because of the co-ordinate
invariance of the sealar curvature map.

The results on linearization stability are due, independently, to CHOQUET-
BRUHAT and DESER [43] for flat space and to FISCHER and MARSDEN [5] for
the general case of empty spuce-times with a compact hypersurface. The
methods used are rather different. Later, O'MURCHADHA and YORK [44]
generalized the Choquet-Bruhat and Deser method to the case of space-times
with a compact hypersurface. We comment on this method later. The
flat-space result is:

5.2. Theorem. — Near Minkowski space, the Einstein-empty-space equations
Ein (‘%¢) = 0 are lnearization stable.

In this theorem, one must use suitable function spaces with asymptotic
conditions and asymptotically flat space-times. We will consider the non-
compact case in the following paper where we will prove thet time-symmetric
asymptotically flat empty-space solutions are linearizetion stable. Actually,
the original Choquet-Bruhat and Deser paper dealt with asymptotic condi-
tious of a special form. We shall deal with asymptotic conditions in the general
case. Here we shall consider only those space-times which are developed from
Cauchy data on a compact hypersurface.

We begin by defining linearization stability for the empty-space Ein-
stein equations.

Let Ein (g = 0. An infinitesimal deformation of ‘g, is a solution
10k e 8y(V,) of the linearized equations

D Ein (19g,)-Wh = 0.
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The Einstein equations are linearization stable at ‘Yg, (or ‘g, i8 linearization
stable) if, for every infinitesimal deformation ‘¢4 of ‘¢g,, there exists a C* curve
Wg(o) of exact solutions to the empty-space field equations (on the same V)

Ein (‘g(9)) = 0

such that tg(0) = t¥g, and c9'g(0)/Co = Wh,.

This definition has to be qualified slightly to be strictly accurate. Namely,
for any compact set D <17, we only require ‘“g(o) to be defined for o] < ¢,
where ¢ may depend on D. The reason for this is that 9g(p) will be developed
from a curve of Cauchy data (g(g), a(p)) and so 0g(g) will be uniformly close
to g, on compact sets for |g| < &, but not on all of V, in general.

Since we are fixing our hypersurface topology M, all Cauchy developments
lead to topologically equivalent space-times V= RXx M, so fixing V, is not
a serious restriction. (Topological perturbations are, of course, another story.)

If one uses the linearized dynamiecal Einstein system, linearization stability
of the Einstein equations is equivalent to linearization stability of the constraint
equations, as we shall see below. In fact, linearization stability of a well-posed
hyperbolic system of partial differential equations is equivalent to linearization
stability of any nonlinear constraints present.

In terms of the linearized map Dd(g, n), we can give necessary and suf-
ficient conditions for the constraint equations

¢(gi a) =90
to be linearization stable at (g,. :1,); that is, if (R, w)€ 8, X 8} satisfies the linear-
ized equations
Dd(gy, 7o) (hy w) = 0,
then there exists a differentiable curve (g(o), 1(0)) € T* .4 of exact solutions
to the constraint equations

D(g(0), 7(0)) = 0

such that {(g(0), 2(0)) = (go, 2,) and

(aggg) 22(0)

e ' @0

) = (h, ).
The main result follows:
5.3. Theorem. — Let @ = (¥, 7). T* M — C7 x A be defined as in sect. 2

30 €V €s= D 1(0). Let (go, ) €, %s. The following conditions are
equivalent:
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i) the constraint equations
¢(gy 7) =10

are linearization stable al (g, 7o),
it) DP(g,, 7,) : 8, X 8] = CF x A} is surjective,
iii) DP(go, me)*: O X X — 8] x 8, 18 injective.

Remark. In sect. 3 we listed sufficient conditions in order for ii) to be
valid, namely the conditions C,, C; and C,,.

Proof of 5.3. In sect. 3 we showed that Dd(g,, 7,)* is elliptic. Thus, the
equivalence of ii) and iii) is an immediate consequence of the Fredholm
alternative,

ii) implies i). The kernel of D®(g,, ,) splits by the Fredholm alternative.
Thus the implicit function theorem implies that, near (g,, 7,), -2(0) is a smooth
manifold. (Here one must use the Sobolev spaces and pass to C* by a regularity
argument as in [19).) Since any tangent vector to a smooth manifold is
tangent to a curve in the manifold, i) results.

i) implies iii). This is less elementary and will just be sketched. Assume i)
and that DP(g,, 7,)*-(N, X) = 0, but (¥, X)#0. We will derive a contra-
diction by showing that there is & necessary second-order condition on first-
order deformations (k, w) that must be satisfied in order for the deformation
to be tangent to a curve of exact solutions to the constraints. Thus let (&, w)
be a solution to the linearized equations, and let (g(o), 7(0)) be a curve of exact
solutions of

(6) P(g(0), 7(e)) = O

through (g,, 7,) and tangent to (%, w). Differentiating (6) twice and evaluating
at g = 0 gives

(7N Dd(g,, ”o)’(f(o)y ””(0)) + D*P(g,, “o)'((hi w), (k, w)) =0,

where g'(0) = £2g(0)/d0* and =n"(0) = 0%n(0){co®. If we contract (7) with
(¥, X) and integrate over M, the first term of (7) gives

J<@¥, X), Do(ge, )+ (g°(0), 2°(0))y = [<DDlgs, ma)*- (¥, X), (¢7(0), °(O)) = 0,

since (N, X)eker Dd(g,, m,)*.
Thus the first term of (7) drops out, leaving the necessary condition

®) [<¥, 2), Dr(ge, )+ (B, ), (hy @) = 0,



366 ) A. E. FISCHER and J. E. MARSDEN

which must hold for all (&, w) € ker D®(g,, T,). As we shall see below, (8) is
« hypersurface invariant » (cf. theorems 4.2 and 4.6), so we can assume N # 0,
say N >0, in a neighborhood T of M. A (long) calculation as in [6, 19]
shows that, if k is transverse traceless, o is transverse and some additional
algebraic conditions making (k, w) e ker D®(g,, 7,) hold, their (8) becomes

(9) f N(Vh)* 4 lower-order terms = 0.

On the other hand, by [45], the space of ks satisfying these conditions
N {(h, w) with support in U} is infinite dimensional. But a relation like (9)
cannot hold in this infinite-dimensional space by Rellich’s theorem (see sect. 1)
(see [46] for details). O

Remarks. a) The procedure for finding a second-order condition when linear-
ization stability fails is quite general. See [6, 19] for other applications.

b) The implieation i) = ii) uses dim M >3. For the equation R(g) = o,
i) = ii) (replacing @ by R) is not true on two manifolds [19].

From the linearization stability of the constraint equations we can deduce
linearization stability of the space-time and wvice versa,.as follows:

5.4, Theorem. — Let (V,, Vg,) be a vacuum space-time which is the marimal
derelopment of Cauchy data (g,,:1,) on a compact hypersurface Xy= i ().
Then the Einstein equations

Ein('vg)=0 on I
are lincarization stable at \Vg, if and only if the constraint equations
&(g,1) =0

are linearization stable al (g,, 7t,).
In particular, if conditions C,, C, and C,, hold for (g,, t,), then the Einstein
equations are linearization stable.

Proof. Assume first that the constraint equations are linearization stable.
Let Wi, be a solution to the linearized equations at ‘¥g, and let (k,. w,) be the
induced deformation of (g, %) on X,. By proposition 4.6, (k,, w,) satisfies the
linearized constraint equations., By assumption, there is a curve (g(o), alg)) €
€ €[ €5 tangent to (h,, w,) at (g, 7).

