The Absence of Killing Fields is Necessary
for Linearization Stability
of Einstein’s Equations
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1. Introduction. The purpose of this paper is to discuss the proofs of Theo-
rems | and 2 below.

Theorem 1. Let M be a compact, connected, oriented smooth manifold,
dim M = 3. Let AL be the space of C>[or Ws*, s > (n/p) + 1] riemannian
metrics on M, % the C* [or W* ~ *®] scalar functions on M and R : Al > F the
scalar curvature map. Let g, € M and p, = R(g,). Then the equation

R(g) = po
is linearization stable at g, if and only if DR(g,) is surjective.

We recall (Fischer and Marsden [1973]) that a map F : X — Y is called /in-
earization stable at x, € X if for every v € ker DF(x,), there is a C* curve x(1)
satisfying F(x(1)) = yo = F(x,), x(0) = x¢ and x'(0) = v.

The “if’ part of Theorem 1 is a consequence of the implicit function theorem.
For this part of the theorem there is an important criterion of Bourguignon
[1975], Fischer and Marsden [1975a] which states that DR(g,) is surjective if
po/(n — 1) is not a constant in the spectrum of 4, the Laplace-Beltrami oper-
ator of g,.

It is suggested in Fischer and Marsden [1975a] and asserted in Bourguignon,
Ebin and Marsden [1976] that the ‘only if’ part is true as well. The proof out-
lined is, however, incorrect. We shall point out the error and give the correct
proof in §2.

To describe the analogous result in relativity we use the following notation.
Let V, be a four-manifold and M C V, an embedded compact three-manifold.
Let % denote the set of Lorentz metrics on V, of class C* (or H, s > (n/2) + 1)
for which M is a (spacelike) Cauchy surface, S,(V,) the space of C* (or H*~ 2)
symmetric two tensors on V, and

Ein: - S,
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be the Einstein tensor
Ein(ulg) o ch((d)g) —_ % R((4) ,) . (4)g.

In the definition of linearization stability we use the C* (or H*) topology on
compact subsets of V,.

Theorem 2, Let Ein(Yg,) = 0 for Wg, € . Then Vg, is linearization stable
if and only if ‘g, has no killing fields.

The ‘if" part of this theorem is due to Fischer and Marsden [1973] and Mon-
crief [1975]. The converse is suggested in Moncrief [1976) and Fischer and
Marsden [1976). We will prove the converse based on this suggestion in §3.

It is likely (Fischer, Marsden and Moncrief [1978]) that in the presence of
Killing fields, the directions of linearization stability are precisely determined
by a second order condition discussed below.

Theorem 2 can be generalized to gauge fields coupled to gravity. See Arms
[1977 and 1979].

2. Linearization stability of the scalar curvature equation. The proofs are
based on the following result of Bourguignon, Ebin and Marsden [1976].

Lemma 1. Let P be a pseudodifferential operator of order m from sections
of a vector bundle E to sections of a vector bundle F over a manifold M. Sup-
pose the principal symbol of P is surjective but not injective. Then if U C M is
open, the set of C* sections of E with support in U and lying in the kernel of Pis
infinite dimensional.

The proof is based on elliptic estimates described in Hormander [1966]. It is
important to note that the term ‘principal symbol’ is used in the sense of
Douglis and Nirenberg, i.e. if the operator is a product, the top order term in
each factor is used, not necessarily the top order term for the whole operator.
See Hormander's paper for details.

A key step in the proof of Theorem 1 is the following:

Lemma 2. If dim M = 3 and U C M is open, then {h € ker DR(g)lh has
support in U} is infinite dimensional.

We recall that
DR(g) - h = Atrh + 88h — Ric{g) : h

where (8h); = —h/); is the negative convariant divergence (with respect to g),
tr A = hf, A is the Laplace-Beltrami operator, Ric(g) the Ricci curvature and :
denotes the double contraction.

In Bourguignon, Ebin and Marsden [1976], the operator P = § on the bundle
of traceless two tensors /1 satisfying Ric(g) : h = 0 was considered. The diffi-
culty is that the symbol of P need not be surjective on this space. For example,
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if Ric(g) = £ ® £, the symbol of P, ge(h) = —h* - £ = —hY&; is not surjective
on the h satisfying Ric(g) : h = A(, L) = 0 and tr & = 0, since o; maps into
vectors orthogonal to {. This difficulty is relatively minor.

