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Topics in the mathematical foundations of
elasticity

INTRODUCTION

We present some selected topics in elasticity theory from a point of view
which aims at a healthy balance between geometry and analysis. Much of the
vork revolves around the Hamiltonian structure of elastodynamics. However,
to keep the notes within reasonable bounds, we have not discussed to any ex-
tent our work on bifurcation theory (see Holmes and Marsden (128 ],

Marsden {183 | and Chillingworth and Marsden [42].)

The background assumed has been determined mostly by pedagogical factors.
It was out of the question to develop the necessary machinery in geometry and
differential forms but this can be found in Bishop and Goldberg [26] and
Abraham and Marsden {1]. On the other hand, in order to make our present-
ation of existence and uniqueness theorems as complete as possible, the nec-
essary facts about semigrdups are proved, but those about elliptic operators
are not. The latter is again for obvious pedagogical reasons.

The first three sections present standard topics found in continuum mech-
anics texts, but using the notation and concepts from modern differential
geometry and nonlinear analysis (cf. Hughes and Marsden [1321). Already at
this stage some of the results are new.

It is our conviction that not enough critical attention has been given to
geometric concepts in continuum mechanics.  Some confusion, even amongst
some professionals, over ideas of covariance, objectivity, linearization,
stress rates, conservation laws etc,, has accompanied this neglect. However,

these opening sections have to be taken for what they are: a more concise

N
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and elegant language foé well established discipline. 5 ‘oes not provide
easy answers to hard analytical questions, but our personal experience has
been that it helps to formulate things more efficiently and to get faster to
the heart of the analysis. Others will find, quite understandably, that the
investment required to learn the requisite calculus on manifolds simply isn't
worth it. '

Here is an example from Section 10 of how geometry can help guide the
analysis. In 1966, Arnold [9 ] showed how the solutions of the Euler equat-
jons for a perfect fluid can be regarded as geodesics on the group of volume
preserving diffeomorphisms.  This is, in effect, a fancy way of setting up
the equations in Lagrangian (material) coordinates. The remarkable thing,
discovered by Ebin and Marsden [77], is that in this Lagrangian framework,
the local existence theory is trivial since the differential equations
become Lipschitz. This idea led to a number of important results such +=
the proof that the infinite Reynolds number limit (v — 0) is non-singu.ar if
boundaries are not present. Another example in the same context is Ebin's
proof (76 ] of the convergence of compressible flow to incompressible flow as
the compressibility tends to 0. Some, but not all of these results were
subsequently proved using 'pure analysis'. However, in retrospect, the ori-
ginal geometric approach seems richer and more natural, especially to someone
trained in material coordinates (as most elasticians are).

In elasticity, the analytical results bbtained so far using geometric
methods, are modest. However one important application is to the extention
from the compressible to the incompressible case of the local dynamic exist-
ence theory. (See Section 10.) It seems likely that Ebin's results on the
incompressible limit will also carry over. Ultimately, global methods in

the calculus of variations due to Palais, Smale and Tromba (see Tromba {242])
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should be useful for global results in elastostatics. (See Sections 8 and
1.)

The final section surveys a few known facts about existence and uniqueness
theory (Ball |12] and Hughes, Kato and Marsden | 129)), and discusses some
related problems in stability theory. A brief sketch is given of an app-
roach to the existence and nonuniqueness theorems of Stoppelli (236} by
means of generic bifurcation theory in the sense of Chow, Hale and Mallet-
Paret (47].

Many of the results presented here are new, but we have included many that
are standard as well in order to make the notes as accessible as possible.
Further, for the sake of timeliness, a number of ideas which are not yet
fully developed or polished are also included. Needless to say, our work
leans heavily on that of the masters, in particular on that of Truesdell and
Noll |248] and Rivlin [220,221).

Our thanks are extended to Robin Knops and John Ball for their hospitality
" at Heriot-Watt University. Conversations with them were an invaluable ass-
istance. Helpful comments by S. Antman, J. Carr, C. Dafermos, M. Gurtin,

R. N. Hills, R. Muncaster and N. Wilkes are gratefully acknowledged. Some
of the ideas presented in Section 3 on covariant constitutive theory are
still in a preliminary state and were obtained in collaboration with

M. Gurtin. We also thank C. Navarro for contributing the appendix to Sect-
jon 7 on semigroup techniques applied to linear elastodynamics. Our pres-
entation of semigroup theory has been influenced by course notes of T. Kato

and P, Chernoff.
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1 KINEMATICS

By a body we mean a smooth manifold M, possibly with boundary. Points in
M are denoted by X €M and local coordinates by (x }. The tangent space
to M at X is denoted TxM.

We shall not worry about differentiability in this section. Manifolds
and maps will be assumed to be as differentiable as needed for the results
to make sense. Of course for the later existence theory this will be
nailed down precisely.

The space in which we imagine the body M to move is denoted by N,
again a smooth manifold. Points in N are denoted by x €N and local

< a
coordinates in N by {x"}.

By a configuration or 2 deformation of M we mean a map

¢:M — N.

We shall always assume ¢ §s regular i.e., is a diffecmorphism onto its
jmage. One also says ¢ {s an embedding of M into HN. The set of all

configurations is denoted X, and is called the configuration space. It
can be shown to be a smooth infinite dimensional manifold using the methods
in, for example, Ebin and Marsden {771. We won't really need this fact
until later (See especially Sections 4 and 10).

A motion of M 1is a curve ¢(t) in x. MWe write o(t.X) = @t(X) for
this curve evaluated at X €M, and let x = o(t.X).

The material velocity V of a motion is defined by

V(LX) = St

We may regard V as a tangent vector to the curve ¢{t) in o,

From its definition, V, is a vector field over by e, VeiM — ru{




Vi (X) € T¢(X)N for each X € M. (See Fig. 1.1} The spatial velocity v,

is the vector field in N defined on °t(") by
o -1
Ve ® Vedy

We call ¢, the reference configuration. Usually we can assume that

&, = identity.

Vt(X)=vt(x)

J—
¢
¢ o, (W)=deformed body
at time t
Fig. 1.

We write F = T¢ or D¢, the tangent i.e., derivative of the configuration
4. Thus for each X €M, x = ¢(X), F(X):TyM — TXN is a linear map. We
call F the deformation gradient. It is an example of a two point temsor;

i.e., multilinear maps fromcopies of TXM, T;H. TxN and T;N to the reals R.
In coordinates, F has components
a
ﬁA=i%.
X
We assume there is a Riemannian metric g on N and a Riemannian metric G
on M. Their respective Christoffel symbols in coordinates are denoted
a A
Ybe and rBC'
The covariant derivative of the material velocity V of a motion with

respect to t is called the material acceleration and is denoted by A.

In coordinates,

et —

a

where all quantities are evaluated at the appropriate points (i.e., A, ¥R oat

t,X) and y° at x = ¢,(X)). The spatial acceleration is defined by
bc t

= -y , 3V
ay e ey’ e gpt LY
In coordinates,

a _ av?, avdb a b

va
+ — + vV,
a \ YbC

3t~ .b
o . 2
The extra term =, v arises by using the chain rule to compare 2V /3t and
x
av/at.

The material deformation tensor (or right Cauchy-Green tensor) C is

defined by
¢ = ¢*(a)

where ¢* denotes pull back of tensors by 4. In coordinates,

. a cb
Cag * 9a% AF B

Clearly cAB is symmetric and positive definite (since 9, {s and FaA is

invertible).

The spatial deformation tensor (or left Cauchy-Green tensor) is similarly

defined by
[ ¢.(G)O
the push-forward of G by ¢. In coordinates,

. 1A pee1B
Cyp ° GaplF ) (F )y



We write G° for the tensor inverse to G and g" for that of g. In
coordinates G” has components G“B. the inverse matrix of GAB‘ We use
these to raise and lower indices on tensors, thereby forming associated ten-
sors in the usual way. It is important to distinguish tensors from their
associated tensors since pgll back and push forward do not commute with this
operation.

In fact we define the Finger deformation tensors respectively to be

B = o*(g”), b= ¢, (6).

Let K denote the curvature tensor of o¢*(g) and L that of g.

From covariance principles in geemetry we know that
K = ¢*L.

In particular if g is flat, K=0. These are usually called the com-

patability conditions. Conversely if, in Euclidean space we are given an F

and form K and find X = 0, then F arises froma ¢. This follows from
the result that a metric with zero curvature has constant components in
normal coordinates.

It is common to decompose F according to the polar decomposition

F = Rol = VoR

where U,V are positive definite and symmetric (the square roots of C, ¢)
and R is orthogonal. We remark that this makes perfectly good sense on

manifolds: notice that

R: TH — TN, U MR
U:TH — M, ™ —E—"m

Vi — TN S
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One calls R the rotation tensor and U,V the right and left stretch ten-
sors.
The Lie derivative Lvh of a possibly time dependent tensor field h on

N with respect to the spatial velocity is defined by
(L) = Fl6,*h)
t Vv at'vt

We write L = é% + £v so that L, and £, coincide on time independent
tensor fields. This is the normal way geometers measure the rate of change
of a tensor with respect to a vector field. Note that jt doesn't involve
the metric, although its componential expression may be written in terms of
either ordinary or covariant derivatives.

If the indices on h are raised or lowered one obtains different express-
jons, since Lie differentiation does not commute with this operation. If h
is taken to be the stress tensor or the stress tensor density, these possi-
bilities result in the various expressions for stress rates proposed by
0Oldroyd, Jaumann and Truesdell. We shall study these expressions and
"objective rates” in general as an application of Lie derivatives as soon as
a little more notation is reviewed.

The rate of deformation tensor in spatial coordinates {s defined by

d= 9
or
dyp = Hvap * Vola!

and in material coordinates by,
2} 2
D=1 3t C.

Thus ,



&

¢*d = D.

We assume M and N are oriented and write dv for the volume element on

H. Thus, in coordinates
dv = /et g, dx'a....dx", n = din N,

Similarly,
dV = /T Gpg dX'ae..ndX, m = dim M,

is the volume element on M.  The Jacobian J of ¢ is defined by
¢tdv = JdV;

explicitly,
a(a',...,¢“) /det 9ab
3(X1,...X") /IeE T

J(x)

This is defined only if n=m. In this case, let a positive function

p{t,x}, x € ot(M) be given. We say it satisfies conservation of mass if

8 lp(t,x)dv =0

8 (V)

for every smooth open submanifold U CM.

Define the divergence div v of v, by

Ldv = (div v)dvy

In coordinates we get the usual formula:

3 a
divy = v3, = —2— -2 (/BT g4 ¥)).
" Eet g g a® cd

Then conservation of mass is equivalent to the continuity equation

% + doev + pdivv = 0.

Indeed, this follows by changing variables:
d d x))9dv= {22 +p divv)ady
gt jeltex)dv = = p(t.%( INdV= f(z+e fvv)Jddy.
6, (V) U ]
Since U is arbitrary, and the integrand is tacitly assumed to be con-

tinuous., conservation of mass is equivalent to the continuity equation,

at’

We write 22 + dp-v = § and call it the material derivative. HNote that

fe = (F 0y° 0y)o0,"" 4 which is used to define the materfal derivative of a

general spatial tensor field.

Conservation of mass is more interesting if dimM # dimN. Take the
case of shells as an illustration. Here, dimM = dimN-1. tet k denote
the second fundamental form {extrinsic curvature) of ¢t(H) in H. (Fora
surface in space, tr k is the mean curvature and detk {s the Gaussian
curvature,) Now write v = v, vy, where v) € T(¢t(M)). i.e., s tan-
gent to the shell, an'd n is a unit normal, relative to a given orientation.

The equation of continuity then reads
o + p(div vp ) tevptrk s 0.

We leave the proof as an exercise for the geometrically inclined reader.
As a first, and rather simple application of geometric jdeas, specifically
the Lie derivative, we shall consider objective rates.

tet t be a given symmetric covariant (irdices down) two tensor, the

2o



stress tensor, say. Llet ty.tz,t, be the three associated tensors with
indices rajsed by the metric g and let tu=t. In coordinates {x} on N,
b b a
tos (%) e () 6T () tos (ty)
Cn noting that the Lie derivative does not commute with raising or lowering
indices, we get four different formulas:

ab _ :ab cb,a ac b
(va‘) s t° -tV " t Ve

ac b _;ab _ ,adb ab, 2
g (LVS’)C =t t v|d+t le ’
a cb_ :ab _ ,aba ad, b
(vag) 9 ° t Vet vy
and
ac db _ .ab cb  la ac, Ib
g (Lt Yed? * [ S PO Sl P

while for the density t, ®dv where dv s the volume element for the

metric g, we get
(Lt @ ) = (L) ¢ +30iv v)dv.

we shall show shortly that it is not an accident that the so-called
"objective fluxes” (the right-hand sides above) turn out to be Lie deriv-
atives with respect to the velocity. )

The tensor L 4 has been associated with the name 0ldroyd and
L (ty@dv) with the name Truesdel). We see that all of these tensors are
different manifestations of the Lie derivative of t.

Any linear conbination of the preceding formulas will also qualify as an

“objective flux®, e.9.,

40

+ab ad b db
d

a cb ac b, _ 2
ML) 97+ 0T(Lta) ) = T4 ey - oW g

where wab are associated components of the spin zwab ERE this

alb” Vb’
tensor is associated with the name Jaumann.

(de note in passing that, like the Lie derivative in general, the right-
hand sides may be equally well expressed without using covariant derivatives.)
To complete the discussion we need to define the term "objective” in the
Janguage of differential geometry. These notions will also be needed in the

next section.

pefinition Llet t be a tensor field (or tensor density) on a manifold N

and £ a diffeomorphismof N to K. We say that.the push-forward

t =gt is the objective or spatial transformation of t, i.e., t trans-

forms in the usual way under the map &.

Proposition Let o be a regular motion of M in N with velocity field

v, (spatial velocity). let &, bea motion of N in N and let

t
¢; =Yy be the superposed motion of M in N

Let t be a given time-dependent tensor field on K and let
vs b,

i.e., transform t objectively.

Let V' be the velocity field of Q;. Then
Lv'!' = E'(LVE)’

j.e., "objective tensors (or tensor densities) have objective Lie

derivatives”.
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Proof. MWe first note that
Ve Tt Bt

where , js the spatial velocity of gt. This follows by differentiating

¢'t(X) = £, (4 (X)) dn t. (As con be seen, v is not objective.)

