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This note is concerned with extremals for the integral

1
JCu) = j W(ux) dx
0

with W a given smooth function of u = du and with u prescribed at x= 0

dx
and x =1 ; say
u(0)=0, u(1) = Py

In applications to one dimensional elasticity , W is the stored energy function.

We will call uo(x) = p,x the trivial solution .

Our examples point out the care needed in choosing function spa -
ces when discussing the existence and stability of equilibrium solutions in elas-
ticity , and they are indicative of difficulties for realistic models of nonlinear
elastic materials in one and higher dimensions .

The purpose of these examples , more specifically , is asfollows.
1. The trivial solution need not be isolated in any Sobolev space
whP - wlPc0,1) , 1<p<e even though

(@) the second variation of ] is positive definite , and
M) it is isolated in W2 P

In particular, an implicit function theorem cannot be used to prove

. ) . 1 .
local existence and uniqueness in W P under assumption (a) alone
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2, Positivity of the second variation at the trivial solutionimplies uy
locally minimizes ] in a topology as strong as Wl’eo although
(a) it need not imply u locally minimizes ] in Wl'P for any p ,
l1<sp<eo

(b) in any topology as strong as Wl’o° we always have for ¢ > O suf -

ficiently small ,

inf JCuw) = ](uo)

Hu-uo =g

Before proceeding to these examples , we make some remarks

(i) The space Wl’P playsabasicrole in the existence theory for mi -

nimizers in elasticity ( Ball [1]) . In example 1 , however , W is notconvex.

(ii) The second example shows that in general potential wells ( the

standard sufficient conditions for stability ; cf. references [5] , [6] ) areim-

1,

possible in topologies as strong as W . The above conclusions in example

2_ 4

2 were given by Knops [3] for the case W(ux) -1 (ux - ux) and by Xnops
2

and Payne [4] in some related three dimensional examples .

(iii) If convexity and polynomial growth conditions are imposed, condi-

Lp by inspection . However it is un-

tions for a potential well may be met in W
known whether the equations of nonlinear elastodynamics are well posed for

suitable weak solutions in Wl’p ( for any nontrivial choice of stored energy

function ) .
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(iv) Koiter [6] has remarked that in practice the energy criterion is
very successful . However this is consistent with the possibility that the ener-
gy criterion may fail for hyperelastodynamics . Indeed " in practice " one

usually does not observe the very high frequency motions . Masking them may
amount to replacing the quasilinear equations of elastodynamics by semilinear
approximations . For the latter the proof of the validity of the energy criterion

is basically trivial (cf. [7], [8]) .
(v) The second example illustrates that the Morse lemma for the func-
tion ] will failin W1'P | 1<p<e , butbe validin WP, 522, 1<p<w .

See Tromba [9]

The First Example

Let W be a smooth function of IR to IR and let p_< P, <P, be
such that
1 _ v _ [

W'(p_ )= W pJ=W(p)
and

W (po) > 0
See figure 1 .

In W2 P (with the boundary conditions u(0) =0 ,u(D= P,
as before ) , the trivial solution is isolated because the map

u > W(ux)x
from Wz’P to LP is smooth and its derivative at u is the linear operator

v o—> W (po) Vex!
which is an isomorphism . Therefore , by the inverse function theorem, u is

an isolated zero of W(u_)
X x
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Figure 1

='p+

slope

Figure 2
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The second variation of ] is positive definite ( relative tothe Wl’z

2

topology ) at u because if v is in Wl’ and vanishes at x=0, 1 ,

- ) C )jl 2
( = W"(p v dx
dezj uo+€Vl€=O o o X
2
> v
vl 1,2

Now we show that u is not isolated in Wl’p .
Given ¢ >0 , let
p,X for O<sx<e
ue(x)= P e+ p_(x-¢) for esxs (p+—p_)e:/(po—p_)
px for (p,-p) e/(po—p_) <x=<1

See fig. 2 . Since W' (uex) is constant each u, is an extremal,

Also

1
‘Y \uex-uox\pdx=e|p+—polp+[p+_po ]e]p_-po]p
0 P, -P_

which tends to zero as ¢ = 0 . Thus uy is not isolated in Wl’p .
Remarks . 1. If W(p_) = W(p+) = W(po) and if W(p) = W(p_) for all p,
the same argument shows that there are absolute minima of ] arbitrarily close
to u_ in Wl’p .
o B
2. Phenomena like this seem to have first been noticedby Weier-

strass . See Bolza [2] , footnote 1, p. 40 .
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The Second Example .

Let W:IR - IR be a smooth function with W'(po) =0 and
w" (po) >0 . As in the first example , uo(x) = p X is an extremal and the se-
cond variation of ] at u, is positive definite . Let X be a Banach space conti-

1@ . Then there is an ¢ > O such that

nuously included in W
if 0 < Hu-uOH <e then J(u)> ](uo)
i.e. u is a strict local minimum for J. This follows trivially from the fact that
P, isa local minimum of W and that the topology on X is a strong as that of
whe
In Wl’p one cannot conclude that uy isa local minimum
' 1 2 4 ) . 1,p
Indeed the example W(ux) == (ul - ux) with p_ = O shows thatinany W
2
neighbourhood , J(u) can be unbounded below , even though its second varia-
tion at u_ is positive definite .
Finally we show that
inf JCu) = JCu )
lu-ugliy = e °
ollX

Indeed , by Taylor's theorem ,

1
T -JCu) = [ (W(u) - Wip D dx
0

=

1
(1-s) W”(sux+(1-s)po) (u- po)2 ds dx

1
o

0

)2

A

1
CJ (ux—po dx
0

where C> 0 , since sux+( 1-s) p, is essentially uniformly bounded ( by the

assumption X C Wl’m) and W" is continuous . However , the topologyon X is

strictly stronger than the W1’2 topology , and so
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1
. 2
lu ulﬁlf" X (ux_PO) B
“YWixTE 0

This proves our claim .
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