By the existence theory for the Cauchy problem, there is a curve ‘¥g(o) of
maximal solutions on V,=x Rx M of Ein (“’g(g)) = 0 and with Cauchy data
(9(0), =(@)). (As earlier, for any compact set D <V, and &> 0, there is a
&> 0 such that ““g(p) is within ¢ of ‘g, (using any convenient topology) on D.)
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We now must show that we can transform the eurve “g(0) by diffeomor-
Phisms so that ¥k, is its tangent at o = 0. It is here that we use the uniqueness
results for the linearized and full Einstein system (theorems 4.4 and 4.5).

Since ¥g(0) and ‘¥g, have the same Cauchy data, there exists an F € 2(17,)
such that F1Z,=id,, DF1 X, =id (on TV,| %) and “g,= F*("g(0)). (The
symbol 1 means restriction.) Thus the curve t9g(g) = F*('9g(p)) satisfies
N)g(O) - lllgo.

By the conditions on F, “g(o) and ‘g(p) induce the same Cauchy data on =,.
viz. (g(o), (g)). Thus if

= DG(0)
V) =
Wh=

“k induces the same linearized Cauchy data

(7;0: @) = (6%0)’ 62(90)) = (hg, wy)

as ‘Wh. Moreover, since % is tangent to a curve of exact solutions “9§(o), WF
is » solution to the linearized equations D Ein (‘*§(0)) -*¥% = D Ein (g,)-(v} =0.

Therefore, by uniqueness of solutions to the linearized equations, there
exists a unique X sguch that “WX{ZX,=0, DWX1Z,= 0, and such that

W = Why 4 L, %,
Let F, be the flow of WX, Fy= id. . Then Fol1X,= id and DF,| X, = id. Let
(o) = (F,')*(“g(e)) = (F3")*(F*("g(0))) .
Then ‘9g(g) is a curve of exact solutions with 193(0) = g, and tangent

3(4)5(0) _ aurg'(o)
de oo

~ L, '9§(0) = Wk — Ly, 9g, = Wh, .

This is the curve we have been looking for (note that ‘“g(g) has the same
Cauchy daia (g(o), n(9)) as "’g(g)).

Secondly, assume that the equations Ein ('Wg) = 0 are linearization stable.
To prove that the constraint equations are linearization stable, let (g,, 1) €
€ €\ €5, g, be its maximal development, so X, is a Cauchy surface in V,.
Let (h,, w,) € ker DP(g,, 7,) and let, by the linearized existence theorem 4.5,
ok e ker D Ein ('g,) be such that it induces the data {ko, wy). By assumption,
Wk is tangent to a curve ‘g(g) of exact solutions (in the sense explained earlier).
Let (g(o), (o)) €%\ ¥¢; be the Cauchy data induced by ‘“g(p) on X,. By
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definition of induced Cauchy data, the curve (g(o), n(p)) is tangent to (&, w,)
at (g0, 7). O

EHLERS has emphasized the importance of obtaining explicit estimates
on how far away the perturbed solution !¢'g, 4 o'#'g is from an associated
exact solution ‘¥g(o). Such an estimate can be made from the analysis given here.
Indeed, in terms of the Cauchy data (g, @), if (g(g), #(g)) i8 the curve of exact
solutions corresponding to a perturbation (R, w), we can say that

(g(e), ’7(’.’)) — (g0 + ok, 7o+ ow) |, < } | D2 D(g,, ”o)((h, w), (k, ) o=z 0 + O(2*)

where | [, refers to the H*xH*! norm on (g, ).

In aby particular example, the coefficient of ¢* could presumably be worked
out explicitly. The coefficient of g3, if needed, is the corresponding third
derivative, and so forth.

In {47, 48], O'MURCHADHA and YOrX provide an approach to the linear-
ization stability of the constraint equations which is rather different from ours.
Building on the conformal techniques developed by ILICHNEROWICZ and
CHOQUET-BRUHAT (with the crucial additional step of allowing tr Xk to be a
constant depending on 2, the slicing parameter) to analyze the constraint
equations, they generalize the Choquet-Bruhat and Deser (43] approach to
the constraint equations to nonflat initial data. As in our ¢ smooth submanifold
approach » [5], they also attempt to find those (g, =) € €)%, near which
€[\ €, is a submanifold. Their method of proof uses immersions, in constrast
t0 ours which used submersions, but the final results are nearly the same.

Their main idea is as follows: Consider the set of triples (g, #™, t), where
geM, ne 8" = {ze8j|5,n = 0,tr,7 = 0} and ve C®(M;R), and also the
set of (§, #77, 7), where § = g @ ;" and A" =a"" @ u! are the « conformal
parts » of g and m, respectively, in the sense that (§, #77) are invariant under
any conformal transformation g~ @*g. The idea of the conformal method
is to use a conformal transformation to map any such triple (§, #77, 7) to a
solution (g, x) € €, ¥, of the constraint equations such that the conformal
parts of (g, n77) and tr x’ are the same as the original triple (§, 7", r). This
is accomplished by rewriting the constraint equations as four nonlinear el-
liptic equations for a conformal factor ¢ > 0 and a vector field X, generalizing
Ay + 8R(g)p = 0 for the time-symmetric case (see (49])). Under suitable
conditions, there are solutions (p, X) which describe the conformal transforma-
tion that takes (J, 77, 7) to a solution (g, x) of the constraint equations. More-
over, by linearizing this set of four elliptic equations, O'MURCHEADA and YORE
show that, if (p, X) is such a solution and if X is not a conformal Killing vector
field for the conformal class of matrices §, then solutions (p, ¥) exist nearby
and in fact define a local immersion of the set (§, 7i?%, 7) into the constraint set.
Again one concludes that € (") €, is a manifold near such a (g, #} and so linear-
ization stability holds. This method yields slightly weaker results in as much
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a8 it does not prove linearization stability for (g, #) which admit vector fields X
which are conformal Killing vector fields but not ¢« double » Killing vector fields.

Recently, MoncmiEF [7] has proven that for (g, n) € €,,()¥,, the map
Dd(g, n)* is injective if and only if & space-time g generated by (g, =) has no
(nontrivial) Killing vector fields WY (i.e. L, ‘g =0 implies WY = 0);
together with theorems 5.3 and 5.4, Moncrief’s result then gives necessary and
sufficient conditions for a space-time with compact Cauchy spacelike hyper-
surfaces to be linearization stable.

Moncrief’s result still does not give necessary and sufficient conditions for
DP(g, )* to be injective in terms of the (g, 7) (the conditions C,, C, and C,,
are sufficient but not necessary), but bypasses the tr a'= const problem com-
pletely, rendering it much less important.

Moncrief’s theorem is an important improvement over theorem 5.4, since
the condition for linearization stability can now be expressed in terms of the
space-time metric g rather than in terms of the (g, x) of some arbitrarily
embedded hypersurface.

The use of the adjoint form of the equations of motion helps to understand
and give an easily digested proof of the result.

5.5. Theorem. (MONCRIEF [7].) — Let g be a solution to the emply-space
field equations Ein (wg) = 0. Let L, = i(M) be a compact Cauchy hypersur-
face with induced metrie g, and canonical momentum m,. Then ker DD(g,, 7,)*
(@ finite-dimensional vector space) is isomorphic to the space of Killing vector
fields of ‘g, In fact,

(Y., — Y,) eker DD(g,, 7,)*

tf and only if there exists a Killing vector field ‘©Y of g whose normal and tan-
gential components to Z, are ¥, end ¥,.

Remark. Related references to this result are [50, 51). Note that there are
no assumptions that ‘“Y be timelike or spacelike.