Let £, = g.°6;' be the time dependent flow of w. Then,

lv' _.‘ = LN*E'V(E'E)

3
: 'rw+c,v(£*5) * et

Eul£ L) + £, (Eat) + 2plEat)

CulE 1) + L (Eet)

EalL,t) + 3 R

= GlLt) e ng"(gr°£1.:x)*(€r*5r)|r=t

d
LlL,t) + 57 Et’.t.rlrﬁ_

d
Eu{L L ¢ t l )
L T

= Ca(LvS)a a

This can 2lso be verified by a direct, although somewhat messy, coordinate
calculation.
As 2 second application of geometric ideas to kinematics, we consider

42
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another important operation which will be ot use in subsequent sectivns.

This is the Piola transform. Its main use is to connect the material and

spatial pictures. In doing so, the Piola identity plays a central role.
tet y be a vector field on K, Y be a vector fieldon M and assume

dimN = dim¥. We say Y is the Piola transform of y if
Y = Jory.

We remark that this is equivalent to c'(iydv) = iyd\l where iydv

denotes interior product (= y Jdv}. This is because,

P . i rdy = i i i
¢ (1ydv} ‘¢*y° dv lvyddv l‘wwdv

We also remark that if da denotes the area element on a hypersurface and n

js its oriented unit normal, then on this hypersurface
1ydv = {y,n)da.
The proof is a simple computation.

Proposition (The Piola identity) DIVY = J{divyed)

Proof 1. [(Y.N) dA = LD!V Y dV for any open subset U CM with piecewise
v

¢' boundary 23U, with a similar formula for y. But by change of vari-

ables

[(Y,H)(M

liydv = li dv = [{y,n)da.
1) L E]

4
o(U} (V)

Thus lmvv av = {divy dv = [o(civyos)dr so as U is arbitrary, the
&(U) ]
result follows. OO
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Another way of saying this identity is DIV(JF') =0, i.e.,
(J(F“)Aa')lA = 0. This follows from what we proved: viz.,

@ g = 9,

holds for all y.
Proof 2. Me compute directly, using differential forms:
(OIY Y)dV = Lydv
a d(i dV
. d(ly )
{By the general formula
Lya = 1ydu + diyu

and the fact that d of an a-form is zero.)

Thus

(DIVY)dV = de*{i,dv)

o"d(iydv) (pull-back and d comnute)

a ¢*(divy dv)

s J(divym)dv (definition of J)
and so

DIVY = J{divyes). O
Qur final application is to the well-known criterion of Vainberg {2501
for a set of equations to be derivable from a variational principle, i.e.,

to be Euler-Lagrange equations. The same result appears, in different form

44
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in many places. For example one can ask, which is essentially the same

thing, when a given vector field is Hamiltonian. The answer (see Chernoff
and Marsden [39) p.78 and Sections 6 and 9 below} was knovn to Poincaré and
cartan. Its application to elasticity yields the well known result that the
elasticity tensor is symmetric if and only if it derives from an internal
energy function. e shall see this application later.

Let X,Y be Banach spaces with Y densely and continuously included in
X. Let (,) be a continuous bilinear form on X and let At — X be d

given (nonlinear) operator. The Fréchet derivative of A at x is denoted

DA(x).
pefinition We say A is a potential operator if there is a function

L:¥Y — ® such that
drL{x)ev = {A{x},v)

for all x, v €Y.
The equation A(x) = 0 represents in abstract form the Euler-lLagrange

equations for x €Y.

Proposition A given operator A is a potential operator if and only if for

each x€ Y, and v, and v; €Y,
‘DA(X).VIOVZ’ = (DA(X)'V;.Vl).

1f (,) is symmetric, this equivalent to saying DA(x) is a symmetric linear

operator on X (with domain Y},

Proof. Consider the one form a{x}ev = {A{x),v>on Y. Then A fsa

potential operator if and only if o is exact. By the Poincaré lemma, this

is the case if and only if da = 0. But by the coordinate formula for

45



exterior derivative {the “curl” in this case)*,
dx{x}«{v1,v2) = (DA(X)-vy,¥2) - (DA(R)va,V1}

so the result follows immediately. [
The proof of the Poincaré lemma 21so gives us 3 formula for L in terms

of A:

?
L{x) = J(A(rx),x)dt.
0

Using this formula the proposition may be verified directly.

2 BALANCE _LAHS

We shall begin by reviewing standard results on the foundations of continuum
theory. The balance laws in integral foﬁm are often postulated as the
basic axioms of the theory. Unfortunately, such a key law as balance of
momentum is not a covariant statement. It is the authors' belief that if a
theory pretends to be fundamental {as opposed to particular examples), it
must have a covariant formulation. In other words, on any manifold in any
coordinate system it must be clear how to fornulate the theory. Thus,
theories which are given explicitly in Euclidean space in Euclidean co-
ordinates are not covariant in this sense. (Changing coordinates in
Euclidean space does not tell you how to formulate the theory on a three-
sphere or for shells, etc. Some exotic materials such as liquid crystals
may be best formulated in spaces which are not Euclidean, so the reasons for
demanding covariance are local as well as global.)

pemanding covariance gives, we believe, some fresh insight into balance

+5ee, Lang | 167 1 or Abraham and Marsden {1}, Table 10.1.

4G
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of energy and the relationship between the first and second laws of thermo-
gynamics.

This point of view is not our personal prejudice. F. Dyson [74] has made
the same point relative to quantum theory in crystal clear terms:

“The most glaring incompatibility of concepts in contemporary physics

is that between Einstein's principle of general coordinate invariance

and 211 the modern schemes for a quantum-mechanical description of

nature. Einstein based his theory of general relativity on the

principle that God did not attach any preferred labels to the points

of space-time. This principle requires that the laws of physics
should be invariant under the Einstein group E, which consists of all
one-to-one and twice-differentiable transformations of the coordinates.
8y making full use of the invariance under E, Einstein was able to
deduce the precise form of his law of gravitation from general require-
ments of mathematica) simplicity without any arbitrariness. He was
also able to reformulate the whole of classical physics (electro-
magnetism and hydrodynamics} in E-invariant fashion, and so determine
unambiguously the mutual interactions of matter, radiation and gravi-
tation within the classical domain. There is no part of physics more
coherent mathematically and more satisfying aesthetically than this
classical theory of Einstein based upon E-invariance.

On the other hand, all the currently viable formalisms for des-
¢ribing nature quantum-mechanically use a much smaller invariance group.
The analysis of Bacry and Lévy-Leblond indicates the extreme range of
quantum-mechanical kinematical groups that.have been contemplated. In
practice all serious quantum-mechanical theories are based either on

the Poincaré group P or the Galilei group G. This means that a

17



class of preferred inertial coordinate-systems is postulated 2 priori,
in flat contradiction to Einstein's principle. The contradiction is
particularly uncomfortable, because Einstein's principle of general co-
ordinate invariance has such an attractive quality of absoluteness. A
physicist’s intuition tells him that, if Einstein's principle is valid
at all, it ought to be valid for the whole of physics, quantim-
mechanical as well as classical. [f the principle were not uni-
versally valid, it is difficult to understand why Einstein achieved
such deeply coherent insights into nature by agsuming it to be so."
, As in Section 1, let M and N be manifolds representing the ‘body' and
‘space’ respectively and et N be 2 (regular) motion-of M in N with
spatial velacity v and material velacity V. The manifolds M and N
carry metrics G and g and dV and dv denote the respective volume

elements.

Lemma (Transport Theorem) Let f{x,t} be a C' scalar fuaction of

x € °t(H) and t. Let UCM be a bounded open set with piecewise C!

boundary {hereafter called a 'nice’ region). Then

'ft‘ Jf(x.t)dv = |(F+f divv)dv.
50) o, ()
BJ.

Proof. By change of variables and the formula T (div Vcot)J from

Section 1, we have

d 4 N
T lfdv o [(fo £ dv
]

¢ {U)

[(%(ro $ 00+ (Fo 4y )ddiv)dy
v

ST e .. —

= I((-%fwt)o o' + fdivvidv.
¢, (V)

But f = [%(fo °t.)]° o‘t' by definition of the material derivative

(Fefp+dfv). D
This lemma as it stands makes perfectly good sense on any manifold.
1f a{x,t) and b{x,t) are scalar functions and c(t,x) a vector field,

they are said to satisfy the master balance law if

d

it ja(x.t)dv = (b(x,t)dv + ](c(x.t.), n) da

6,(0} EXC) 30,(0)
for all nice regions U C M, where n is the unit outward normal on
aat(ll) = ¢t(au) and da is the corresponding area element. If = is

replaced by =, we refer to this as the master balance inequality.

Proposition 1f a, b, c are C! then the master balance law (resp.
inequality) is equivalent to the identity

a+adivy=b +dive

{resp. # ). If p satisfies conservation of mass, then pa, cb, ¢ satisfy

the master balance law {resp. inequality) if and only if
pa = ob + dive.

Proof. This is a censequence of the transport theorem, the arbitrariness of
U and the continuity equation o + pdivv =0, O
This can be done equally well in material coordinates. Hamely, if we let

ooy 0B and C satisfy

49
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a(lt ‘mﬁd\f = Iooﬂ av + l(c,N)dA,
U ]

the localization becomes
A
oog * p,B + DIVC.

If at

this equation is equivalent to 0d = pb + dive.

a Atw't‘, bt = Btcr»;" and ¢ is the Piola transform of C then
This is seen by using the
equation o4y = J(°°°t) and the Piola identity.

Cauchy's theorem states that if ¢ is a scalar function of x,t and n
and if a,b,c satisfy the master balance law {or inequality), then c¢(x,t,n)
c(x,t,n) = {c(x,t),n) for a vector field c(x,t). He refer to standard
texts for the proof, noting that it is valid on general manifolds. (For the
technically sharpest version available, see Gurtin and Martins [112]).

Given a motion of a body, we assume there exists a vector function (the
Cauchy traction vector) 1 depending on t,x and a unit vector n at x
such that 1t measures the force (per unit area orthogonal to n} of contact
between two parts of the body.

He assume then that balance of momentum holds: for all (nice) UCH,

H%Ipvdv = |pbdv + [vda.
oglU) 9, (U)  35.(Y)

where b is a (given) external force field. We shall criticize this
assumption shortly.

By Cauchy's theorem, we can write
1{t,x,n) = (L{t,x),n)

for a 2-contravariant (indices up) tensor field t, the Cauchy stress tensor.

In coordinates,

50

From the localization of the master balance law we find that balance of

momentum 1S equivalent to the basic equations of motion

oa = pb + div_t.

0f course for these to be formally well-posed, we have to say how t depends
en the motion. Tnis is the subject of constitutive theory (see Section 3).

We let T be the Piola transform on the first index of ti i.e.,
™. J(F")Abtba.

T is called the first Piola-Kirchhoff stress tensor. Then the material fom

of the equations of motion becomes
PoA = poB + DIVT

where B = boo‘t‘.

Another important tensor is the second Piola-Kirchhoff stress tensor de-

fined as the pull-back by 4t of the second index of T; i.e.,
A ST

In R one also postulates balance of moment of momentwm, i.e., for all’

{nice} UCN,

[o(x xb) dv{x) + |x~1da(x).

-ad{ Jn(x «v) dv{x} =
8,(1) 2, (0)

¢, (V)

*1f one pulls back the covariant (indices down) form of t by ¢, one gets
the convected stress tensor, while if one pulls back by the rotational part
R of F, one gets the co-rotational stress tensor, etc.

si
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_rot make sense.

«

Assuming balance of momentum, it is an easy matter to check that this is

equivalent to symmetry of t: ¢3b ;b2

pAB _ BA_

. Equivalently, P is symmetric:
{Notice that it does not make tensorial sense to ask that T be
symmetric.}

These two postulates are usually taken as the basic principles underlying
continuum mechanics. We shall now criticize this point of view.

The main objection is that balance of momentum does not make covariant
sense. lIndeed it must be postulated in a Euclidean (or inertial) frame.
In any other frame it will not look the same. On 2 general manifold it does
¥ Therefore, if we subscribe to Dyson's point of view, we
must reject it as a fundamental postulate. (Of course the study of specific
models is another matter.)

Balance of moment of momentum, of course, depends explicitly on R’ so is
i priori objectionable on covariant grounds. Rod and shell theories also
use these postulates, but they must be modified to take into account the
particular geometry. This is another manifestation of the non-covariance of
the fundamental laws.

Since most engineering mechanics occurs in Rr?, these objections are not
relevant for practical considerations. However it is naive to think that
®' will cover all possibilities. For example if one wants to treat
Cosserat (directed) continua without using higher order theory, one can do so
with the theory at hand, but we must replace the containing space R> by
something more complicated. For example, for inextensible undirected rods,

one uses N = RYx P?,

"one could attempt to integrate vector fields on a Riemannian manifold using
parallel transiation, but this only leads to conditions dependent on which
point the vectors are translated to.
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where P? is real projective two space.* Again, in general relativity,
these covariance questions are crucial for elasticity since inertial frames
may not be at our disposal (see, eg., Carter and Quintana | 36 ) and Maugin{ 188 }).

There are two ways (at least) of making the foundations of continuum mech-
anics covariant. One way is to assume a Hamiltonian or Lagrangian structure
and treat it as a classical field theory. This will be done in Sections 9
and 10. Another is to base it on a balance of energy principle and a co-
variant version of the Green-Rivlin [101] invariance assumption.

We shall first review the Green-Rivlin arguments.

Let p(t,x), b(t.,x}, h{t,x,n), (t,x,n), e{t,x) and r(t,p) be given
functions on N =®), h and 1 depending on a unit vector n. Here, h
is the scalar heat flux, e the internal energy and r the heat source.

These functions are said to satisfy the balance of energy principle if,
for all (nice) UCH,

é%’]p(e +} v, ¥))dv = Ip((b.v)-}r)dv + ]((r,v) +h)da,
4, (¥) 4, (V) 3, (V)

where 1 and h are evaluated on the unit outward normal n of aet(u).
Although it can be derived,” let us assume at the cutset, for simplicity,
that t and h have the form 1 = (t,n) and h = - (q,n).
From the master balance law in localized form, a straightforward com-

putation shows that this is equivalent to the local form

p(é + {v,a)) ¢+ (Bbodivv)(eq {v,v)) = pr4p (b,v)-divgediv{tev).