Proof of Lemma 2. Let E be the bundle of symmetric two tensors and
F=TM x R. Let

P(h) = (8h, Atr h — Ric(g) : h).
The symbol of P is
oeh) = (—h* - £, —(tr h)1£1?)

which is surjective for ¢ # 0 and dim M = 2. However, for dim M = 3,
dim E > dim F, so o cannot be injective. Since ker P C ker DR(g), Lemma 2
follows from Lemma 1. n

Using this choice of P, we now modify the proof of Theorem 1 suggested in
Fischer and Marsden [1975a] and Bourguignon, Ebin and Marsden [1976] as
follows:

Proof of Theorem 1. Suppose R(g) = p, is linearization stable at g, and
DR(g,) is not surjective. We derive a contradiction. Since DR(g,)*, the adjoint
operator, is always elliptic (Fischer and Marsden [1975a]), the Fredholm alter-
native implies the existence of a non-zero f € ker DR(g,)*. If g(A) is a curve of
solutions of R(g) = p,, then differentiating twice at A = 0, multiplying by f and
integrating yields the usual second order condition: for all # € ker DR(g,),

) j S DR(gh, hnlg) = 0

where u(go) is the volume element of g,. We can assume f(x) > & > 0 by re-
stricting to a neighborhood U in M. A (long) calculation in Fischer and Marsden
[1975a] for D?R(g,) shows that (1) implies

J, (- 3 o - 5 e+ Rowgn
@ v
= 20 V@Vt )utgo) = 0

for h € ker P, supp h C U. Since P(h) = 0, Atr h — Ric(g) : h = 0. Multi-
plying by tr 4 and integrating by parts gives the estimate
3) e Al < Clikllye

for a (generic) constant C and all /1 € ker P, supp # C U. From the Schwarz
inequality and (3),
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< CllAlldlitr Ally,

”u h: (JfQ 7 tr hulgs)

“)
= Cllhllo
and clearly
(%)} J Ri9®h hoap(ge)| = Cllhll 2.
v

Thus, substituting estimates (3), (4) and (5) into (2) gives
©) MG < Clihllg

forallh € ker P, supp h C U. Since the embedding of H' in H®is compact, the
inequality (6) cannot hold on the infinite-dimensional space ker P N
{Msupp h C Uj}. [ ]

3. Linearization stability of the Einstein equations. Let M be a compact 3-
manifold, S, the symmetric covariant two tensors on M, S} the symmetric con-
travariant two-tensor densities on M, %, the scalar densities and A, the one-
form densities. Define

H:Ss X S§—>Fg; (g, M) (w' rw - %(trw')2 - R(g))u(g)

and
F:8: X 85— Ag; (g, m) > 287

where 7' denotes the tensor part of the tensor density # € 83. Let® = 3 x #.

From Fischer and Marsden [1973, 1975b or 1976] (which have minor dif-
ferences in sign conventions) we know that linearization stability of the Ein-
stein equations is equivalent to linearization stability of the constraint equa-
tions ®(g, 7#) = 0 on the Cauchy surface M. From Moncrief [1975], Killing
fields for ¥¢ on V, are in one-to-one correspondence with elements of
ker Dd(g, w)* where (g, m) is the metric and canonical momentum induced on
M from “¥g. We have

D(b(g‘ 77') ' (ho (1)) = (D%(g’ 11') * (h! (!J)., D}(gv 77) * (h‘ w))
= ([{2#‘ = (trE)m + (% (tra')? — %11' : w')g + Ein(g)] :
h —- A(tr i) — Sﬁh]p(g)

+ 2(17' - %(trn’)g) lw, 2[&» - ‘ﬂ’"‘(hmk - % hikl!)})

where (7' - 7')V = 7¥g.
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Lemma 3. Given an open set U C M,
ker D®(g, w) N {(h, w)|supp h C U}
is infinite dimensional.
Proof. Let
1
2

Since the adjoint of 28 is « : X > L.g which is elliptic, by the Fredholm alter-
native we have a linear map

K= [h € Sﬂﬂ’"(hwk - h,k,,) is L,-orthogonal to all the killing fields of gl.