Proof. It is straightforward to prove, and well known, that the space of
Killing vector fields is isomorphic to its space of normal and tangential compo-
nents on any spacelike Cauchy hypersurface. Thus we need only prove the
lagt remark.

The necessity follows immediately from proposition 4.7, for if Y is a
Killing vector field, ‘Wb = L, g,= 0, and so

_ h, _ . Y
0= (w) = JoDB(gs, 70)* (_ Y.*) .

Another instructive argument is as follows. Let F. be the flow of Y.

24 ~ Rendicondi S.1.F. - LXVII
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For 1 in a neighborhood of 0, ix= Fioi, is & well-defined one-parameter
family of spacelike embeddings with generator “WY,= ‘““Yoi; as in sect. 1.
Let (Y ,(4), Y,(4)) be the normal and tangential components of W¥,. Let
(g(2), s(2)) be the metrics and momenta induced on X, by g. In general,
for a family of embeddings given by i{1= Fioi,, this will be the same as the
metrics and momenta induced on I, by the space-time metrics (“g(Z)=F} '*g (for
example, for the metrics g(1), we have g(2) = i;¥g = (Faoiy)*'¥g = i3(F}'¥g),
which is the metric induced on X, by Fi(‘*g)). Since WY is a Killing vector
field, F;'%g = g and so g(1) = g,, (4} = =, for all 4. Thus, by the adjoint
form of the evolution equations,

cg

EY Y,(2)
0= |, | =eDP(g2), a(h)* ( ) .

T — Y. (2)

2 :

Evaluating at 2 =0, (Y_,— Y,)eker DD(g,, 71,)*.
Second, we prove sufficiency. Let (Y., — Y,) eker D®(g,, 7,)*. We wish
to extend (Y, Y,) to a Killing field '¥Y. Choose a slicing i, and let N,, X,

be its lapse and shift. To define Y, (1), Y,(2), take the perpendicular-per-

pendicular (1 1) and perpendicular-parallel (L) projections of Killing's equa-
tions L, ‘g = 0. As on p. 358, this yields

cY, . .
é/..—--:-Lxl_._“}'Lr.- =0,

cY, , . . .
~3' LY, + Ngrad Y.~ ¥, grad ¥ = 0.

For given N(4, z), X(4, ) and initial conditions (¥ ,, Y,), these equations de-
fine a unique ¥, ,, ¥, on V, with the given initial conditions. (The proof of
existence and uniqueness is easiest to see in Gaussian normal co-ordinates.)
Thus we get a vector field #Y on V, with these normal and tangential compo-
ponents on each hypersurface. Let Wh = L, g and (k(1), w(2), U(1), V(2))
be the induced deformation of (g, x, N, X) as described in sect. 4. By construe-
tion, Wh. = 0, Wh, , = 0, so from p. 358,

U(2) = 3IN(AWh_ () =0 and V(i) = N(A)Wh,(A)=0.

Thus (k(2), w(4)) satisfy the linear system obtained in sect. 4:

& (2)-snfoenar (D))
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From proposition 1.7, we get on Y,

h(0) Y,(0)
( ) = JoD®(g(0), 2(0))* ( ) =0.
'w(0) — X,(0)

Thus (k({4), ®(2)) = (0, 0) for all 1. Therefore, since h(2) = 0, k, (i) = 0 and
h.,(7) =0, Wk = 0 and so Y is a Killing field. O

Remark. If @Y, > 0, we can take a slicing ¢, generated by Y whieh has
lapse-shift decomposition (Y., — ¥,), independent of 2. By the evolution
equations in such a slicing

= JoDP(g(4), x(2))* ( )
- l’.

for all 4. This has the unique solution g(2) = g,, () = 71, since (Y..— Y, e
€ ker D&(g,, 1,)*. Hence (g, 7, Y., — Y,) are all independent. of i. Hence
'Y is o Killing vector field for ‘9g,. Thus the proof of theorem 5.5 is very easy
in this case.

The problem with this proecedure when Y _ is not > 0 is that we ean no
longer generate a slicing by (Y,.— Y,).

As an important corollary of this result, we observe that the condition
ker D®(g,, 71,)* = {0} is hypersurface independent (since it is equivalent to the
absence of Killing vector fields, which is hypersurface independent). The
condition is alto obviously unchanged if we pass to an isometrie space-time.

Putting all this together yields the main linearization stability theorem.

5.6. Theorem. — Let ‘g, be a solution of the vacuum ficld equations
Ein('"9g,) =0 on V,. Assume that (V,, ¥g,) has a compact Cauchy surface X,
and that (V,, "Wg,) is the mazimal development.

Then the Einstein equations on V,,

Ein(vg) =0,

are lincarization stable at Vg, if and only if g, has no Killing vector fields.

We conclude this section by examining the case in which ‘Wg, is not linear-
ization stable. The goal is to find necessary and sufficient conditions on a solu-
tion ‘“A of the linearized equations so that ‘*4 is tangent to a curve of exact
solutions through ‘*'g,. The necessary conditions will be derived; for sufficiency,
see [52].
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In theorem 5.3 we showed that, if (¥} is tangent to a curve of exact solutions
and (¥, X) eker D®(g,, 7,)*, then

[<c, ), D*(gs, 70)- (B, @), (hy @)y = 0.
Z

Following MONCRIEF [53], we can re-express this second-order condition
in terms of the space-time, just as the condition ker D®(g,, 7,) = {0} was
80 expressed.

5.7. Theorem. (MONCRIEF [53]).) ~ Let Ein (¥g,) = 0, and let ‘“Oh € 8,(V)
satisfy the linearized equations

D Ein ({9g,)-*h = 0,

Let'Y be a Killing vector field of ‘g, (so that Vg, is linearization unstable). Let X,
be a compact Cauchy hypersurface and let (¥, ¥,) be the normal and tangential
components of WY on X,. Then a necessary second-order condition for Wk to be
tangent to a curve of exaci solutions is

(10) J'(Da Ein (*9g,) - (h, k) - (W, WZ, ) pu(g) =

Ze

=[«(X ., — T,), D*B(g0, 70)-((h, @), (h, w))> = 0.

Proof. Suppose ¥g(g) is8 a curve of exact solutions

(11) Ein (‘9g(0)) = 0
with

a(l)g(ﬂ)

Wwg(0) = Wwg, and %o

= Wp .

Differentiating (11) twice and evaluating at o = 0 gives

(12) D Ein (‘g,)-¢"(0) + D?Ein ('g,) - (*¥h, Wh) = 0,
where
. _ 8’“’g(0)
g"(0) = pye

is the « acceleration » of the curve (¥g(p) at ¢ = 0. Note that since Ein (‘Wg,) = 0
and D Ein (19g,)-‘“9% = 0, by Taub’s theorem 4.2, the divergence of eack term
of (12) is zero.
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Now let Y be a Killing vector field of Wg,, let X, be a compact Cauchy
hypersurface, and let (¥,, Y,) be the normal and tangential components of
WY and Z,. If we contract (12) with WY = “Yoi, and “Z,, and use prop-
osition 4.6, the first term gives

(D Ein (“g,)-*9g°(0)) - (WX, , 9Z ) u(go) =
=— (X, — Y,), DD(go, m)* (g7(0), "(0)) ,

where g¢7(0) and ="(0) are the deformation of (g,,n,) on X, induced by
Wg"(0) € So(V,). If we integrate (12) over ZX,, this first term integrates to 0,
since WY is a Killing vector field. Thus,

f (D Ein (go)%g"(0) (0¥, 2z s(go) =
=— &j«ru — ¥,), DO(go, ) (47(0), 27(0))> =

=— éf DB(go, 7)* (T, — T,), (¢7(0), 7(0))> = 0,

thus giving the second-order condition
0 = [[D*Ein (9gq)- (Wh, OW)]- (s, Bz ildo) -
z

The first equality in (10) comes from the following result which is proved
exactly as in proposition 4.6.