*Details of this sort of example are found in Naghdi [194]. See also Hughes
and Marsden [132].

*One first obtains balance of momentum using translation invariance (see
below) and hence 1t = (t,n); then by Cauchy's theorem applied to balance of
energy, h =(q,n) follows.

53



No other balance principles {including conservation of mass) are used here.
If the other balance principles are used, jt simplifies to the local energy

balance
gé +divg = tid +pr
where ¢:d = tabdab.
Now let w(t,x) = ¢{t) + Q{t)x denote a time-independent rigid motion of

r!; i.e., Qft) isa 3x3 orthogonal matrix of determinant +1, and

c(t) is a vector.

Consider the new motion of M defined by
¢ (LX) = {t.o{t,X)).
This has velocity
v (%) = w(t,x) + Q{tiv(t,x)
where ¥ = & (t,X) and

w(t,x) =%% +%%x.

Let 2 (t,x') be the acceleration of the new motion, With this new motion,

associate the functions
o (t.x') = o(tux),
£(x) = QUEE(L.xAAL),
o =Qn,

q {t,x') = Q(t)q(t,x),

£t ) = r(tx),

-l Tt .- - ——r—

¢ (t”") = e(t,x),

and finally define b’ through

o't -p'a’ = Q{t){eb -pa).

The last condition asserts that b-a should transform as a vector, Thus

v will include b plus fictitious forces due to an accelerating rigid

f rame.r .

We assume that the new motion with the corresponding primed guantities

satisfies balance of energy.

Theorem (Green and Rivlin [3011)

Under the assumptions just described, the local forms of conservation of
mass, balance of momentum, balance of moment of momentum, and balance of
energy all hold. Conversely, if these balance principles all hold, then

balance of energy is invariant under time-dependent isometries of R,

Praof. It suffices to prove the first part at to = 0. First, let

o(t,x} = te+x, ¢ = const., soO v’ = v+c. Thus, by the localized energy

balance for the primed quantities at t =0 (where x=x'),
P {8 +V 0 N+ +o divy)(e + 1V V)

= o' 49’ (b W) -divg +divit'Vv),
where

p zp, & ¢, vV =v4c, p =p, divy =divy, ¥ = r,

*one can legitimately object to this definition of b'. However this can be
overcome by lumping the terms from the kinetic energy and the external forces
and working with the "noninertial” part of the forces from the start, See
also Noll [ 202 ] vhere forces are derived from the more primitive concept of
power,
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ot -p2 =op(b-a), divg =divg, and t =t.
Thus, for the unprimed quantities we get the identity
(pa-pb -divt,e) + (p+pdivv)ivee) + }o +odiveic,e) =0

for all c. Lletting ¢ = du where u is a unit vector, differentiating
twice with respect to ) and setting X = 0 gives p+pdivy = 0, i.e.,
conservation of mass. Inserting this back into the identity gives, since ¢
is arbitrary, pa-pb-divt = 0; j.e., balance of momentum,

Next, let w(t,x) = Q{t)x with Q(0) = ldentity. Then at t = 0,
v = fix+v where Q= 6(0), a skew symmetric matrix. Comparing energy
balan;e for primed and unprimed quantities, using div v' = divv, conser-

vation of mass and balance of momentum now merely yields
t:q = 0.

In doing this, note that

div(tijnjkxk) ﬂjkxk)

9
—{t,:
ax! ij

(div t)+(ax) + tijnjks‘i‘
= divE-(S}x) + tijnji .

But ".. is an arbitrary skew symmetric matrix. Thus tij must be

i3
symetric; i.e., balance of moment of momentum must hold.

The convaerse assertion can be easily checked, the details of which we

Jeave to the reader. O

In Sections 9 and 10 we shall see how the same conclusions can be reached

T

if we start with elasticity as a classical Lagrangian field theory, impose
invariance under one parameter groups of spatial translations and rotations,
and use Noether's theorem. The two approaches are almost the same thing but
done from different points of view,

Covariant classical field theory {and general relativity) teaches us that

the stress tensor should be related to the Yamiltonian or energy density X

tef5
where g is the metric on the space. See, for example Hawking and Ellis
l119). Except for works in relativistic elasticity, this formula has not
yet penetrated the classical 'Iiterature.* We shall now show how this
formula is in fact needed to make the Green-Rivlin formulation fully co-
variant (and in particular, localizable and not dependent on inertial frames).

One can see that something else besides balance of energy is needed, for
if it holds under all superposed motions, not necessarily rigid body motions,
then the stress tensor t would be identically zero.”

We shkall now present a covariant version of the Green-Rivlin theorem.
Although it does not deal with any constitutive hypotheses per se, the ideas
are related to a covarijant version of constitutive theory described in
Section 3.

Suppose we have a motion °t of M in N and associated with it we have
functions e, t,--- as above. {We again assume 1 =(t,n) and h = (q,n)

for simplicity, although these facts may be deduced.)

*As we shall see, it is closely related to the classical formula T = p,sH/aF
or P = 2pgai/acC.

*However, this works if one assumes a localized form of energy balance and
superposes infinitesimal isometries. See Hughes and Marsden {130).



1f we fix our metric g (say the standard Euclidean metric) on N, never-
theless g will be represented differently in different coordinate systems
and the coordinate representations of e, t,.-- may reflect this. (Ve
shall explore this idea in Section 3.) However, we contemplate now some-
thing more drastic, as covariance suggests we should. Namely, think of the
same motion for different choices of metric g on N.

Changing the metric on N of course changes (pointwise) our units of
measurement but more dramatically, it changes the accelerations of particles.
for instance, in H® with a non-Euclidean metric, particles moving uniformly
on a straight line may be accelerating,

' Such a change will, therefore, change our functions e, t,---. It must,
because the very equations of motion are no longer the same since forces and
accelerations are modified.

We postulate three things:

Assumption 1 for a given motion . and associated¢ functions e, t,-:*,
energy balance is satisfied. If the metric g on N is changed, the
functions e, t,--- may change, but balance of energy with the new
quantities will be maintained. The dependence on the metric is cenoted

e(t,x,g9) etc.

Assumption 2  For any superposed motion £, on N define the primed

quantities as above, except using the metric s:g, i.e.,
¢ (t.x,9) = e(tixii}g)

etc. Then the primed quantities also satisfy balance of energy in N with
respect to the metric g.

(The idea is schematically indicated in figure 2.)

N.E%

€y

superposed

m‘ motion
change of
metric (not needed
” if superposed
otion is rigid).

o GREN

Fig. 2.

If these two assumptions are made, we sdy that energy balance is covariant.

Notice that in R, if Yy is a rigid motion, then Assumption 2 reduces to
the previous assumption of Green and Rivlin, since Y leaves the metric

unchanged.

Assumption 3 The dependence of e on g is local; +f.e., e depends
(differentiably) on the point values of g and its derivatives up to some

finite order.

The third assumption is of a type found in constitutive theory and is
explained in greater detail in the next section. However, it is to be
stressed that we are not making constitutive assumptions here; no special

dependence of e on ¢ iS assumed.  This will a1l be treated together in

the next section.



Theorem If Assumptions 1, 2 and 3 hold, then e depends only on the point
values of g. Furthermore, conservation of mass, balance of momentum and

moment of momentum and energy hold in their local forms and

Conversely if Assumptions 1 and 3 and all these conclusions hold, then

energy balance is covariant, i.e., Assumption 2 holds.

Proof. Referring to the Green-Rivlin argument above, we had (¢’ } e,
Here, because of the dependence on the metric, the definition of material

*time derivative yields

() =¢ .2 1£,9 + h.o.t.,

¢9
where %E- stands for the derivative of e with respect to the point values

of g and h.o.t. contains analogous terms involving derivatives of e
with respect to point values of the derivatives of ¢ {e.g9., the connection
of g, curvature, etc.).

In that argument we also pick up an extra term
t:k = )g:[wg

as follows.

We notice, first of all, that

vt = Wt + Et'vt

where w, is the velocity field of Eps 25 usual. This follows from the

t
definition ¢'t(x) s -ut(ﬁ.t(xn. Localized balance of energy now reads:

(]

s e -

plé+{v,a) )+ (prpdivv)(e+ Hv,v)) = prepth,v? -divq+div(t-v).

(1)
8y hypothesis, this also holds for the primed quantities. MNow write:
div (' V') = (divt W)+t -t
where W, = 3(Vy1p= Vo)
Thus, (1} for the primed quantities reads:
0=¢ (e )" -r) +divg -t :d
+(V 0 (3 -0) - div E')
+ (8 40 divy (e +}V WD)
+ f._' Wl (2}
At t,x, chosen so that Et{x) = x, some simplification of (2}, using
v = v+wand (1), yields
e,
0= p{ﬁ : L‘Hg +h.o.t)
+ {(w,p(a-b)-dlv5+(5+odivv)v)}
+ {3{p+odivv)iw,w ]}
+ tiw - ik, (3)
where we have written
wap = M p=p1ale Kab * H¥a1p*p1a)
and used the jdentity
dab * dap * kab'
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In (3), h.o.t. is the only term involving second or higher derivatives of
wand g. Since these are arbitrary, one concludes that h.o.t=0 and that
e depends only on the point values of g. Using the pointwise arbitrari-
ness of w, k, and w, the rest of the conclusions follow as in the Green-
Rivlin theorem.

The converse may be proved by a similar argument., (Note that (3) will
hold for the primed quantities without necessarily assuming b =id since we
can transform the unprimed quantities - relative to the metric E:g.) [w]

Notice that assumption 1 is analogous to a common assumption in consti-
tutive theory regarding the admission of a wh&le class of processes.

Indeed, if the metric changes, then so do the‘acce1erations and hence the
process itself changes.

The following is a list of miscellaneous comments on the above result.

1 The theorem includes thermo-elasticity as well as hyper-elasticity. When
Je

constitutive theory is introduced, 39 must be interpreted as a derivative
at constant entropy n so it can be equated with %% where ¢ is the free

energy, with the derivative taken at constant temperature 6. In other
words, in the theorem, the basic fields are (¢,n) and not (¢,0); we will
review this fact in terms of Legendre transformations in the next section.

2 The theorem can be modified to include rate or memory effects. Indeed,
if Y is not rigid, it is natural to expect it not to transform t asa
tensor, if t depends on rates of shearing for example. Indeed one can use
this notion to define a fluid etc. fliotice that this is done cutside of con-
stitutive theory. A1l meterials can be included by assuming a general

transformation law for t. Specializing to

(a) t'= gt yields elasticity,
(b) t'= g.tevk yields elastic fluids,
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etc. (Here kab = Q(Nal LY a) and w is the velocity of the superposed
motion as above.)
3 1In Lianis and Rivlin [173] the Green-Rivlin theorem is generalized to
special relativity. For general relativity one requires ideas introduced
here. (See also Carter and Quintana [36].)
4 There appear to be some links between the ideas presented here and the
work of Noll [202). So far these links are unexplored.
5 The covariance of energy balance allows one to proceed directly from it to
the weak form of the equations without first passing to the localized form as
is usually done. This is possible because we allow the superposed motion
by to be arbitrary, not necessarily rigid. (This can also be done from the
viewpoint of Lagrangian field theory; cf. Sections 9 and 10.) This remark
is inspired by similar comments of S. Antman in a different context.

We conclude with some standard results on the entropy production in-
equality, since we shall need them in the next section.

Let ¢(t,X) be a regular motion of a simple body M CN. In addition to
functions p(t,x), v(t,x), r(t,x) and h{t,s), introduced earlier, assume
there are functions n(t,x), the specific (per unit mass) entropy ard

e(t,x) >0, the absolute temperature.

Definition These functions are said to cbey the entropy production

inequality or the Clausius-Duhem inequality if, for all (nice) U CM, we

have

'dgfjc'“ dv > J-"G—rdv + gda.
$,(U) 0, (V) 38, (V)

Let us assume, as above, that h(t,x,n) = -(q(t,x),n) and conservation of

mass holds. Then the entropy production inequality localizes (by the Master
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balance inequality) to:
on 7 & - div(@).

for the material form, we let
B(t,X) = 8(t,x), N(t,X) = n{t,x}, R(t,X) = r{tsx), po(X} = 0{0,X),
Q(t,X) = JFlg(t,x). (Piola transform).

The material form of the entropy production inequality is

¢ Q0.8
a’t‘[""" v > ]poR dv + ]TdA.
U f 2

or, in localized form,
body > po R - oIv(d).

It is quite convenient to recast the entropy production inequality into a
slightly different form by bringing in the free energy v{t,x).

The free energy is defined by
yce-0n,
or, materially,
¢ = E - ON,

Propesition  Assume conservation of mass, balance of momentum, moment of

momentum, energy and the entropy production inequality hold. Then
o(néh};) - E:d + %—(q,VO) <0,

or, materially,
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oo(n242%) - T: 3 4 Z(0.6RA0E) <O
This is called the spatial (resp. material) reduced dissipation inequality.

Proof. From the definition of v,

pe ¢-0n-6n, i.e., on-= é-én--ﬁ .

Combining this with the localized entropy production inequality gives
n(é-én'i’) >opr - divg + % (q,v8) .

From localized balance of energy (and the other balance laws), we have
pe = pr - divq + E:d.

which on substitution gives the spatial result. The material form is proved
the same way. 0O

If we apply the earlier covariance argument to the entropy production in-
equality straight away, we would get g—'g‘ = 0, i.e‘., the entropy should not
change when g changes. This then merely reaffirms our earlier statement
that for thermo-elasticity, in spatial covariance, n and g should be
regarded as independent variables.

On the other hand, if we take the reduced dissipation inequality, apply

the covariance assumption, and regard 8,3 as independent (i.e., g% = 0),

then we find that ¢ depends only on point values of g and that
3y _
20-5% = t.

Therefore, we are seeing a manifestation of the usual thermodynamic relation-

ship n = -3y/20 on grounds of covariance alone. With a constitutive



assumption here, this may be derived.’

In other words, standard balance assumptions concerning a single motion in

all possible geometries may be used in place of assumptions concerning all

conceivable motions in a fixed Euclidean geometry, to derive the thermo-

dynanic relations.
Finally, we notice that in the approach using covariance, we do not need
to postulate the Clausius-Duhem inequality (not everyone is willing to do so)

but only that the entropy production

=on - &0 ivid
Y = PN e‘d“"-e)

lel—{p(néw'z) - td + %(q.ve)}

satisfies a covariance assumption. (We thank M. Gurtin for pointing this

out.)