T:K— 83
such that
1
n (8T(h)) = ‘”"k(hum - _z—h!kll)
and
T e < Cllallye.

(In fact, § ° « is an isomorphism from the range of & to itself and we let 7 be the
zeroth order operator

Tth) = @0 (80 a)"('lr"‘(hu,k - % h,k,,)).)

Define
P.K->Xx%

P(h) = (251:, [217' cw = (tra)r + (% (tra’) - E'n' : w')g + Ein(g)] :

h — A(tr h) + 2(1r' - % (tr w')g) : T(h)'),

where X is the set of vector fields on M, and extend P linearly to all of S, to give
an operator P; note that X has finite codimension.
The symbol of P is

oelh) = (=2h* - £, (tr h) 1£1%)

which, as in Lemma 2, is surjective, but not injective. Thus
ker P N {hlsupp # C U} is infinite dimensional, by Lemma 1. Since X has finite
codimension,

ker P N {hlsupp h C U}
is also infinite dimensional. By definition of P and T(h),
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ker DO(g, w) D {(h, w)lh € ker P, supp h C U and w = T(h)}
and so Lemma 3 follows. [ ]

By the work of Fischer, Marsden and Moncrief cited above, Theorem 2 re-
duces to the following.

Lemma 4. If DO(g, w) is not surjective, then the constraint equations are
not linearization stable.

Proof. Since D®(g, w)* is elliptic (Fischer and Marsden [1973]), D®(g, )
is not surjective if and only if there is a non-zero element
(N, X) € ker Dd(g, 7)*. We know that (N, X) corresponds to a Killing field on
V, by Moncrief [1975] and that linearization stability is hypersurface invariant.
Therefore, by re-orienting the Cauchy surface M slightly, if necessary, we can
assume that N # 0 and, say, N > & > 0 on an open set U. The second order
condition implied by linearization stability is

3) j (N, X) - D*b(g, m((h, ), (h. @)ug) = 0

for all (h, ) € ker D®(g, 7). (This condition is also hypersurface invariant, as
has been shown by Moncrief [1976]).

The expression for D*P(g, ) may be found in Moncrief [1976]; it contains
and agrees with, the expression for D*R(g) used in §2. After minor convention
changes, substitution of this formula in (3), integrating by parts and using
(N, X) € ker D®(g, 7)* yield the following analogue of (2) in the previous sec-
tion:

0=[ |3 @ - 3 @ ne - b - ar w6t fute)
+ f QTN ® 8h) : h — (UN - Ttr htr h + 2TN ® Ttr h) : hlu(g)
M
- 2J (Lxh) : @ +J N [—R“’“’huh,,,, - tr A(Ric : h)
M M

- % RUr kY + [ o' = (traw)w)]) : [(h - ) — (tr A)h]
+ ZW'UW’k(h;khy - (ﬂ" . h)2

+ % (tr h)z(n' e %(trv')’) + 8 - w' - 2tr ')’
- 2tro')n’) : h — (11-' Tw - % (trn')(trm'))tr h

+20 0 — (trw')’]p(g) +J (Lym) 2 (h - h).
i

For A such that P(h) = 0 and so 8h4 = 0, this becomes
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0=[ N3 w@hr - 3 @ nrluce
M
@ o+ J {~(UN - Otr W)tr h + 2TN ® Utr h) : Alule)
M

-2 J Lyh) : @ +I {algebraic terms quadratic in (A, @)}u(g).
M M

Also from P(h) = 0, we have, as in §2,

(5) litr h"”l = C"h"yo.
Using (4), w = T(h), IT(h)lle < Cllhlle and the Schwarz inequality we ob-
tain,

Mz < C(litr Az, + Willgolitr Al + NAaliellhaliys + AIG.).

By (5), we get

WAl < CllAllgo
for all & such that P(k) = 0 and supp # C U. But, as before, such an inequality
contradicts the infinite dimensionality of this set of 4. |
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