5.8. Lemma. — If Ein('¥g,) = 0, D Ein (‘*g,)-@h = 0, ‘¥g(p) is any curve
(not necessarily exact solutions) through Vg, tangent to ‘“Yh and WY is a vector
field on a spacelike hypersurface X, (with normal WZ,), then
(13) . (D Ein (“)go) '“)9”(0)) . (u)y&, “’Z:,)#(yo) —

— 2[D2 Ein (lt)ga)((l)ho, (Oho)] . ((l) Y).’.) (C)Zz.)‘u(g-o) pr—
= {¥Y,,— X,) DD(go, 7,) '(gﬂ(o)’ 7‘”(0))> +
+ {(¥,,— Y,), D*dD(g,, 7o) ((ho, Wo)y (Mo, "’o))) .

If (13) is integrated over Z,, in the context of theorem 5.7, (10) results. O

Remarks. 1) By Tanb’s theorem 4.2, if Ein (‘9g,) = 0 = D Ein (19g,)-¥h,,
then D2Ein (‘Yg,)-('¥h, “'k) has zero divergence. Thus, if ‘¢Y is a Killing vec-
tor field, then the vector field

WW = (Y -(D? Ein (\9g,) - ('9h, Wh))
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also has zero divergence. Thus the necessary second-order condition

ay [cowe, Wz duig) =0

Lo

on first-order deformations is independent of the Cauchy hypersurface on which
it is evaluated.

2) The construction of the divergence-iree fector field WW is due to
TAUB [54]. The integral of W over a Cauchy hypersurface then represents
a conserved quantity for the gravitational field, constructed from a solution
h of the linearized equations and from a Killing vector field *Y. The interest-
ing feature of this conserved quantity, as shown by theorem 5.7, is that, unless
it is zero, the first-order solution & from which W was constructed is not
tangent to any curve of exact solutions.

In summary, the second-order condition < works» as follows. Let
Ein (*g,) = 0, D Ein ('#g,)-**h = 0, and let Y be a Killing vector field of
9g.. If on any compact Cauchy hypersurface

J'(Dz Ein (mgo) . (“’h, “’h)) (@ 1'&, “’Z;_-,)ﬂ(go) #=0,

Zs

then ‘92 is not tangent to any curve of exact solutions of the empty-space field
equations, i.e. A is a spurious direction of perturbation.

Recent work [62] has shown that this second-order condition is suffi-
cient as well. Thus the basic questions concerning linearization stability of
the vacuum equations for space-times with compaet Cauchy hypersurfaces
have been answered. (See sect. 8 for further remarks.)

6. — Decomposition of tensors.

We continue to restrict our attention to the case of compaet spacelike
hypersurfaces M. While the decompositions undoubtedly do work in the
noncompact case, weighted Sobolev or Hoélder spaces are sufficiently tricky
that rigorous proofs are less routine than in the compact case. For example,
as is well recognized, decomposing tensors which only fall off as 1/r is usually
impossible; 1/r? fall-off is generally required. A discussion of the noncompact
case is contained in [23].

Reeall the canonical splitting that was discussed in sect. 1 as an application
of the Fredholm alternative theorem:

h=h + L,g, where L,g is the part of %2 that is tangent to the orbit
of ¢ under the action of the diffeomorphism group = 2(AMf) and where $h = 0.
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In this splitting we use the usual L,-adjoint 23, of a,(X)= L,g. However,
for relativity, as we have seen, it is convenient to use natural adjoints acting
on spaces of dual tensor objects. Since «, maps-vector fields to symmetric two-
covariant tensors, its natural L,-adjoint, «; , maps symmetric two-contravariant
tensor densities to one-form densities

(@)*:8; > Ay, A (@)* 7 =2(3,n) .

Using the metric g, we obtain an isomorphism of S, with 8 by &~ A u(g).
Its inverse is z+> (7'). Note that kera}< 8. We write (kera?)* for the
corresponding set of dual objects in 8, (i.c. the image of ker o} under the in-
verse of the above isomorphism). Then the splitting of sect. 2 iz written in
terms of natural adjoints and dual tensor objects as

§,=rangea, @ (kera})*.

York’s splitting. YoRk [55]) gives a decomposition which arises in a sim-
ilar way to the canonical splitting, but with the conformal group replacing
the diffeomorphism group. The conformal group, the set of all possible confor-
mal transformations, is the semi-direct product of the set & of positive func-

tions and the diffeomorphism group 2. 2-2 acts on g by pull-back under a dif-
feomorphism followed by multiplieation by a positive function:

PLXM—> M,
((py 1), 9) = P(0*g) .
For g fixed, let ¥,:2#-2 —.#, (p,n) — p(n*g) be the orbit map, and let
T,=T¥ TP 2)~ C(MR)XZ > T, M=8,, (f,X)19+ Lag,

be its tangent. The range of 7, is then the tangent space to the orbit under
the action of #-2. The L,-adjoint of 7, is

7.8, > C= X Z: h> (tr b, 2(8h)%) .
The Fredholm theory does not apply directly here because r, is a first-order
operator on .Y and is a zeroth-order operator on /. However, use of a stronger
concept of ellipticity due to DovUGLiS and NIRENBERG (cf. [56]) enables us to

still apply a modified Fredholm alternative theorem to obtain the splitting

S, = (ker})* ® range,,
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so that, for he S,,
(15) h=¥T"+fg+ Lig,

where A77eker ] is a transverse traceless tensor, i.6. 3477 = 0 and tr k™" = 0.
We get essentially the same geometric picture as before (fig. 3).

g+i,9
orbit of g under #- 9

Fig. 3.
From (15), trh = nf— 238X, so that
Yen+2ax
f = ’-‘tr + ;l. .
Thus (15) can be rewritten as the finer splitting

(16) h=h7"+ Lyg+ %(Sx)g +

(tr k)
n g

One calls Lgg + (2/n)X = LX the «longitudinal part» or the ¢« conformal
Killing form of X ». Note that the trace of LX is zero, so that the third term
is pointwise orthogonal to each of the first two.

This splitting can also be obtained by working in the space %~ of « confor-
mally invariant metries », g@ u(g)™"; LX is tangent to the 2 orbit of
g ® u(g)™*" in this space. The AT7 part can be regarded as in the direction of
a slice for the action of #-2 on 4 or 2 on #°; see fig. 4. (For further ge-

t 4
stice
geu”
I
projection tow”
conformal orbit of g orbit of geg~¥" under 9

Fig. 4.
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ometry of this splitting, see [556, 57 ).) Finally we note that the infinite di-
mensionality of the space of T'T tensors is not obvious; see [45].

Barbance-Deser ~ splitting. The Barbance [58]-Deser [8]-Berger-Ebin [18]
splittings come from splitting the divergence-free part k in the canonical split-
ting h = % 4 L,g. This decomposition works for (3f, g) compact with con-
stant scalar curvature. More can be said when ¢ is Einstein; that is,
Ric(g) = Ag. The differential operator used in these splittings is the deriva-
tive of the scalar curvature, y,= DR(g). The kernel of y, consists of tensors
tangent to the space of metrics with a specified scalar curvature R(g) = ¢;
the range of the adjoint is the L,-orthogonal space to this kernel. Thus for
any ge.#, T, # splits as T,# = kery, ® (rangey;)".