3 CONSTITUTIVE THEGRY

We shall begin by reviewing the standard approach to constitutive theory
following Truesdell and Noll [2481] and Gurtin 11071, At first we stick to
thermoelastic solids for simplicity, i.e., we shall ignore rate and memory
effects for the moment. Following this we shall mention an alternative
approach using the covariance ideas from the preceding section.

One of our main goals is to explain how to formulate material frame in-
difference (MF1) in a covariant way. Our approach is entirely equivalent to
the usual one in Euclidean space, but it is formulated in a way which makes
sense on any manifold and does not refer to rigid motions.  This complements

our covariant version of the Green-Rivlin argument given in Section 2.

fAs earlier, rate of memory effects require a more general assumption on the
transformation law of t.
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By allowing dependence on the metric we get a more symmetric relationship
between the material and spatial pictures, as shown in Figure 3. This leads
to a better understanding of the relationship between spatial covariance and

material symmetries, a topic taken up again from a Hamiltonian point of view

in Sections 9 and 10.
Finally, we summarize some of the important definitions and relationships

concerning the elasticity tensor for later use.

N
deformation
[
N o* b

metric G c left Cauchy

o b Green tensor
right Cauchy € = g metric
Green tensor b 0d”!
material ¥(C,G,0) ¥(c,9,08) spatial free
free enerqgy
energy
material symmetry A:M <M LN =N spatial symmetry

preserves ¥ preserves ¢

fig. 3.
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¢

whsbitulive theory gives functional ftorm to the stress tensor, tree
energy and heat fiux vector in terms of the motion and temperature (or the
motion and entropy). Such functional forms are needed not only to dis-
tinguish broad classes of materials or to single out specific ones, but to
make the equations of motion formally well posed (in the naive sense that we
have as many equations as unkrowns).

We begin with the traditional approach (trivially placed in a manifold
context) with everything done in the material picture. From the previous

section, we have:

(i) 0o = 0 (conservation of mass)

v
(1) oegp = DIV(PET) + 0B (balance of momentun)

T

(iii) P=? {symmetry; balance of moment of momentum)

{iv) p,%% + DIV g = poR + g:g {balance of energy)

B N _ on.l
(v} PoNzF + 33 - P:D + £(Q,GRADO) <0

(reduced dissipation inequality)}.

These equations are formally 111 posed in the sense that there are not
engugh equations to determine the evolution of the system. The situation is
analogous to Newton's second law mx = F; one cannot solve this without
saying how F depends on x and X. Doing so is tantamount to specifying
the particular system under study.

Often, one regards the motion &(t,X) and the temperature O(t,X) as the
unknowns and attempts to solve for them from equations (ii}, (iv) and their
initial (Cauchy) data.

If 4 1is known and p, is given, (i) determines o,

so we can eliminate condition (i). We often regard B and R as given
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externally. lhus, 1f we are going to determine ¢ 3RO vy, we musl speLily

P, Q and E as functions of ¢ and O. Since E is given by
E =9 + N, wemight alse ask for N and ¥ to be functions of ¢ and O.
0f course, (iii) and (v} are required to hold. In the traditional approach
the reduced dissipation inequality and the concept of material frame in-
difference play a central role.

If we eliminate rate and memory effects for simplicity, a (thermo-elastic)

constitutive function for, say, P, the second Piola-Kirchhoff stress tensor,

is a mapping
Prax8— S3{N),

where x 1{s the space of configurations é:M — N, & is the space of

temperature fields; i.e., of positive functions o:M — R, and S;(M) is
the space of symmetric two-tensor fields on M. It is tacitly assumed that
in appropriate function space topologies, P is a differentiable function in
the Fréchet sense.

The second Piola-Kirchhoff stress tensor associated with a motion ¢(t.X)

and a temperature field ©(t,X) is then

P(t.X) = P(8,,0,)(X).

Constitutive functions for Q, N ard ¥ are defined similarly. For
instance, we have
FrAx®— F(M),
where (M)

{s the space of scalar functions on M.

Definition A constitutive function for thermo-elasticity, say



EITh

Frxx8— 7 (M)

is called local if for any open set VCHM and 3, 42 €EX with &) = ¢

on U and 0y, 0; €& with 8, =02 on U, we have
9(61401)(X) = ¥(92,0:)(X)

for 311 X €U,

Notice that if ¥ depends on the point values of ¢ and O and their
derivatives up to order, say, k, then ¥ s local. This is merely because
knowledge of a mapping on an open set entails a knowledge of all its
derivatives on that set. A % of this form is called a (non-linear)

differential operator.

While it is trivial that a differential operator is local, the converse is
not so elementary. For linear operators, this is due to Peetre(Math. Scand.
7(1959)211-218). For non-linear operators, it was proved, under some annoying
technical assumptions (namely that the Vinearizations are local - and hence
are differential cperators - of bounded order) by Dombrowski (Nachr. Akad.
Wiss. Gott. K). II {1966)19-43). A satisfactory general theorem is not yet
known, but it seems plausible, perhaps using methods of Terng 12381,

Fortunately, a basic observation of Gurtin {107, given below, enables us
to bypass this point for most considerations.

The idea of using locality as a basic postulate is due to Noll {201 1.

It must be emphasized that one may wish to add on nonlocal constraints, such

25 incompressibility (See Section 10}.

First Axiom of Constitutive Theory Constitutive functions for thermo-

elasticity are assumed to be local.

We next invoke the entropy production inequality in a rather strong way.
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flamely we assume it holds for all (regular) motfons of the body. 1he
momentum balance and energy balance are not taken into account, because any
motion is consistent with them for a suitable choice of body force 8 and
heat source R, i.e., balance of momentum and energy define what B and R
have to be. This is not unreascnable since we are supposed to be able to

allow any choice of B and R.

Second Axiom of Constitutive Theory For any (regular) motion of M,

constitutive functions for thermo-elasticity are assumed to satisfy the

entropy production inequality:

poliZ+ &) - ?:g_':+%<6,sme) < 0.
Theorem (Coleman and Holl {56])  Suppose the axioms of locality and entropy
production hold.  Then ¥ depends only on the variables X, F and O.

Moreover, we have

fi=-3 and T2 ool feey 10 20 2 gab
aF°,

and the entropy production inequality reduces to
{Q, GRADO) < 0.

Proof. {Gurtin [ 107}) MWrite

3" - ‘.‘_'
T2 D7V + Dgi-o,

o

by the chain rule. Here, D¢3 is the linearization of ¥ in the Fréchet
sense'($ depends on the function ¢ and D¢§ may be a differential
operator). Thus the entropy production inequality reads
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oo(f6 + DF0) + (a0, ¥V - T:F) + (0, GRADO) < 0.
Since this holds for all processes, the first two terms vanish identically.
For instance, fixing V, 0, ¢, f at an instant, we can choose 0
arbitrarily, If N+ Do$ were not zero, the inequality could be violated
by choosing © appropriately; for example, by replacing 6 by 0® where
a« 1is a constant of arbitrary sign.

Thus we have, identically,

5+ 058 = 0,
and

poDQW'V = T:F.

Consider the second equality, and fix X €M and ©. Llet ¢ and ¢, be

two configurations with Fo(X) = Fi(X). Let (ina chart on N)
S(t,¥) = do(¥) + t(s:{¥) - ¢o(Y)) define ¢ for Y near X (and arbitrary
outside a neighborhood of X).

and so ?(x) = 0.

Then F{t,X) = F¢{X) is constant in time,

Thus, from the second equality,

L 0u(0)70,.0)(X) = a(XNDFVI(X) = T:F(X) = 0,
and so

polX)¥(60:0)(X) = po(X)¥(¢1,0)(X).

Thus, § can depend on ¢ only through the pointwise values of F.
Similarly, it can depend only on the pointwise values of 0, so the theorem
follows, O
Notice that locality is needed so that we can use the formula for (t,Y)
{which may be regular only for Y near X) only near X and get an answer
independent of how ¢ may be extended to a global regular configuration.
Another noteworthy remark is that the relationship T oa(a\;'laF)-gn can
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¢

be derived from the first law (energy balance} if only the tirst axiom of
constitutive theory is assumed and ¥ is a function of X, F and O.
We cannot conclude anything about the dependence of 6 on ¢4 and O.
It could conceivably depend on mény derivatives. It is usually assumed (in
an apparently ad hoc manner) that ﬁ depends on X and the point values of
F, © and GRADO. (A “grade (1,1)" material.)

Two standard consequences of the above theorem follow:

Proposition Q vanishes when its argument GRAD®@ vanishes.

Proof. Fixing all other arguments, let f(a) = {Q(x GRADO), GRAD®) . Thus

of{a) <0, so f changes sign at a = 0. Since f 1is continuous,
£(0) = 0. Thus (Q(0), GRAD®) =0, so Q(0) =0. O

Thus for GRADO small, by Taylor's Theorem, ﬁ is well approximated by
a matrix which is negative semi-definite times GRADO. More precisely,

again fixing all arguments but GRAD G,

G(GRADO) = A-GRADO,

where
A= W"a GRAD 0)d
=3 5 (s )yds

by the fundamental theorem of calculus. The inegquality (6.6RADB> <0

means A is negative semi-definite, i.e., dissipative, If A were assumed

constant one would recover the Fourier law of heat conduction.

Proposition Balance of energy,
3t _ g, oF

003{* piva = T.a—tﬁfogR,

may be rewritten (on a motion and temperature field) as
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pe0Z N + DIVY = ouR.

a ~

Proof. We have E=¢+ NO, SO

=>

af

. 2
T

>

+ 0+

30
Tt
9

=l
1%

+

H2, 3L

w'w
Ladind)

5, 3N, . 230
>+ 3o+ R

82,
L%

0

i1 3

3F -~ aF a@ _ _“ N <
and 35" N and substituting 3%

On using o,%\{-:-ﬁn'{:ﬁ in the

. balance of energy, these terms cancel out. O

Example (Rigid Heat Corductor) For the rigid heat conductor we make the

assumption that the motion is fixed, say ¢ = identity, for all time. We

also assume that 5 depends only on X, @ and GRADO. Then the

evolution of © in time is determined from balance of energy, namely,

ooe-g-'g + DIV = poR.
Since N depends only on X and O, we get
[ooG%g]% = - (“0‘“)”,‘4b ooR
= Bg%]‘?lm * ‘aa%i"m + poR.

As was observed above, the matrix aﬁ‘“/aow is negative semi-definite. We
also assume the scalar function aN/a0 = -(329/30%) (= specific heat at con-
stant volume) is positive, so the equation is formally parabolic. It is the
general form of a nonlinear heat equation. MNotice, finally, that positivity
of 2?3/8% means § is a convex function of ©.

The Clausjus-Duhem inequality almost implies that the operator

0 (EA)M s monotone (see the lectures of A. Pazy in the next volume).

Even granting this, and positivity of aﬁ/ae, it is not yet known if the

full rigid heat conductor has an associated global existence and uniqueness
theorem. (cf. Tartar [237]).  As we shal) discuss in the lirear case in
Section 7, if one assumes that the equations are wel) posed (in the sense of
defining a continuous dynamical system on an appropriate space - See Section
9) then positivity of 3N/20 will probably follow. Correspondingly, for
well posedness of the equations of motion for ¢, an assumption of strong

ellipticity is needed. This will be discussed in due course.

Now we turn to the final constitutive axiom, namely material frame in-

difference.

The Third Axiom of Constitutive Theory {Material Frame Indifference)f Let

\;' be a thermo-elastic constitutive function satisfying the above axioms, so
that ¢ is a function of X, {and the point values of) F and 0. Assume
that if &N — N is a regular map taking x to X and T is an

isometry from TXN to Tx.N. then
¥(X,F,0) = ¥(X,F' ,0),

where F:T,M — TN, F':TXM — TN and F = TE-F. (See Fig. 4.)

Stated loosely, this axiom means that our comstitutive functions are
jnvariant under rotations of the ambient space N in which our body moves.

One sometimes says that T§ ‘rotates observer frames'.

1'Nhile thjs axiom is widely accepted, some objections have been raised.
See, for instance, Muller [192]. (His objections rely on relativistic
thermal effects, a topic which itself is objectionable!).



Fig. 4.

Theorem Let ¥ satisfy the above axioms. Then ¥ 1is a function only of

X, C and ©. By abuse of notation we shall write

¥(X,C,0).

Remarks 1. Equally well, we could say ¥ is a function only of X, 0 and
the right stretch tensor U = C!.

2. By abuse of notation we shall write C for both € and C°,
f.e., C with its indices raised by G, when there is littie danger of

confusion.

T
Proof. Suppose Fy:TyM — T, N and FyiT — T, N and Fif, = FIFa,

i.e., F; and F, give rise to the same C tensor. We have to show that

F(X,F148) = $(X,F2,8).

Then Q(X.C.e) will be well defined as this common value.

Choose a regularmap E:N — N with £(x,) = x, and with Tg(x,)
arbitrary. In particular, we can choose Tg(x,) such that Te(xy)F1 = F,
since F; and F, are assumed invertible. The assumption FIF, = FIF;

implies that Tg(x,} 1is an isometry. Indeed,
(Tp{x1}oFre¥y, Te{x1)oF2o¥2) = (FyeV,, Fa-V,)
= (FIFVy, V2)
= (FIFv, V2)

=(F|V|. F1V2) . [m]

The last part of the proof can also be seen in coordinates as follows:

_ a_b _ el
Cag = 9abF1aF1p (€ = FiFy)
= 9 FaF (FIFy = FIF2)
a b
3 ~.C 3 d
< g, 5 F F (TV-F, = Fy)
abaxc lAax 1B ! ?

c.,.d
Thus, comparing the first and third lines, 9ap ° 9cd3§s§55 {evaluated
X" ax

at xy} so £ is an isometry, i.e., leaves the metric tensor %ap

invariant.

If we write the axiom of entropy production in temms of P and C by

writing

-
2%
o
©
o
o

o
©
1%

we find, instead of T = Do%;'gn- the important identity

pP= ZOQSW.



¢

Remark  One can allow the constitutive functions to depend on derivatives of
higher order than F and still be consistent with the entropy production in-
equality provided one postulates the existence of higher order stresses.
This is the 'multipolar’ or ‘higher order’ theory. (See Green and Riviin
(102].)

If we introduce the metric g on N as a variable in ¢, then the

equation

B= 2003

is equivalent to

t= 29%:-.

since ¢(¢,9,8) = ¥(6,C,0). Indeed, by the chain rule,

3937 2(6,C,0) = gga;; ¥(6,0%9.0)
= Ra:_a %(@'Q)AB
= 33:8 F"Al-'bB

. = b, %%.
Therefore,
te o
TR
= 2 %%.
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Thus we see that cur formula for the Cauchy stress, originaily gerived
from a covariance assumption on the energy balance is also a deduction from
constitutive theory. (The original derivation did not make any con-
stitutive assumptions other than the dependence on the metric g on our
space, which has nothing to do with any constitutive assumptions on the
motion.)

Before proceeding to the covariant version of material frame indifference,
we recall why 3y/3g (with variables g, 8..... C suppressed) is the same
as 2e/3g (with variables g, n), assuming n = -(3y/36). Namely, the

relationship between ¢ and e js exactly the Legendre transform {up to

signs):
e =y +on.

On differentiating with respect to g with n held fixed:

e _ [ap, 3y 28] , 36

5’6’[39"3656 39
and the last two terms cancel. There is a lot of geemetry behind the
Legendre transform, as we know from classical mechanics (see, e.g. Abraham
and Marsden [11).  This geometry, naturally, can be used in thermodynamics
as well (see, e.g., Hermann {1221 and Souriau [233]).

Let us start fresh and work spatially. For simplicity, we work with
elasticity, the generalization to thermoelasticity being obvious. Let us
make the constitutive assumption that, besides depending on the metric g,
as discussed in Section 2, the internal energy e also depends on the motion
o and does so locally. From covariance of energy balance we have already
seen that e can depend only on the point values of ¢ and that

t= 20{3e/3g). Let E(¢.g) = E(Q.g)oo“ (we suppress G in E).
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As noted above, from the first law we can already conclude that £ depends

only on ¢ through F.

Covariant Axiom of Material Frame [ndifference For any regular map

E:N —N (i.e., a superposed configuration), we have

E(£°¢,9) = E(¢,E%g).
Theorem The covariant axiom of MFI holds if and only if E depends on
¢ only through the point values of C.

The idea here is that the presence of the argument g and our freedom to

change the metric means we are not confined to rigid motions {isemetries).

Proof.  Suppose E(¢.g) = E(C) (usual abuse of notation). Then

E(£°0,9) = E((£20)*g)

E(o*-£%g)

E(s,£%)

so the covariant MFI axiom is necessary. It is sufficient, for suppose
$1%g = ¢;*g at X, Then letting £ = ¢,°4,"', we see that £*g =g at

X = $,{X). Hence,

E(8149)(X) = E(E2¢7. g)(X)

E(82,6%9) (X)

L

£(62.9)(X),

and so E depends only on ¢*a(X). O

As we have seen, a fully covariant constitutive theory can be developed
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for elasticity without reference to thermodynamics. For thermo-elasticity,
a full constitutive theory, including the thermodynamic relation

n = -(3u/36) depends only on ideas of covariance of energy balance,
covariant MFI and on covariance of entropy production. The Clausius-
Duhem inequality is not needed.

Most workers in continuum mechanics seem to agree that the foundations of
the subject can be looked at in many different ways. We illustrate this by
looking at the covariant form of MFI from another viewpoint suggested
by M. Gurtin. This will also serve to shed light on what we have already
done. Here we keep the metric g on N fixed and revert to isometries
but we look at g in all possible coordinate charts.

We let X, € M. A local deformation is a local diffeomorphism ¢ of a
neighborhcod N of X onto a neighborhoed of Xo such that $(X,) = Xo.
A coordinate map x {is a local diffeomorphism of a neighborhood of X, onto

a neighborhood of 0 € ¥ with x(X,) = 0. Let

& = the set of local deformations,
X = the set of coordinate maps.
& = {xo8]6 € ¢} (independent of the choice of x € X).

We assume given a function E:¢ —R; E(#) is the internal energy at yx,
when the material around x, s subjected to ¢. Choose y €I and con-

sider the map g£(+.x) : #y—R defined by g(A.x) = E(x"'e}), i.e.,
alxedx) = E(e). (1)

g(-.x) is the internal energy relative to x. A trivial consequence of (1)

is the coordinate covariance property
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8(X°¢lx) 8 8(“°¢|u)
for x.w€X, ¢ €¢. Equivalently,
&lxovodixed) = alxo0,x).

As above, we can define E to be frame-indifferent if and only if,
E(¢) = E{wed) for al1 $E€ ¢ and w a spatial isometry at Xo. The

following is readily.verified.

.

S
=<

N

fn

Fig. 5.

Proposition The following are equivalent:

(i) E {is frame-indifferent,

(11) glxewedix) = E{xod,x) for all x € X, ¢ €%, w an isometry at X,

(1i1) g(*ox) = 8{-,xow) for 211 x €X, v an isometry at X,.

Let us call E gsimple if E(¢) = E(a) whenever D&(X,) = Da(X,). Of
course, we saw above that this can be deduced from thermodynamic assumptions.
Arguing as we did in the theorem following the second axiom of constitutive

theory, we may prove:

A2

Proposition The following are equivalent:
{i) & is simple,
(31} E{r,+) = E{x,*) whenever DA{Xo) = Dx{Xo),
(iii) E(*,x) = E{*,u) whenever Dyx{Xo) = Du{X,)-

Then we can conclude, by arguments like those given before:
Theorem E is simple and frame indifferent if and only if E has the form

EQux) = E(Cy.9,)

where C = ¢*g and Gys cx are the representations of the fixed metric g
and the tensor € in the coordinate chart x.
From the present local representation point of view then, we can write
=“*
E(¢) = E(¢fg,.9,)
vihere ¢x = xepox~! 1is the local representative of y.

The fact that E(9) is well-defined, independent of how we represent the

metric ¢ or the deformation ¢ in coordinates y reflects the coordinate

covariance. This formulation again suggests that one cught to admit all

possible metrics as genuine variables. (It is tempting to differentiate
this relation with respect to gy in order to relate 3E/aC to aE/ag, but
we cannot do so until we allow the metric itself and not merely its local

representatives to vary.)

It is useful to compare and contrast, from the covariant point of view,
the notions of material symmetry, spatial symmetry and material frame

indifference for an elastic body.

A material symmetry at Xo € M is a regular mapping X :HM—M, A(Xs) = X,
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such that
P(X0,A%C,A%G)I(A) = ¥(Xo+C,6)

as a function of its arguments, where J(X) is the Jacobian of A. (If A
is an isometry of G, this reduces to the standard definition.) )

A spatial symmetry at x, € N is a regular mapping E:N — N,
E(xs) = xp such that

(X o£*C,E*9)(E) = F(X0,C,9)-

These are of a different character than material frame indifference. -The
. latter dealt with how the material stored energy behaves under cbserver
changes, while these symmetries reflect genuine symmetries in the material
and lead, as we shall see in Section 10, to conservation laws in the form of

differential identities.

For completeness, we now recall the standard representation theorems for

§ and P for isotropic materials.

Definition A constitutive function ¥ on an open set M Ca' {s called

isotropic if for every X, €M, and element A € 0(3) (the orthogonal group

on R*) there is a material symmetry A at X, such that DX(X,) = A.
Recall that the invariants of an invertible symretric matrix C are

defined by

Li(C) = trC, 1,{C) = detCtrC”' and 13(C) & detC.

Proposition The invariants of C are related to the coefficients in the

characteristic polynomial P(X) of C as follows:

P(A) 2 A% - I3(C)AZ + I3(C)A - Iy(C).

'

In terms of the eigenvalues Xi,X2,A3, we have

Li{C) = My + Az + Xy,
I2(C) = Xdz + Ajds + A2dy,
13(C) = A2,

(the elementary symmetric functions of A1,Az,As). Moreover, the following

formula for I; holds:

12(€) = 3 tr(C)? - tr(C?)].

This is trivial to verify by using an orthonormal basis in which C fis
diagonal, noting that I,,I»,I, are rotationally invariant.
Since Ay,hz,Ay completely determine the characteristic polynomial and

hence the invariants and vice versa, these remarks also yield:

Proposition A scalar function f of C is invariant under orthogonal

transformations if and only if § is a function of the {nvariants of C.

Thus for isotropic thermoelastic materials we can regard 7 as a function
of X, I, Ia, I3, and G. Note that the number of arguments of $ in the
C variable is thus reduced from 6 to 3.

We next compute the second Piola-Kirchhoff stress tensor in tems of this

data.

Theorem For isotropic thermo-elastic materials, the following constitutive

relation holds:

=h b

P’ = as6 +.ayC + asC?, { ¥ = with indices down)

where a;, i = 0,1,2 are scalar functions of X, the invariants of C and

1’
0, and where (C’)A = CADCDB'

}



Proof. We have P = 2p,(3%/3C). Now,
3% _ 3% ali, 2% 2l , 3 3,
T3, A A T, A

But 1h(C) = Cp6™® so AL/aC = 6, d.e., 3i/ACpg = ¢h8,

Hext we use;
Lema al,/3C = (detC)-C" = !,{C]C".

Proof. From the definition of determinant, for fixed A we have

- BCD
detC = ¢ CA;BcszcA,D

BCD _ .4 depending on whether (B,C,0) 1is an even or odd

where €
permutation of (1,2,3) and where (A1,Az2,A;) s a fixed even permutation

of {1,2,3). Thus,

F] _ _BCD
- (detc) = ¢ Ea,cCap
. BCD, AL
€ Cagla,cla,0l¢ )
= {der c)eP cAE

= (det)(c ). o

Now we can compute

3l;
T

[iacdetc] trC! 4 detcgctrc"

L

(det C)C- tr ™} + (detC) :r[%‘."c'-'

(oe + Lo e (35

Lemma  {3C"1/0C)eM = -CPeHeCTY, i.el,

()P racgy = (€Y.

oroof. Differentiate the identity C+C*' = 1d in the direction H to get

- 1o
H-C) 4 G oW 2 0,

which gives the result. O

We now note that

er(act720)® = (e,

or
tr(ac"1/ac) = -C7%,

and so
31273C = 1,{C)C™? - Iy(C)C™2.
Substitution of these formulae yields:
s 29 u, (3 ¥ Vet .3 g 2
P= 290[51-'5 + [ﬂzlz + -a-r:l:]C 'a-rzhc ).

From the Cayley-Hamilton theorem from linear algebra, C satisfies its

characteristic equation:

€} - 1,{C)C? + [(C)C - 15{C) = O.
Thus, € = gy (€ - LICIC + TalC)),
and  CF = gy A€ - L) + L0

] {{%{{%cz . Ed-h.(l?(’r')iﬂ]c . B-}% - h(C):”.

Inserting these expressions into the above formiNa for P yields the desired

conclusion.
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Next we turn our attention to the elasticity tensors; we shall use these
notions in our discussions of linearization and for the existence and unique-
ness theory.

From balance of momentum we have from Section 2
a
ooh = 058 + DIVT, i.e., pof3 + ch"b"c] = 0oB® « T2 .

If we use the constitutive hypothesis for a thermoelastic material, we can
weite T as a function 7 of X, F and ©. Then we can compute BV T

by the chain rule, as foﬂows:1
_af, o,
DIVT= Sp-%yF + olvx? + 25°7,0,

where DIVXT means the divergence of T holding the variables F and ©

constant. In coordinates,

2ha Aa 2ha
a_3T " b aT 2Aa.B Ab a ¢ aT"" 30
{0I¥ T) -TaF FBIA+ _A_ax +T g+ Ty cF A]+ =5 '—Kax .
B

where we have written out DIVXT explicitly using the formula for the

jActually there are subtleties involved here. T is a vector bundle mapping
T:& — # where & is the bundle over M whose fiber at X consists of
Vinear maps of Txn to T’(X)H direct sum the scalars (R), and F is the
bundle of two point tensors over ¢. The fiber derivative aT/aF makes
perfectly good sense, but to writea Dlvxf= tr(vxf), one has to put a cone
nection on & and ¥, compute VT and take its horizontal part. This
protess is actuvally equivalent to the version given in the text.

88

covariant derivative of a two point tensor*, and where

o2k ae® b 2 adie
BIA SR B ec i pf A

(Recall that vh. is evaluated at x = o(x)). Thus the leading tem in

DIV T, containing second derivatives of ¢ is
oif a2® _ (aFM a?“"] a2

= } .
ana axhaxB aFBB BFSA e

This leads to the following

pefinition Llet T be a constitutive function for thermo-elasticity,

depending on X, F and ©. Define the (first) elasticity temsor A by

A=

2
-

i.e., A
N2
AABab i

F B

so that A is a two-point tensor [of type [g. i]].

We shall also weite AY for A with its third index lowered, i.e., for

“Aaab and shall write AS for A symetrized on its large indices, i.e.,

(AB)a _ ABa BAa |},
A b= §[A b ? A b]’

t's s defined simitarly.

*We do not know 2 mathematics reference which gives a discussion of two point
tensors from the modern point of view. However it is a straightferward
exercise to do s0 using the same theory as for ordinary tensors (see Bishop
and Goldberg (261). Details are given in Hughes and Marsden [132]. The
correct coordinate formulae and basic ideas from which to start may be found
in Ericksen’s appendix to Truesdell and Toupin (249]).
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In order to exploit the symmetries provided by material frame indifference
and balance of moment of momentum it is also convenient to work with the

second Piola-Kirchhoff stress tensor. This leads to the following:

Definition Let P be a constitutive function depending on X, C and O,
as above. Then the tensor on M defined by

2P
C = st

is called the (second) elasticity tensor, i.e.,
A8 '
o

checo _ 2P

Notice that ¢ is a fourth order tensor on M, i.e., it is not a two
point tensor and does not depend on the configuration.

From the axiom of entropy production {which we assume), we saw that

ﬁAB s Zo.(BQIQCAB). so we get an important formula:
proposition cABCD = 2 (3’@/8C 3.} and so we have the symmetries:
fropesizie® o AB°“CD :

(ABCD _ (BACD _ cABDC _ (CORB,

We can relate D and € using the formula T = PFT, ied,
e . pBe2,.