If R(g) = const, this decomposition and the canonical decomposition are
compatible; that is, range «, kery,. Indeed, if 7, is the flow of X,

Riig) = Rlg), 50 0 = T RiDumo= DR(9)-Lsg = 7o) -

Thus interseeting the two splittings, we get the finer L,-orthogonal splitting
(17) T, # = (kery,() (kera?)®) @ range «, @ (range y})* .

Now suppose g is Einstein, Ric(g) = Ag, and let %ekery,() (kera})®,
so 8% = 0 and y,(8) = Atrh + 83k — h-Ric(g) = 0. Thus A(trk) = h-g=

= Atrh. If A< 0, this implies tt% = 0; if 2 =0, trk is constant. If 1> 0,
then by [59] we know that the first eigenvalue of 4 is

n
> 'nTl)'>;"

go trk = 0. Thus, if Aekery,() (kera?)®, trh is either zero or constant.
Thus for the case in which (M, g) is an Einstein manifold, (17) above be-
comes the ¢« Barbance-Deser-Berger-Ebin splitting »:

A#0: h=h"+ Lzg + (9Af + Hess f—ifg),

(18)
=0: h= (h"+ ;‘:y) + L:zg + (gAf + Hess ),
where
1
¢ = o7 trhp,.
M

This splitting for A = 0 was also used by BRILL and DESER [42].
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Monerief’s splitting. Recent work by MONCRIEF [4] generalizes the above
decomposition of T,.# to splittings of T, .,(T*.#). MONCRIEF observed from
the various decompositions used in perturbation theory that one should really
decompose the components of the tangent vector (k, w)e T . (T*A) si-
multaneously. Moncrief’s decomposition can be derived by considering the
operator D®(g, ) of sect. 2, and recalling our form of the evolution equations

2 N
57 (_-"[) = JoD®(g, .-zw-(x) :

0 I
J= ( ) .
—-I 0
We have shown previously in sect. 2 that the operator D®(g, n1)* is elliptic,

and so, therefore, is JoD®(g, n)*. Since (JoD®P(g, n)*)* = — DP(g, 7)od, we
have immediately the two splittings

where

T, (T*H) = (mnge (Do(g, n)"‘))" @ ker (DD(g, )
and

T, {T*.#) = range (JoDP(g, 7)*) @ (ker (DP(g, :z)OJ))" ,
where ( )* means, as above, the space of dual tensor objects. Thus,

range Dd(g, n)* c8x8,,

ker (DP(g, 1)od) <8;x8,,

(range (D@(g, 7)*))*< 8, % 8
and

(ker (DD(g, 7)0d))* <8, % 8.

The summand ker D®(g, ) represents the infinitesimal deformations (k, w)
of (g, 7) that maintain PD(g, ), and (range (Do(g, :z)‘))"‘ represents the infin-
itesimal deformations which change ®(g, 7). Thus, if &(g, n) = 0, ker DP(g, 1)
represents those infinitesimal deformations that conserve the constraints.

From infinitesimal conservation of @, proposition 3.2, we know that, for
(g, 1) E(fxn @‘,

range JoD®d(g, n)* <ker DP(g, n) .

Thus these two splittings can be intersected to give Moncrief’s splitting:
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6.1. Theorem. (MONCRIEF [4].) ~ For (g, 7)€ €[] Cs, the tangent space
T, T*H) ~ 8,x 8] splits Ly-orthogonally as

T, AT* A) = (range DD(g, 7)*)* @ range (JoDd(g, 7)*) @
@ (ker (DP(g, 7)0J))* ) ker (D(g, 1))

For the purposes of the figure below, we number the summands as

o000
The two summands @ and @) in the splitting

ker D®(g, 1) = range (JoD®(g, 7)*) ® (ker (D, n)oJ))* N ker (DP(g, 1))

can be interpreted as follows. Elements of the summand (@ infinitesimally
deform (g, x) to Cauchy data that generate isometric space-times, and ele-
ments of the summand @ infinitesimally deform (g, =) in the direction of new
Cauchy data that generate nonisometric solutions to the empty-space field
equations (see fig. 5).

Below we shall see the geometrical significance of this second summand
more clearly. For now, we note that Moncrief’s splittings can be regarded as
a decomposition of 12 functions of 3 variables (k(z*), w*(2*)) into 3 sets of 4
functions of 3 variables.

the orthogonat comptement
to the constraint space

F4,0 3 the space of gravitationat
degrees of freedom

n €, =constraint
/ space

C(,.", =orbit of
(g.n) under the
dynamical equations

T* & =cotangent bundle of .4
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Finally we remark that, if 7=0 and R(g)=0, then Moncrief’s decomposi-
tion reduces to two copies of the Berger-Ebin splitting, given by eq. (17)
above. If, moreover, Ric (g)=0 (so that g is flat), then Moncrief’s decomposi-
tion gives the Barbance-Deser-Berger-Ebin splitting with A=0, as given by
eq. (18) above.

7. - Reduction of phase space and the symplectic space of gravitational degrees
of freedom.

We now review some results of symplectic geometry that provide a basis
for a more unified description of the various splittings [9]. These results are
based on a general reduction of phase spaces for which there is an invariant
Hamiltonian system under some group action [14]. A further application of
these results leads to the construction of the symplectic space of gravitational
degrees of freedom [10].

A background reference for the material in this section is [60, 61).

Let P be a manifold and 2 & symplectic form on P; that is, 2 is a closed
(weakly) nondegenerate two-form. For relativity, P will be T*.# and Q will
be the canonical symplectic form — J-! as described above.

Let @ be a topological group which acts canonically on P; that is, for each
geG, the action of ¢ on P, @,:p+> g-p, DPreserves 0. Assume there is a
moment & for the action, as defined by SoURIAU [62]. This means the following:
¥ is 2 map from P to &*, the dual to the Lie algebra® = T,G of G, such that

-Q(fr(P), 1),) = <d¥,(P)'”M &

for all £ €®, where &, is the corresponding infinitesimal generator (Killing form)
on P, and v,€ T,P. Another way to define ¥ is to require that, for each §,
p— {¥(p), £) be an energy function for the Hamiltonian veector field §,. This
concept of & moment is an important geometrization of the various conserva-
tion theorems of classical mechanics and field theory, including Noether’s
theorem.

It is easy to prove that, if H is a Hamiltonian function on P with correspond-
ing Hamiltonian vector field X, (i.e. dH(p)-v = 2,(X4(p), v)), or equivalently
iy, = dH, and if H is invariant under G, then ¥ is a constant of the motion
for X; i.e., if F, is the flow of X, then ¥YoF,=¥.

As an example, consider a group G acting on a configuration space @. This
action lifts to a canonical action on the phase space T*Q. The moment in this
case is given by

<qj(aq), H= <$Q(Q)) ac> ’

where «, belongs to T7*Q. If G is the set of translations or rotations, ¥ is
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linear or angular momentum, respectively. As expected, ¥ is a vector, and
the transformation property required of this vector is equivariance of the
moment under the co-adjoint action of G on &; that is, the diagram

o,
P > P
l Ade, 1
@# > @#

must commute. We shall consider only equivariant moments.

There are several classical theorems concerning reduction of phase spaces.
In celestial mechanics there is Jacobi’s elimination of the node which states
that in a rotationally invariant system we can eliminate four of the variables
and still have a Hamiltonian system in the new wvariables. Another classical
theorem of Hamiltonian mechanics states that the existence of % first integrals
in involution allows a reduction of 2% variables in the phase space. Both of
these theorems follows from a theorem of Marsden and Weinstein [14] on the
reduction of phase space.

To construct this reduced space, let &, be the isotropy group of u:

Gu= {geG|Adu = u} .