Proposition The following formulae hold in general coordinates

(2) nABab . ZCACBDfCDFacgcb + ﬁneéab,
A Al d oA

by A8, e 2R g, ¢ P B9,
A8 _ aBA

() ATgp = A ba

@0

Yroot. We nave
A

a

a

R s R

3% aC.. ok, © P
g Cpe

Y
o«

_ gd cC
From CDE =F DF £9dc we get

ac

PE _ .d B C d ¢ .B

v 6% oF E9c * F 08 b ddc
B

B eC d B
= 6 0F e9pc * F o e9ab’

By substitution, we obtain

~Aa
2F"®  ACDE(,B cc d B sAC.a B
X - c [5 oFSene * 08 Egde + 062 6%

[--]

_ ~ACBE-C ACDB.d oAB,a
= C F b +C F 03db + PA L

On using the symmetry CACBE =2 CACEB. (a) follows. Part (b) follows by
lowering the third index and {c) follows from (b) using the symmetry

(ACBD _ (BOAC

u}
Notice especially that the tensor I is not necessarily symetric in
each pair of indices AB and ab separately, but only when both pairs are

simultaneously transposed. In three dimensions it is easy to see that the

tensors with this symmetry form {pointwise) a space of dimension 54.

However the dimension of the tensors with the symmetries of the C tensor is
only 21.  Thus for the second elasticity tensor there is less to keep track
of, in principle.

Often P or T are taken as primitive objects and are not necessarily
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assumed to be derived from a free emergy function Y. Notice that CABCD

is always symetric in AB and CD separately.
From Vainbergs' theorem proved in Section 1, (together with the observation
that the set of variables CAB is an open convex cone) we see that the

symmetry condition

cABCD - CCDAB. ah8 ABR

te., ab ba

is equivalent to the existence of a free energy function. Uhen this
condition is dropped, the theory is known as Cauchy elasticity. There are
‘physical arguments (not always agreed upon) based on thermodynamics which say
that Cauchy elasticity may be physically unreasonable. In Section 7 we
shall prove under some technical conditions that in the linear theory the
equations of Cauchy elasticity cannot be well-posed (in the semigroup sense);

i.e., well-posedness implies the aforementioned symmetry.

when the free energy (or these symmetries) is assumed to exist, the phrase
therelasticitx is sometimes used in distinction to Cauchy elasticity.

When thermal effects are ignored, i.e., when € is omitted, we are in the
case of isothermal hyper-elasticity. We shall mean this if we just say
'elasticity’ in future. In this case the free energy % coincides with the
internal energy £ and is sometimes denoted M. Thus W will be a

function of (X,C) and we will have
? oW 3
= Pogp *9 P = Zogsf N etc.

Ve sometimes speak of W as the stored energy function.

In the nonlinear theory the form possible for the elasticity tensor can be
discouragingly complex. For example for jsotropic materials the elasticity

tensor ¢ has the following component form (after a healthy computation):

CMBCD . BLD | . (cPBeCD , RBCDy 4 v, ((ct)BeC0 s MBic2)Dy

s 1o-CPBCC0 4 yoeg(c2)PBc® 4 PBien) 0y 4 ve-(c3)B(c2)eP

+ yy{GAcGBD +GBCGAD) + YO{GACCBD-+GBCC“D-+GADCBC +GEDCAC},

where Yi, ..., Ys are scalar functions of X, the invariants of C and,
if the material is thermoelastic, ©. For this reason most work on specific
problems relies on drastically simplified models (such as a Hooney-Riviin
materia1+) or the linearized theory described in Section 4.

Now we shall return to the equations of motion for a thermo-elastic
material, insert the first elasticity tensor, and formulate a couple of basic
boundary value problems. A considerable portion of our work in the ensuing
sections will be devoted to these problems.

The following notation will be convenient. The vector BI g Dlvx?.

i.e.,
=Aa
a _ 3T 2Aa B sAb a C
BI = :;?V + 7T ast Ty ch A?

js called the resultant force due to inhomogeneities. (Bl is a function of

X, F and 0).

* The equation of motion now reads

poV

poB + DIVT

af 20
po8 + A~VXF + BI &

u

This equation will be thought of as governing the evolution of the

configuration & and is coupled to the equation of energy balance which in

*See, e.g., Truesdel) and Noll [248], pp. 349-355.
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turn governs the evolution of O.
In addition to these evolution equations, some boundary conditions must be
imposed. For each of ¢ and O there are at least three types in common

use:

Definition

{1} Boundary Conditions for ¢

(a) displacement: ¢ is prescribed (equals a given displacement) on
oM, the boundary of i,
(b) traction: the tractions ® = {8,722 = NRTAa are prescribed on
M,
ar (c) mixed: ¢ s prescribed on a part 3, of 3M and (N,?) on part

3; of M where 3,N3;=@ and T, U az= M.

(1I) Boundary Conditions for O

(a) prescribed temperature: O is prescribed on 34 (Dirichlet

boundary conditions},
{b) prescribed flux: (H,ﬁ) is prescribed on 3M (Neuman boundary
conditions),
or {c) mixed: © 1is prescribed on a part 3, of 3M and (H.a) on

arother part 93, of 3M where 3;N 3 =@, 53U 3, = M.

Notice that conditions I(b) and 1i{b} are, in general, nonlinear
boundary conditions because T and Q are nonlinear functions of F and

e.

Definition 8y the initial boundary value problem for thermo-elasticity, we

mean the problem of finding 4(t,X) and O(t,X) such that

ar
»

wlar
H{3

(i) ooV = AyF + poB + By +

[

924

,5%23

(i%) o.og—':wlv& = poR,

{iii) boundary conditions (1)} and (II) hold and

{iv) ¢, V and O are given at t =0 (initial conditions) where ¥
is a given constitutive function depending on X, C and & and ﬁ. T, A,
BI are given in terms of it as above, where B, 9, R are given and ﬁ

is a given function of X, F, © and GRADO satisfying (Q,GRADO) < O.

Remark If the motions are not sufficiently differentiabie and shocks can
develop, this has to be supplemented by the entropy production inequality
(see, e.g., Lax |169]).

Definition 1f we omit O, the corresponding equation (ii}, the term
%%»%% in (1) and the boundary and initial conditions for ©, the resulting
problem for determination of ¢ is called the initial boundary value

problem for elasticity {or hyper-elasticity).

Hotice that in {ii),

afl _ afiac, 3fi 20
Poqg = Po3F 3T + Po3g 3t

2 3 ¥ 20

“Pogg 36 "2 * PoggT 3T

p 3% 30
- 350 + pugr 52

]

where DB is the rate of deformation tensor.

Definition The boundary value problem for thermo-elastostatics consists of

finding ¢ and O as functions of X alone such that

. s . a1 30 _
(i) DIVT 4 0B = AU,F ¢ poB + 8, + 5 50 = 0,

(ii) DIV = poR,
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and ({iii} boundary conditions (1) and {I1) hold.

The boundary value problem for elastostatics consists of finding a

(reguler) deformation ¢ such that {i) ard boundary conditions (1) hold.
The static problem is, of course, obtained from the dynamic one by

dropping time derivatives.

Proposition The prescribed tractions 1 = (N.?) in I{b) on BM must

satisfy the necessary condition (using Euciidean coordinates in RM):

I(H.?)dl\ R IpdeV = 0,
aM M
if the traction boundary value problem for {thermo-) elastostatics has a

(regular) solution. Similarly, the prescribed fluxes in 1I1{b) must satisfy

[m.ﬁ)dA - IpoRdV = 0.
M M

Proof. This follows at once from pIvT + poB = 0 by integration over M
and use of Gauss' theorem. O

We shall have a good deal more to say about conditions of this type in
Section 8 and also from the variational viewpoint in Section 10.

Yhile all of the above may also be formulated in terms of the spatial
picture, in elasticity the material (Lagrangian) picture is found most useful
for studying boundary value problems., On the other hand, since we shall
need the spatial forms of the elasticity tensors A and C in our

discussion of linearization, it is convenient to define them here.

Definition The spatial elasticity tensors a and 2¢ are the push-

forwards or Piola transforms of the tensors A and (. In coordinates,

PRy ¥ N

Proposition

abe _ 1.a b ,ABC
a2 IR e

abed _ 1 -2 gb ¢ od ABCD
[M --zIFAFBFCFDc .

The following relations come from the corresponding material results and
the Piola identity.
The following hold:

abed
(a) aabcd - tabécd ‘e eged'

(b} 2 ard c have these symetries:

a3bed _ jcdab

cabed _ cbacd  abde | codab

{c) if Ua8 is a two-point tensor field over ¢, then

ABc ,d abe . d
e 0] = afsthe )
o], = o as),

where udb = (F")BbudB is the push-forward of U.

As discussed in Sections 2 and 3, we can regard t as a function of x
and ¢ f(and O if temperatures are involved), just as P is a function of

X and €. Then the equations of motion in the spatial picture,

ga = divt+ob,

become, b
a
nab . badeFdBia + 3ta . nbb.
ax
where b is the tensor given by
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abecd

We caution the reader that 2¢ is not 3tab/3cab nor is tab given by

zc(ao/acab) (it is Zo(swlsgab) as in Sections 2 and 3),
we conclude this section with a remark on incompressible elasticity.
tiere one imposes the constraint that ¢ be volume preserving, i.e., J=1.

{For instance such a condition is often imposed on rubber.) This condition

is perhaps best understood in terms of Hamiltonian systems with constraints,

and we discuss this point of view in Section 10. For now we merely remark

- that this condition introduces a Lagrange multiplier into the equations in

the usual way. We replace

t by t- pg“, i.e.,

(3 by g3 pgad

where p is an unknown function, the pressure, to be determined by the con-
dition of incompressibility. In terms of the first Piola-Kirchhoff tensor
T, we replace T from our constitutive theory by

- opF?

where P is a funmction of (t,x) to be determined by J=1. We emphasize
that in an initial boundary value problem, p becomes unknown and depends on
4 in a2 non-local way, as in fluid mechanics. (See, e.g., Hughes and

Marsden [133]  and references therein.)

4 LINEARIZATION

Linéarization provides a key link between the linear and nonlinear theories
of elasticity., Our first goal in this section is to linearize the nonlinear
equations to obtain the equations of linear elastigity,
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{The linear theory

can, of course, also be developed separately, as in Gurtin {106]). in doing
50, we shall assume the reader is familiar with calculus in Banach spaces
(see, for instance, Dieudonné { 681), although we shall review the notation.

Often, linearization of the equations of continuum mechanics is done in
Euclidean coordinates and then, at the end, partial derivatives are replaced
by covariant derivatives. This is unsatisfactory and dangerous.
Surprisingly it is not entirely trivial to give a covariant 1inearization
procedure. One of our first goals is to do so.

Following this we shall describe how the implicit function thecrem can be
used to obtain local solutions to monlinear problems from a theorem about the
linearized problem. This will be applied in Section 8 to elasticity, where
theorems of Stoppelli and Van Buren will be proved.

One of the precautions to be stressed is that perfectly sound nonlinear
theories can have a pathological linearization in the sense that solutions of
the linearized equations need not be first order approximations of solutions
to the nonlinear equations. As was discovered by Signorini 228, 2291 in
1930, this occurs in the elastostatics traction probiem in the presence of an
axis of equilibrium, and will be called a linearization instability. We
shall briefly discuss this problem in Section 11. A main result, due to
Stoppelli, describing the set of solutions near equilibrium, can be obtained
and extended using ideas of generic bifurcation theory (see Chow, Hale and

Mallet-Paret {47 | and Hale [ 1181).}

“Another equivalent way of stating linearization instability is this: after
any necessary scalings, a perturbation series may have the property that at

(n+l}th order, corrections to nth order may be necessary. If such

-corrections stop after finite order, we say that the singularity is finitely

determined,
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Linearization instabilities occur in nonlinear theories other than
elasticity. For cxample, in general relativity a linearization instability
occurs at a spacetime which has symmetries {which is analogous in elasticity
to the case when the loads have an 2xis of equilibrium), - See Fischer and
Marsden {87]).

In order to establish our notation, we recall the definition of Fréchet

differentiability.
Definition Llet X and Y be Banach spaces, U C X be open and

f:UCYX — ¥. Wesay f is differentiable at X, €1 if there is a

e e .

“bounded 1inear operator
DF(xe) € B(X,Y),

{the set of all bounded linear operators from X to Y) such that for each

>0 there is a & >0 such that ﬂhl& < § implies
Nf(xo +h) - f(xe) - Df(xo)-hlly < s:llhllx .

(This uniquely determines Of(xo)).

We say that f s ¢! if it is differentiable at each point of U and
1f x — Df{x) is continuous from U to B(X,¥) with the norm topology.

In Euclidean spaces, O0f(xo) is the linear map whose matrix in the
standard bases is the matrix of partia) derivatives of f.

The concept "f is of class ¢™, 0=r <o is defined inductively.
For example, f is C? if it is C' and x — DAf(x) € B(X.L{X,¥)), the
derivative of x — Df(x), is norm continuous. The space B(X,L(X,Y)) is
jsomorphic to B?(X,Y), the space of all continuous bilinear maps
b:XxX — Y by b= b, B{x1) * Xz = b{xa,xa). Thus 07f(x) is
usually regarded as a bilinear map of X to Y. Its value on
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{x1.%2) € XxX will be denoted DAF(x)+(X1,%2). We recall that if f is

€2, then D*f{x) is symmetric. If £ is a function of two {or more)
variables; say f:UCXyxXz — Y, the partial derivatives are denoted by
D:f and D f (or sometimes Dx;f' etc.).

The rules of elementary calculus (chain rule, Taylor's theorem, etc.,) all
carry over using essentially the same proofs.

in examples given below, the special case of the chain rule
Lo(roreu) = Df(xo)wus
€ e=0

relating Df(xo) to directional derivatives, is quite useful for computing
0f. A map for which all the directional derivatives exist {at x,)} and
comprise a bounded operator is called Giteaux differentiable (at X0},
This slightly weaker notion of differentiability is sometimes useful.

If f:UCX — Y is C' and we are trying to solve the equation
f(x) = 0 then we may write X = Xg+h and approximate f(xe+h) by the
first two terms in its Taylor expansion. This leads us to the linearized

equations.

Definition Llet F:UCKX ~ Y bea C' mapand let xo €U {not

necessarily satisfying f(xo) = 0). Then the linearization of the equations

f(x) = 0 about xo are the equations
L{xo.h) = f{xo} + Df{xa)*h = 0

for hEX.

Thus xp+h will satisfy the nonlinear equations f(x) = 0 to first

order., This is not the same as saying xp+h is, to first order, an exact
solution, For instance, let f:#® — R be given by fix,y) = x? +y%,
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and fet xp = {(0,0). Since 0f{0,0) = 0, any {h,k) satisfies the Tinear-
ized equations but is net, to first order, an exact solution of the nonlinear
equations. This trivial observation is relevant for understanding the con-
cepts of linearization stability discussed below.

Hany important maps in nonlinear analysis are defined by composition.
This occurs, in particular, in elasticity. The next theorem shows us how
to differentiate such maps. Results of this type go back at least to
Sobolev in the 1930’s (see Sobolev [231 ).  For simplicity, we work in Ck
spaces, but the same thing works in a variety of function spaces such as

wS'P spaces. {This observation is needed later.)

Theorem tet R C A" be a nice region and let X be the Banach space of
¢k mapst u:T — K" and let Y be the Banach space of ¢! maps

g:T — K, 1<k< e Let
Wl x L@ a™) — &
be C", r>k, and define
FoX — Y, Fu)(x) = H(x,u(x),Du(x)).
Then f is of class € and
(0f(u)+ v }{x) = DzH{x,u{x},Du{x))-v(x) + Os(x,u(x} JDu{x}}«Dv{x).

In components, and suppressing variables, this reads

fPrecisely, amap u:ll=sNU — o s ck when it has 2 ck extension
to an open set containing T.  The Whitney extension theorem is relevant
here.
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(of(u)-v) = “

{l”

Proof. Induction easily reduces the argument to the case r=l, kel The

vy s ——— oo 85

following computation and the finite dimensional chain rule shows that f is

Giteaux differentiable with derivative as stated in the theorem:

(Df{u)-v )(x) = a——f(u+cv){x)|

= S u(x.u(x) +ev(x), Dulx) + ebv{x})y o

A straightforward uniform continuity argument shows that
u — Df(u) € B{X,Y) {is nom continuous. The proof is now completed using

the following:

Lenma Let f:UCX — Y be 65teaux differentiable and assume

u — Df(u) € B(X,¥} is continuous. Then f is Cl.
Proof. By the fundamenta) theorem of Calculus,

1
f(uo +h) - f{uo) - Df{up)+h = [a-dxf(u., +Ah}dA = Of (ug}+h

1
. Il DF (ug + Ah) +h - DF (ug)-h 1dA.

By continuity of Df, for any ¢ >0 there is a & >0 such that
10f(u) -Df(up)ll <e if llu-uell <. Then WBhil <& implies:

PO

1
W£{ug +h} - F{us) - 0F{uo)-hll < [IlDf(uu +2h) - Df(xp)ll - Whildx < clhll. O

Since f is continuous and }inear in W, this shows that in fact f is
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C

L' a5 a tunction ot the pair (U,W}.

In order to obtain a covariant description of linearization in elasticity,
we shall need to generalize this procedure to infinite dimensional manifolds
{cf. Lang [1671).

Suppose x is a manifold, possibly infinite dimensional, and that
2:8 — x is a vector bundle over x. Let f:x — & be 2 section of

this bundle. We are interested in the nonlinear equation

f(o) = 0, ¢ €,

To form the linearized equations about a given ¢, €., we need some addi-
“tional structure. HNamely, we need to assume we have a connection on &;
j.e., we can parallel transport fibers of & along curves in X, exactly as
in Ricpannian geometry. Thus we can form the covariant derivative of f,
denoted 9f. As in the finite dimensional case, the covariant derivative is
defined as follows:

Lot 6, €x and & = m '(é,) be the fiber over 35, @ linear space. Let
Y€ T¢x be a tangent vector to x at ¢, and let it be tangent to a curve

°t € x. Then we define

d
Vf(do} ¥ = a-t—utf(ot) | t=0’
where o, : &, = w"(et) — &, is the paralle) translation map. Thus,
Uf(s,) is a linear map of T, v to &.

with this notation we are ready to define the linearized equations.

Definition The linearization of the equations f(2) = 0 at ¢, are the

equations
L(Qo.‘l) =z f(¢e) + Pf(do) Y = 0
for V€ T°° .
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In charts Vi{do) is related to Uf(¢s) V13 the 3daition or some
‘Christoffel symbol' terms. It is worth observing that if f($.} = 0, then
9f{¢e) is the same as Df{¢¢) in charts.

Now we want to apply these ideas to compute the linearized equations of
elasticity. (Thermo-elasticity, etc., may be done the same way.) For sim-
plicity we continue to work in Ck spaces although the results work in
sobolev or Holder spaces just as well.

Let x be the set of all regular l'.'k configurations ¢ :M — N. If
I = ®", then we can, on using the Euclidean structure, regard x as an open
set in a Bamach space X. Even for general N, one can show that x isa
¢® infinite dimensional :11anifuld.4r A tangent vector to & at $€X is
the tangent to a curve ¢, €x with ¢o = ¢°. i.e., to a motion. Thus, 2
tangent vector to x at & is a vector field U covering 8, from our
Somctimes, U s spoken of as an

work in Section 1; see figure 6.

an infinitesimal displacement
of a configuration & 1is a
vector field over § .

Fig. 6.

“see Palais | 2071, Ebin and Marsden | 77) and references therein. Here we
shall impose the boundary conditions of place or traction as separate
equations. However, one may wish to include some of them in the definition
of x. Then . will not be open in 3 linear space, but will still be a
manifold. This point of view is taken up in Section 10,
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infinitesimal deformation imposed on the finite deformation ¢. {See
Rivlin [ 2211.)

We shall build up the linearized equations in several steps. First of
ali, consider the association ¢ — F = T¢. Here we let & be the vector
bundle over x whose fiber at & consists of all ck" maps F:TH — TN
which cover §. There is a natural notion of parallel translation on &
obtained by pointwise paralle) translation of two point temsors F over
curves in N. (In Euclidean space this operation is Jjust ordinary trans-

lation.}

_Proposition The linearization of themap f:4 — F = T¢ at 3 is given
by
o ©
L{d, U} = F + WU,

where F s T;. In coordinates,

a 3 a ¢ |, 3y
(VU)A’U“\‘chUFA{-EK

is the covarfant derivative of the two point tensor U.
Proof. By definition,

Lo,) = F + adT"t'Ft[
t=0

where oy denotes parallel translation, and Ft = T¢t, where 4y is

tangent to U at te0; 6, = 5. At XM, o,F(X) is, by definition of

oy, the parallel transport in ¥ of rt(x) from @t{X) along the curve

the o M) to ¢ulX), d.e., for WE T (o Fy)(X)-¥ is the parallel

transport in N of the vectors Ft(x)-w € T¢t(X)N along the curve

cft) = 44(X) € R, How in coordinate charts we use the standard formula
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e

d 2 a ¢
T loy) =y U
T\t b| =0 cb

Thus 2 a
d, .t ay® USAb 4 d [ t }
gelFed il " Ve V8 * T 550 | oo

ebh L oud _ .3
= ¥ pU(F) At D

o
Proposition The linearized equations at ¢ for the map ¢ +— J = Jacobian

of ¢ are
L(¢°,V) « 3+ Jdivy
o o °o1
where J 1is the Jacobian of ¢ and v = Ve ¢™',

Proof. Since the scalars over maps form a trivial bundle, i.e., a linear
space, the definition gives
-3
L) = 3+ %J("t’, .
t=0
. L] o
where ¥ is tangent to o, a2t t=0. From Section 1, this is J+Jdivvy

where v is the corresponding spatial velocity. QO

Theorem Let . denote the space of all tk regular configurations

&:M — N, let & denote the bundle of c* ! two point tepsors F over X
as above and let T map two point tensors F pointwise to two point tensors
f(F) (perhaps of a different rank) and be ¢’y r®k. Let # denotea

bundle of ck“‘ two-point tensor fields over X containing the range of T

and let A
fiw — 73 ¢ —ToF, F=14,

r

-
Then f is C and the linearized equations at ¢ are
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8
-

° $.8, 2l
L(&,V) = ToF + 5p W
~ ®
where T = T{F), etc.

This is a covarfant version of the composition theorem given earlier. It
is proved by combining the argument given there with that for the Yingar-
jzation of themap f:6 + T¢ = F given above. v

In particular we can apply this result in the case when T is the first
Piola-Kirchhoff stress tensor (with a given constitutive dependence on F

assumed). Then we have

° 2 e °
L{6,V) = T{F} + A-WV

where, from Section 3,

o
-~ o ~fla o
Re 3L, e, MO U ih,
oF 8

L
is the elasticity tensor at ¢. Also,

(A _W)Aa - AABabvbl .
Example  The linearized equations of elastostatics; viz.,

DIVT+peB = 0,
-+ o
for 8 given' at a configuration + are

DIVT » pof + DIV(A-9V) = O,

*Strictly speaking, B “given” requires N to be a linear space to make
sense. Similarly for "prescribed” tractions 1 on 3. Given B or T
as functions of X is usually called “dead loading". If b= B80d s
given then extra terms ¢b-V musl be added to the linearized equations.

n]

e

i.e., DIVIT+ (P®G" + 2C)-F-0 )+ 0B =0,

o -~ -]
vhere T = T(F} and A is the elasticity tensor evaluated at the configur-
ation 6. Recalling that, from the Piola identity

DIV{ R -9¥) = Jdiv {@-7v) o6,

the linearized equations may be written in spatial coordinates
ob 4 div(E+ a+7v) = O,

or, equivalently,
ob + div(f+[€®6 +¢le 9v) = 0.

Notice that if S {s a stress free state in equilibrium, i.e., E = 0,

then these reduce to the equations of classical lincar elastostatics:

pb + div{c-¥v) = 0,
< a abed -
i.e., pb° + {c vcld)lb' 0,
. a abcd o
i.e., ob" + (c ecd)lb =0,

where € 4 ® }(vcI d* vdlc) = i£.g, in view of the symmetries of c.

For practice the reader may wish to show that the linearization of

FaATAb z FbATAa {balance of moment of momentum) gives symmetry of
e o
Jdtevvea-tvl

If we consider the space of motions in place of the space of
configurations we can derive in the same way the linearization of the

equations of motion.

109



Theorem The linearization of the equations of motion
pol = DIVT +p:B,
o
at a motion 6y are
o T o ]
pof{A + U - B) = DIV(T + A VU),

where U is a vector field over the motion St'

in spatial coordinates, these read
T e ] ]
p(a+u-b) = div(t! +a-vu).

-]
.The terms - poA+poB+01V ; which measure how close ;t is to an actual

solution are called the out-of-balance forces. (They arise naturally when a

nonlinear problem is solved by iteration on a linearized problem.)
The boundary conditions can be linearized by following the same

procedures. MWe can state the results as follows:

Proposition The linearization of the boundary condition of place, viz.,
4 =g given on 34

at a configuration ¢' is

L{#',0) = 4 -g+U = 0 on BH.

(For this to make sense, we assume H = #",)
The linearization of the boundary condition of traction, viz.,
(N, T) = t given on 3

1S peAlewy =1 - (W,T') on M.

Here, as usual, U is a vector field over ¢°.
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Finally, the linearization of the initial conditions (¢, = d given} and

{V¥o = ¥ given) yield

¢l ~d+Ug=0 and V5 -V U =0,

Now that we have derived the linear theory, we make a few comments to
enable the reader to connect this with the classical linear theory presented
by Gurtin [106] .

We can summarize what we have done by saying that if we linearize about a

stress free stationary undeformed state, the equations of motion are
pu = pb + div(ec-Vu).

The state ¢! being undeformed means that ¢! = id and hence there is no
difference between spatial and material coordinates.
The linearization of the Lagrangian strain temsor, i.e., E = }{C-G)

yields the infinitesimal strain tensor

e = i‘cugi
i.e.,

eap = MUy p* Vpya)-
He also set

= o ab _ _abcd

s = WU or s =C ucld N
i.e.,

s:ce  or 5202 80CY

cd’

and call s the linearized stress tensor. The fact that s depends only

on e is the infinitesimal analogue of objectivity or material frame

indifference in the finite theory. As in the finite theory, symetry of ¢
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is eyuivalient to the existence of a stored energy function. tlere it is

given by

€ = lec-e
abed
= iyt ey

and

as in the finite theory.

In the isotropic case (for a detailed study of more general symmetries,
see Gurtin's article), we saw in Section 3 that the internal energy function
was a function only of the invariants of C. We worked out P and € in
that case. For isotropic linear elasticity we similarly conclude that ¢
depends only on the invariants of e. Since s is linear in e, the

stress strain relationship must have the form
s = AMtre)g” + 2ue,

for constants A and u. (This follows from our earlier formula relating

P and ¥ in the isotropic case, after linearization.) The corresponding

¢ may therefore be taken to be
a A 2
c = uece + y{tre)’.

Thus, in this case, the elasticity tensor is determined by the two constants

A and u, called the Lamé moduli. Explicitly,

cabed | Ag“bng . zugacgbd.

Hote that the mean stress is
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(1/30trs = (X +(2/3u)divuy,

Thus, one calls k = (3x+2u)/3 the modulus of compression and 1/k the com-

pressibility.

Other constants of note are

g = p{3x+2u)/{2+u) {Young's modulus),
and

v = Af2{u+)h) (Poisson’s ratio).

These constants arise by considering the e corresponding to various simple
types of s. For detajls of these and other constants we refer to Gurtin's
article and the classical texts.

We shall, for the remainder of this section, discuss in general terms the
relationship between the linearized and nonlinear theories. After we have
developed the necessary tools, we shall apply these ideas to elasticity in
Sections 8 and 11.

First of all, if a linearized theory has an existence and unigueness
theorem associated with it, we can conclude that the nonlinear problem has
unique solutions for nearby data., That this is the case is the content of
the inverse function theorem, whose statement we now recall (see, e.g.,

Dieudonné [ 68] for the proof).

Theorem {Inverse Function Theorem) Let X,Y be Banach spaces, U CX

openand f:UCX — ¥ of class €', r>1. Llet x, €U and assume
Bf{xc) s a linear isomorphism of X onto Y.