Consider ¥-*(u) = {p|¥(p) = u}. The equivariance condition implies that G
preserves ¥-1(u), 8o we can consider Py = ¥-(u)/Gx. In case ¥-}(u) is a man-
ifold (e.g. if u is a regular value) and G acts freely and properly on this manifold,
we have

7.1. Theorem. (MARSDEN and WEINSTEIN [14).) - P, inherits a natural sym-
plectic structure from P, and a Hamiltonian system on P which was invariant
under the canonical action of G projects naturally to a Hamilionian system on Py.

In Jacobi’s elimination of the node, @ is §0,, s0 & is R* and the co-adjoint
action is the usual one. Thus the isotropy subgroup G, of a point x in R’ is 81,
If 5 is the dimension of P, then ¥-'(u) is the solution set for three equations,
so the dimension of ¥-'(u)/G, is n— 3—1=n—4. For k first integrals in
involution, G is a k-dimensional Abelian group, 8o the co-adjoint action is trivial
and G,= G. Thus the dimension of ¥Y-'(u)/G is n— 2k. Another known
theorem that follows from theorem 7.1 is the Kostant-Kirilov theorem which
states that the orbit of a point x in @* under the adjoint action is a symplectic
manifold.

Now we shall show how to obtain a general splitting theorem for symplectic
manifolds, one piece of which is tangent to the reduced space P, [9]. This
includes the splitting theorems for symmetric tensors as a special case.
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A splitting theorem for a symplectic manifold P requires a positive defi-
nite but possibly only weakly nondegenerate metric, or other such structure
to give a dualization. This is so that orthogonal complements may be defined.
Otherwise quotient spaces are needed. Suppose we know, say from the Fredholm
‘theorem, that

19 T,P = range (T,¥* @ ker T, ¥

(here (T,¥)* is the usual L.-adjoint). Of course, in finite dimensions this
is sutomatic. Define

an:(sj#"’ TaP'g'—) Er(p) 1)
where §, is the Lie algebra of G,. Supposce we also have the splitting
(20) T,P = range a, @ kera .

There is a general compatibility condition between these two splittings, namely
range «,< ker 7,Y¥, which follows readily from equivariance. In fact,

rangee, = T, (G-p)( ker T, .

This compatibility condition implies the finer splitting

(21) T,P = range (T,%)* @ range a, @ (ker I, (N keray) ,
ie.
(22) T, P x~ range (T,¥)* 5 T, (orbit under G,) @ ker T,¥/G, .

Note that the third summand is the tangent space to P,. The geometric picture
is the following (fig. 6):

O]

%

Fig. 6. orbit of p under 6,

@ belongs to range T,%¥», the orthogonal complement of the tangent
space to the level set W-1(u);

@ belongs to range x,, the tangent space to the orbit of p under Gyu:
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@ is in (ker T, W kera}), and is the part of the decomposition which is
tangent to the reduced symplectic manifold.

@ and @ together are ker T,%, the tangent space to Y-y u).

Both Monerief's and York’s splittings are applications of this result.

For the case of Monecrief's splitting, P is T*.# and the « group » is
G = E>(M, V,,¥g), the spacelike embeddings of M to Cauchy hypersurfaces
in (¥, 'g), & maximal space-time. Although this is not a group, it is enough
like 7 -2, the semi-direct product of functions r (time translations) with dif-
feomorphisms 7 of M for the analysis to work. G «acts» on (g, #) as follows.
Let ‘“g, Ein ("g) = 0, be a space-time which has (g,, 7t,) as Cauchy data on
an embedded Cauchy hypersurface

-ru:io(.‘.[), io:l[-)]"‘.
Then i € E=(M, T, ‘%) mups (g,, T,) to the (g, ) induced on the hypersurface

&' = i(M). The set of all such (g, ) define the orbit of (o, o). These orbits
are disjoint, so define an equivalence relation ~.

(V. Wgq)

W I=itmM)

- /\‘\_/ Fo=io(M)
” )

k {gq.7,) induced on I,

Fig. 7.

Although this is not an action (since E® is not a group), it has well-defined
orbits and the above symplectic analysis applies [10]. If we use the adjoint
form of the Einstein evolution system, the moment of «this action» on
a tangent vector WX, €T, E°(M, V,, %) with lapse N and shift X is com-
puted to be

yl(v,m(u)‘r) =|NX(g,7) + X-J(g,7).

Here the X or the (X, X) can be thought of as belonging to the « Lie algebra »
of E®. (See appendix II.)
Since ¥-1(0) is precisely the constraint set Cx(\ 65 we choose u= 0, so
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G,= G. From the equations of motion,

% &> T, (T*A), (N,X)r>JoDPD(g, n)* (1;) .
Thus the symplectic decomposition (21) becomes

T, (T*#) = (range DP(g, 7)*)* @ range (JoD(g, n)*) ®
@ ker DP(g, n) | (ker DD(g, =)oJ) ,

which is Monerief’s splitting. Here the third summand represents the tangent
space to the reduced space P, ~ ¥, () €,/~. This quotient, by the equiv-
alence relation described above, is naturally isomorphic to the space of grav-
itational degrees of freedom, namely &(V,)/D(V,), the set of solutions to
the vacoum Einstein equations &(¥,) ={%g|Ein (‘“g) = 0} modulo the space-
time diffeomorphism group 2(V,) = Diff (V,). This is the space of isometry
classes of empty-space solutions of the Einstein equations. This is the space
of gravitational degrees of freedom; the co-ordinate gauge group has been fac-
tored out.

For the noncompact case, one must be much more careful about the defi-
nition of the space of gravitational degrees of freedom (e.g., one does not want
to identify all solutions; this case is qualitatively different because of the
presence of a mass function and gravitational radiation, as is discussed in [23)).

For York’s decomposition, the manifold is the same, namely T*.#, but
the group is the conformal group #-2 acling on T*.#, as described before.
The infinitesimal generators of the action of the conformal group are

%ymlPy X) = pg + Lrg

and the moment is computed to be

(23) ¥,ulpy X) =[ptr7 +[X-5(g,m)
80

Y-140) = {(g,n)|8n =0 and trxa =0} =€, %,

the intersection of the sets where the divergence of m is zero and where the
trace of x is zero.

One can show, as for €, ¥,, that €, ¥, is a manifold in a neighborhood
of those (g, n) € €,[) ¥, such that (g, x) has no simultaneous conformal Kil-
ling vector fields, i.c., if L;g = f,g, Lr= f,g, then X = 0 (see [57)).

The universal decomposition (21) splits an element (h, w) of T, (T*#)
into two copies of York’s decomposition described in sect. 6. In this case, the
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reduced phase space is

N €? 2 .

From [47], we see that this space is isomorphic to the space €[} €,/~.

As we have emphasized, in the case of compact hypersurfaces, one identi-
fies all (g, )’s which occur on slicings in one space-time. In the noncompact
case one does not do this, as is explained in [23]. This point and the general
definition of « true degrees of freedom » is consequently confusing at first.

In the present compact case, however, we find it useful to write

gd)a = gduauiul = g.f n @6/"'
and
£4 ont — gccn!orn;l = gﬂ n gu/y.g .

Both are representations of ¥ = &(V,)/2(V,). The natural symplectic struc-
ture on T*.# associated with the dynamiecs induces naturally the symplectic
structure on ¥, . We do not know if the isomorphism between 4,,, and 9,
is & canonical transformation, i.e. if the symplectic structure on &__, associated
with the dynamics is the natural symplectic structure on ¥__,. However,
it seems unlikely.

The symplectic structure on ¥ described above may be important for the
problem of quantizing gravity. This would be of physical interest in the non-
compact case in connection with gravitational waves.

The symplectic structure presented here is implicit in the work of Berg-
mann [63], Dirac [2]) and DeWitt [35, 64]. The present formulation, how-
ever, allows one to be rather precise and geometrical. First of all, it may
allow one to use the Segal (cf. (65, 66]) or Kostant-Souriau [62] formalism to
carry out & full quantization or a semi-classical quantization. Secondly, the
approach presented here enables one to show that near metrics g in &(V,)
with no isometries (and hence no space-time Killing vector fields) &(V,)/2(V)
is & smooth manifold and is locally isomorphic in a natural way to Cwl) Col~,s
and thus carries a canonical symplectic structure. Thus in & neighborhood
of Einstein flat space-times without Killing vector fields, the space ¥ =
= &(V )/ 2(V",) of gravitational degrees of freedom is itself a symplectic manifold,
or, if you prefer, a gravitational phase space without singularities, each element
of which represents an empty-space geometry.

8. - Current work and open problems.

AMany of the areas that we have discussed in this paper are currently under
investigation. o o

25 - Rendiconti S.1.F. - LXVII
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Linearization stability for nongravitational fields coupled to gravity is an
active area of research. For example, the case of the coupled Einstein-Maxwell
system has been solved by ArdMs [67]. The conditions for stability in this
case are the absence of a simultaneous Killing vector field for ‘¥g and the
electromagnetic-field tensor F. The methods have been extended to general
Yang-Mills fields coupled to gravity as well.

D'EATH (68, 69) has examined the case of linearization stability of
Robertson-Walker universes and finds them to be linearization stable. In the
case k = 0, he considers perturbations which die away at spatial infinity.

The question of linearization stability for asymptotically flat space-times
is not fully settled. A main difficulty is that, in general, the splitting theorems
of sect. 1 are quite delicate and often break down. We consider the time-
symmetric asymptotically flat case in [23].

The situation for several important cases of interest for black-hole research,
namely the Schwarzschild and Kerr solutions, remains open, but should be settled
in the near future.

The sufficiency of the second-order conditions presented in sect. 5 has been
proven in current investigations {52]. We have been able to show that, if there
are k linearly independent Killing vector fields for ‘4g,, then these % extra
second-order conditions are sufficient for linearization stability. The (gq, 51,)
induced on any Cauchy hypersurface is8 & singular point of €[] ¥,, and
locally €, %, looks like a (manifold) x (an intersection of k cones). The proof
depends on the slice theorem for relativity [10] and on some techniques from
bifurcation theory at multiple eigenvalues.

The authors are currently engaged in the general question of the
Hamiltonian structure of tensor field theories coupled to gravity [28). A funda-
mental work in this area is due to KUCHAR (36].

Our approach is to develop a Hamiltonian formalism, modeled on the ad-
joint form of the Einstein equations, for any covariant fleld theory coupled
to gravity. In the case of Lagrangians which do not depend on derivatives of
the gravitation field, our results are similar to the pure gravitational case.
Briefly, if g, is a space-time field whose dynamics are described by a La-
grangian density £(‘Y¢,,‘Yg) which does not depend on derivatives of ‘g,
then the projections of ‘¢, on spacelike hypersurfaces gives rise t0 @i uiuicn
and @iy eeney BOW tensor quantities on the hypersurface. One also has

Hum =g + Hu-m ’

Jtoul = Jum + J!Iel‘n ’

and functions €“‘#* which correspond to the constraints of the theory due to
degenerate fields.

If we let &, = (H,,J,, ®'"), the Hamiltonian picture is fully described
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by the system

q N
¢ | T445a X
=1, " | = JoD Dy, gaye; 7, wier)e. ,
Tdges
Tddrp

¢r(g! T4y s Ty :ldd") =0.

Thus the expression No, + X ¢7 ¢‘d"(€‘"“ acts as the generator of trans-
lations.

The formal similarities to the pure gravitational case allow one to take
over at little extra effort the splitting theorems and reduction procedures of
sect. 7. Thus, in particular, we are able to construct a symplectic manifold
which represents the total space of degrees of freedom due to gravity and to the
external fields. This approach may be tied in with the Dirac theory of con-
straints using [70].

For alternative approaches to the space of gravitational degrees of freedom
and its symplectic structure, see [71] and [72].

Finally we mention that many of the topics presented here may be extended
to noncompact cases. Linearization stability results are completely different
in this case (see [23]). Moreover, in the dynamical formulation, the mass
function acts as the generator of time translations and indeed appears to be
the proper Hamiltonian (see [38) and sect. 10 of [23]).

APPENDIX I

Variational derivatives of the scalar curvature.

In computing the variational derivatives of a tensor that depends on the
metric and its derivatives, the partial derivatives that arise are not tensor
quantities. Here we consider only the scalar curvature map, but the general
procedure is useful in computing the stress-energy tensor of a Lagrangian den-
sity which may depend on the derivatives of the background metric tensor
(see [28, 36 ITI]).

For the map (g} we have

D,(R(9))-h = &,R(g)-h + 85, R(g)-Oh + 35, R(g)-Ch .

The three partial-derivative terms do not correspond to the three tensor terms
in the expression

D,R(g)-h =—h-Ric(g) + Atrh + 33k .
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For example, the term &,R(g)-k is not a tensor; it involves variations of the
Christoffel symbols with respect to the metric g alone, and not its derivatives.
In fact,

ST j) b = —3h“(gasp + Gar,s—Gixea) »

whereas the total variation of the Christoffel symbols is a tensor,
Dnr(g)'h = aar(g)'h + E’e,I'(g)'ah = %g”’(ham'*‘ hal:ll_hltla) .

To get a variational method that yields partial derivatives that are tensors,
we consider the scalar curvature as a function of the undifferentiated metric
coefficients that do not appear in the Christoffel symbols, and of the Christof-
fel symbols, and we write R(g, I") to represent the functional dependence.

Since the Ricei tensor depends only on the connection I', the undifferentiated
metric coefficients do not appear except in the definition of the Christoffel
symbols. Hence we write Ric (I"), and

R(g, I") = g—*-Rie(I').

If we use the chain rule for functional derivatives, the derivative of R(g, I')
is given by
DR(g)-h = Dq,nR(g, ) (k, D,I"(g) k) = D,R(g, I')-h + DrR(g, I')- (D.I"(g) k) =
= anR(g’ P)'h + DI‘R(g, I")-(D,I"(g)~h) 3
where now each term is a tensor,

¢,R(g, I")'h = —h-Ric(I') =—h-Ric(yg),
and the second term is evaluated as

Dr(R(g, ") (D.I'(g)-h) = g-*+(Dr Ric(I")- (D,I(g) k) =

= g-'- (D Ric(g)-h) = Atrh 4 83,
where the equality D Ric (g)-h = DrRic(I")+ (D.I'(g)- k) follows because Ric (g)
depends only on the connection.

Applying this procedure to the Hamiltonian density (g, ) for general
relativity, we write

#(g, I'yz) = X'(g,x)— R(g, Iulg) ,
where X'(g, x) are the kinetic terms of J°(g, 1) and are algebraic in (g; zz). Thus
D,#(g, ) h = D,ndf(g, I'y ) (h9 Dr(g)'h) =
= D,s#(g, ', n)-h + Dro#(g, I', n)- (DI'(g)-h) =
= 2,0¢(g, T, 2)-h— (Dr(R(g, I')- (DI'(9) 1)) u(g) =
= &, #(g, I, a)h—(Atrk + 88}1)[1(9) ’
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where
¢, #1g, Iy ) = &,7(g, a) h + (Ein (g)- k) p(g) = — Sy(zr, w) -k + (Ein (9)-2) u(g) .
Integrating by parts, we then find
D, #(g, 2)*-N = N&,#(g, ', x) — (§AN 4 Hess N)u(g) .

In the above expressions, each of the partial derivatives is a tensor.

APPENDIX 1I

Poisson brackets and the Dirac canonical commutation relations,

This appendix gives a few complements to the results of seet. 2.
Let F: T*.# — R be a real-valued function of T*.# that comes from a
density F.71*./ — (7,

Flg,7) = J.f(g, .

x

Then the Hamiltonian rector field of F

X T2 - T (T2 M)
is defined by
ar(g, 2): (h, ) = 2(Xr(g, 7), (A, "’)) ’

where 2 is the symplectic structure on T*.#.
II.1. Proposition. — The Hamiltonian vector field Xy is given by
X5lg, 1) = Jo(DF(g, 1))* 1.
Proof. Recall that

Q(XHlg, 1), (hy @) = — [ <X elg, ), By @),

and so
dF(g, ) (h, w) =J‘Df(g; a)(h, w) = J~<D;(g’ Pl (o) =
= — [ oD F (g, 21,571k, 0}y = QIDF g, 21, (h, ) .

Here we used the identity J*=—/J.
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In particular, if F =No# + X- 7, then

Xig, 1) = JoD(NH# + X-#)*-1 = JoDd(g, .-z)*-@.) ,

again showing that the Einstein evolution equations are Hamilton's equations °
on the symplectic manifold 7*.# with Hamiltonian density No¥ + X-7.

Now suppose F,, F,:T*.# — R are real-valued functions on T*.# that
arise from densities &, and %,, respectively. Then their Poisson bracket,

{F1, Fo} . T*.#4—~R,
is defined by
{F,, 1"21 (g, ) = -Q(-YF.(gv ), XP.(Q) :7)) )
where Y, is the Hamiltonian vector field for F.

I1.2. Proposition. — The Poisson bracket {F,, F,} defined above is given by

(Fy, F3)(g, 1) = [<D,F:(g, 1)* -1, Da Falg, a)* 1) —

_J Da Filg, T)*1, D, #,(g,7):1>.
Proof.

{Fl, Fs} (g, ) = -Q(-Yr,(g, T -Y;,(g, -7)) =
== [.\"YF.(% :1)! -]‘IO.YF'(g, J):) =
=— J (JoDF\(g, 7)1, J-leJoDFy(g, 1)* 1) =
= —[®#ug 211, eDF g, 101> =

=J‘<Dt¢1(!]’ ay-1,JoDF (g, n)*:1) =

= I <(Dr¢l(gy a)*-1, D.F(g, 7)* '])s (

D2 7.y, :'t)*’l))
—D, Fug, 2)*1

~

=J Dy F (g, 1) 1, DaF (g, 7)*1)— KDaF (g, a)* 1, D, Folg, 7)* 1) .

Remark. According to the correspondences in sect. 2, this may be written
in physics notation as

v o= [ (3% 3F _8F1 87,
{*"T=}‘f(sg S Sg)'
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Now consider the case when F,= J'.N.# + X' 7. Then, from the above
proof,

{F, N5 + X-£}(g, 7) ==f(D.7(g, 7)* 1, Jo(DN# + X-F)*-1> =

cg
a— DF *.1..J D¢ *, N = | DF . al —
- ?(g’ z) yJ 0 (g’ :T) (x) - (g) J't) E_:z =
CA

d d
=fﬁ9"(y,.-‘t)=d—;.1’(9,:t)-

What this means is the following. Given (g, ) and (¥, X), let (N4, X (Z);
be an arbitrary lapse and shift such that ¥(0) = N, X(0) = X. Let (g(4), ()
be the solution of the Einstein evolution equations with lapse and shift
(¥(2), X(4)) and initial data (g, ). Let P(4) = F(g(1), =(1)). Then

dr

dr
Gov=54.

Thus, as we expected, a Poisson bracket with the Hamiltonian {¥¢ + X5
generates z-derivatives of F(g(4), n(1)), where (g(1), (1)) is the fiow with
initial data (g,) and lapse and shift (¥(4), X(2)) such that N(0)= N,
X(0)=1X.

Now we consider the case when F,= [N, + X, ¢, F,= [¥ ¥ + X, 7,
The next theorem computes Dirac’s [2] canonical commutation relationships
for general relativity. (See also (13, 35].)

I1.3. Theorem. - Giren N\, N,: M—R, X,, X,: M~ TM, and
F,=I(N,.;[f’+ X, #):T* 4 >R,

Fy=[(¥.# + X, #):T*.00 >R,
then

(Fiy Py = [(La,Xo— L X0 + [N, gr0d ¥, — ¥, grad X, £+ [< Lo X0, 53,
and, in particular,

{ J}v,x, sz.;r} = f (N grad N,— X, grad N, 7>,

{[¥, (x5} =[x,

{J.Xl ‘Fs J.-rz I } = J.(Lx,;“ I
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Proof. By the remarks preceding the theorem,

{'[\-.x-:- x, /,J‘\'.Jf-l— X, /} e;f(N.ai’+ X, f) =

5 - &S
-JnF ),

where the i-derivatives of # and # are computed with respect to a flow gen-
erated by (g, 7) and (¥,, X,). Thus, using theorem 3.1, we have

f ‘a;f +4 aé; =
= [ 3 (- Lar— 50w (X0 )) + X (= Le — (@¥2020) =
= [(Za0 + a(F) ot [T Xi > — (Er F 0 =
= f (Ly, Ny — L, N2) # +f (N,grad N, — N, grad N, #) + f (L X0, 5.
By bilinearity and antisymmetry of the Poisson bracket,
{ [¥or+ X0, ¥ + .- ;} -
(s s Jor, s} {f or, 5o} {5, [ ).
Comparing with the above, we identify
{ x| ,.;i"} = [(¥.grad ¥, — X, grad ¥, 1>,
{. No#, fx -/} = [z,
{J‘Xl -, J“\', . }}_—_J' Ly X0, F>. O

These later relations, Dirac's canonical commutation relations for general
relativity, are thus equivalent to the evolution equations for &# and ¢ with
a general lapse and shift function.

Let i,e E®(M: V,,"g). Then using the normal @Zs, to the embedded
hypersurface X, = i,(M), the lapse-shift decomposition gives a decomposition
of the tangent space

T, E°(M: V,, ) =~ C*(M: Ryx T (M);

WX s (N, X), the lapse and shift of WX = N9WZ; — T, - X.
Define a bracket structure on C=(M: R)x.‘f (M) as follows:

(N, X)), (N, X)]= (L5, Ny —Lx, Ny, N,grad N, — N, grad N, + L, X)) .

* e rE———————————

-
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With this bracket, C*(M: R)yxX Z(M) is given the structure of an algebra,
but it is not a Lie algebra. Through the gradient terms, this bracket de-
pends on the metric g induced on the hypersurface, but it does not depend
on the momentum . Thus at different i,’s the algebra structure changes.

KUCHAR [36] takes the point of view that this bracket structure on the
space of embeddings can be understood in its own right, and that the canonical
commutation relationships of general relativity are a representation (in fact,
the unique representation when no external fields are present) of the « group »
of embeddings E°(M: V,, “4yg).

KvcHAR has recently suggested enlarging the dynamical phase space to
T*(# X E=(M;V,,"g)). This has the pleasant feature that now we have
a group 2(1°;) which acts on this space (cf. [25), sect. 4, 7).
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