Then there exists (open) neighborhcods U, of x, and VY. of f{x,)
such that f maps U, bijectively (1-1 and onto) te V; and has a ¢’

inverse ' :V¥; — U,

As in advanced calculus, we can derive from this, the implicit function
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theorem. The idea of using this result {or something equivalent to it) in
nonlinear partial differential equations is an old one, going back at least
to Bamach himself.  (See, e.g., Morrey [191],86.3, and Fischer and Marsden
(87] for some applications.)

In elasticity these results may be applied as follows. Consider the
displacement problem* for elastostatics and suppose 3 is a solution which
is, say, stress free. Thus, 5 satisfies an equation of the form f(;) =0
where f is a map including the equations for elastostatics and the boundary
conditions. If the loads b and boundary conditions d are small and if
- the linearized problem has unique solutions, the inverse function theorem
guarantees that f{$) = {b,d) has unigue solutions. This is, basically,
the method used by Stoppelli 1235] in his analysis of the displacement and
traction problems. e return to these in Sections 8 and 11.

Globally, we do not expect solutions to the displacement problem to be
unique. That is, for large displacements d on the boundary and/or large
forces b we expect non-uniqueness due to buckling, i.e., bifurcations.
For situations or regions in which one may have uniqueness, the continuity

method, used to prove the following result may be useful.®

Proposition  Suppose that f:X — Y is C' and that at each point

x € X, Df(x) 1is an isomorphism.

that IDF(x)H > m for all x € X.

Suppose there is a constant m >0 such

Then f is a C' diffeomorphism of X

onto Y.

Proof. First we prove f is onto. Let xo €X and yo = f(xe). Let

Tin buckling problems, Df(x) will become noninvertible at the point of
buckling; i.e., the bifurcation point.

*This comment is based on some remarks of M. Gurtin and the (1978) thesis of
S. Spector at Carnegie-Mellon University.

LR

y1 €Y. We join yo to y, with a straight line by means of the map

a{t) = tye + (1-t)y1. For small t, oft) 1lies in a neighbourhood of y,
so there is a unique p(t) in a neighbourhood of x, such that

f(o(t)) = o(t).

a{t). They are locally unique and locally exist, so just as in ordinary

Consider continuous curves emanating from x, which map to

differential equations they have a maximum domain of extendability, say
0 <t<t, and are globally unique on this domain. We want to prove that
to = 1. Indeed, it is enough to show that p(tn) converges as tn — to,
for then by local extendability, p{t) could be extended beyond to, SO &g

would have to be 1, However we have, by the chain rule,

Df{p(t})o’ () = o' (t) = Yo -¥1,
and so

o (t) = DF(o(t)) " Hyo-1)s
and hence

e’ (t) Il <adlyo-y:ll.
Thus,

olt,) ~o(t, ) <mllyg-yillt, -t 1,

S0 p(tn) is a Cauchy sequence and hence converges.

of NDF 11

(Here the uniformity
is used in a crucial way.)
Next we prove that f is one-to-one. This requires 2 topological

argument (indeed the result is not true for maps between riemannian mani-
folds, f:R — S!, x — eix being a case in point). The topological
property used is simple connectivity of F, defined below,
f(xi) = f(x2).

£(0) = f{x;) = 0, after a translation on range and target is performed.

Suppose that

Without loss of generality, we can Suppose x; = 0 and

Let 0:10,11x{0,1)] — F be defined by
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a(Mt) = Af(txa).

For each fixed 2, °A(t’ = Af{tx;) is a closed curve in F from 0 at

(Fig. 7)

Xz
X2

As ) decreases to 0 we get a shrinking family of closed orbits. (o is

t=0 to 0 at t=1.

Fig. 7.

called a homotopy.)
The argument given above in the onto part of the proof actually proves the

following path lifting property: if o(t) € Y isa C' pathin Y,

o(0) = yo and flxo) = o, there is a unique €' path po(t) in x with
o(0) = xo and f(o(t}) = o(t).

Now 1ift, uniquely, each of the paths °x(t) to obtain paths ph(t) with
py(0) = 0 and f(oy(t)) = ,(t).
p1{t) = tx2 is the unique path mapped to o{t) = f(tx2) by f.

Observe that py(1) = x2 since

However, there are neighborhoods U of x2 and V of O such that
Xx €U, f(x)=0 implies x = xz, again by loca) invertibility of f, fi.e.,
the inverse function theorem. On the other hand, OA(” is a continuous
function of A, so {A| °A(1) s x;) is a nonempty open set. Being closed
as wel1, this set must equal (0,11 by connectedness. Hence pg{l) = X2.

But po(t) = 0 since ao(t) = 0. Thus x; =0, so f is.one toone. O
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As we said in the introduction, in many situations the inverse function
theorem cannot be applied and then it becomes more difficult to determine the
structure of the space of solutions of the non-linear problm*. For this,
methods of bifurcation theory (or singularities of mappings} are useful.
Towards this end we shall now describe a few concepts from the related theory
of linearization stability {see Fischer and Marsden [87]).

Let X,Y be Banach spaces and fiuCyX— Y bea C' map. We may be
interested in solving f(x)=0 for x € X. Suppose X, €X isa given

solution: f(xo)=0. Then, the linearized equations are simply

Df(xo)+h = 0.

Definition We say f is linearization stable at xo, if for every solution

h of the linearized equations there exists a C' curve x{e) €X defined
for ¢ in some half open interval 0<e <go With x(0) = xq, f(x(c)}=0
and X' (0) = h.

Another way of putting this is: we desire to complete h toa full

solution in a perturbation expansion
x(c) = Xo + €h + €2h* 4«00y €20

Of course, this is not exactly the definition since we did not require x{(c)
to be analytic in ¢ but only C'. However this is a technical point which
can be adjusted to suit the situation.

We shall also speak of h as an infinitesimal deformation of the

equations f(x) = 0 and of a curve x{ec) of exact solutions through x, as

1'For elastodynamics (without dissipative mechanisms) the inverse function
theorem alse fails to yield local solutions to the initial value problem.
See Section 11,

17
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an actual, or finite deformation. Thus linearization stability can be
phrased this way: every infinitesimal deformation §s tangent to a finite
deformation, We also say that infinitesimal deformations which are tangent
to finite deformations are integrable. Of course, if the above definition

fails, we say f 145 linearization unstable at Xo.

Theorgn Let f:UCX — ¥ be C' and f(x,)=0. Assume Df(xo) is

surjective and its kernel splits. Then f s linearization stable at Xo»

Proof. Hrite X; = ker Bf{xs)} and X = Xy %X;. Then Daf(xo) : X2 — ¥
is an isomorphism. Thus, by the implicit function theorem, near x,, the

© equation
f(XI.XQ) =0

can be solved for a €' function x, = g{x1). Let Xo = {Xo1sXez). Thus
g(xe1) = xo2 and by implicit differentiation,

D;f(X“.ng) + Dgf(Xo:,Xuz)"Dg(Xn) = 0.

Thus, Dg(xe;) s zero on X,.

Let
x{e} = (xey +ch, g{xe; +ch)),

which makes sense since he X . Clearly x(c) isa €' curve and

x(0) = x5. Also
X (0) e (hIDQ(XQI)'h) 2 (h-o) = h

since Dg(xey)h=0. QO
If £ is ¢" or amalytic, so is x(c). However, see example (c) below.

While the conditions of this Theorem are sufficient they are not always
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necessary.  However, in some important cases they can be shown also to he

necessary*.
Let us now consider three simple examples to clarify the sort of things

that can happen (see Fig. 8).
Y Y

L0
-~ o)

{a} {b)

Fig. 8.
txamples (a) tet f:R? — R, S:‘(x,y) = x{x? +y%). Then

£71{0) = {(x,y)) f(x,y) = 0} {is the y-axis and Df(0,0) = 0.
f is linearization unstable at (0,0). Indeed, a vector {hy,hz)
is integrable if and only if h = 0, i.e., is tangent to the
y-axis, although any (hy,h;) is an infinitesimal deformation of
f{x,y}=0.

{b) Let f:Rr* — R, f(x,y) = x*-y*. Again linear-
ization stability at (0,0) fails., §'(0) = {{x,y)ix = =y},

*For some conditions under which necessity holds, see Bourguignon, Ebin and
Marsden [ 32). A trivia) example showing that the conditions are not always
necessary is given by f(x,y)=({x,0), f:8° — #’. A more sophisticated

example is the scalar curvature equation on two manifolds. See Fischer and
Marsden |86 1. Other conditions under which necessity holds can be given in

terms of bifurcation theory.
t1e
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which is not a manifold. An infinitesimal deformation (hy,h2)
is integrable if and only if h = tha.

{c) Let f:R® — &, fix,y}=x?-y>. Here the origin
is again linearization unstable. The integrable directions are
along the positive y-axis. The curves of exact solutions in

the direction of (0,h2), hz > 0 are given by
{x(e)uy{e)) = (2e* ;eh}, ¢ >0.

totice that (x{c),y(c)) is C' and although not analytic in e, is,
however, analytic in Ye. This sort of phenomena is an important feature
of linearization instability {and occurs, for instance, in the traction
problem),

Next we shall derive some necessary second order conditions which must be
satisfied if an infinitesimal deformation is integrable. (For the traction
problem these become the Signorini compatibility conditions ... see Section
11.)

Theorem ({Compatability Conditions) Assume f:UCX — Y is C?,
h € kerDf{x,) and that h is integrable to a C* finite deformation,
x(¢). If 2 € Y* is orthogonal to the range of Df(x,), i.e.,
{0f(xs}eu) = 0 for 2}l u € X.T then h must satisfy
2{0%f{x3)+{h,h)) = 0.

Proof. Differentiation of f{x{c}) = 0 gives

Df{x{c})-x () = 0.

+
Another way of saying this is: & C ker{0f{xo)*). In Section 6 we shall
see how to compute this condition for concrete elliptic operators.
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On differentiating again, we have
D*f{x{e})*{x' {c)ux' (€)) + Df(x{e))"x" (€} = O.
Setting ¢ = 0:
Df(xe)+{hoh) + DF{xg)+x"(0) = 0.

Applying £ then gives the result since ¢ applied to the second term is
Zero. [n]

Likewise we can develop conditions of the third and higher order. For
instance, if & is orthogonal to the ranges of Df(x,) and D3f(xe) then

ve must have
2(D*F(xo)-(h,h,h)} = 0,

if h is to be integrable to a C' finite deformation.
In examples (a) and (b) above, the third and second order conditions
respectively pick out the directions of Jinearization stability. In example

{c), if we rescale to make f homogeneous by considering instead
F{x,¥,0) = F{¥Tn,y) = 2 -y', A>0,

then the third order condition on F yields the directions of linearization
stability. This methed of rescaling vwill recur in our description of the
traction problem in Section 11.

Conditions which are sufficient to guarantee linearization stability

involve rescaling and bifurcation theory.

5 SEMIGROUP THEORY

This section gives an account of those parts of semigroup theory relevant for

12
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hyperbolic problems and in particular for elasticity. We shall also give
some discussion of classical parabolic and hyperbolic second order equations
as well as symmetric hyperbolic systems, but the main results on elasticity
are given in Section 7.  The theory of analytic semigroups has been omitted,
since it §s not vequired for most of our applications.

For further details on semigroup theory, see Hille-Phillips | 125], Yosida
{ 262], Kato 1136] and Pazy | 211].

The basic definition of a semigroup expresses, under the mildest possible

assumptions, the idea that a linear evolution equation

%%uku,

where A is an operator in a Bamach space X, posesses, for initial data in
the domain of A, unique solutions and that the solutions vary continucusiy
in X as the initial data varies in the ¥ topology, i.c., that the
equations are well-posed.

Of course if A is a bounded operator in X, solutions are given by

. k
uft) = LR 1) T
k=0
For partial differential equations, A will in genera) be unbounded, so the

tA

problem is to make sense out of e . Instead of power series, the operator

analogue of the calcvlus formula

e* = timit (1-%7"

N =— «

will turn out to be appropriate.

pefinitions A (Co) semi-group on a Banach space X 1is a family U(t),
t >0, of bounded lincar operators of X to X such that

(i) W{t+s) = U(t)eU(s), t,s >0, (semi-group property)
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{(ii) u(0) = 1d,
(§1) U(t)x
iim U = x,
g (V=

fs t-continuous at t=0 for each x € X; i.e.,

The infinitesimal generator A of U{t) 1is the {in general unbounded)

linear operator given by

Ax = Timit HEX-X
0
on the domain D(A) where the limit in X exists.
We now deriye a number of properties of semi-groups. (Eventually we will
prove an existence and uniqueness theorem for semigroups given a generator

A.} For all these properties we assume U{t) is a given C° semigroup

with infinitesimal generator A.

1. There are constants M,8 such that Hu{t)!l < Hets. In this case we

write
A € 6(X,M,8)

and say A is the generator of a semigroup of type (M,8).

Proof. We first show that RU(t)l is bounded on some neighborhood of zero.
If not, there would be a sequence tnl 0 such that (et )l 0. But
Ut )x — x as n —e o, so U{t,) fis pointwise bounded as n — o, and
therefore by the Banach-Steinhaus thecrem (Uniform Boundedness Theorem),
EU(tn) It is bounded, which is a contradiction.

Thus for seme & > 0 there is a constant M such that (U(t)Il <M for
0<t<¢é., For t>0 arbitrary, let n be the largest integer in t/§
50 tsnd+r, 0<t<§, Then by the semigroup property,
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RU(t) 0 = NU{ns)U(T)H
< ug) U fu(s)n”
< HoM"
< n-nt/é
< we',

vhere B8 =~z~1ogr~|. (n]

2, u{t) is strongly continuousf in t, i.e., for each x €%, U(t)x is

continuous in X as a function of t€[0,%).

Proof. Llet s> 0. Then since U{t+s)x = U(s)U(xr)x we obtain from (iii)

in the definition,
Tim U{t)x = lim U{r +8)x
tis 140
U{s} 1imU(t)x
70

0

U{s)x,

so we have right continuity in t at t=s., For left continuity, write,

for 0Kt <5,
(s - T)x - U(s)xh = IU{s - ) (x ~U(x)x)ll < MeB(5~T i - uge)xn,

which tends to zero as T110. O

1>tine can show that strong continuity at t=0 can be replaced by weak
continuity at t=0 and strong continuity in t & [0, can be replaced by
strong measurability in t. See Hille-Phillips [1251.
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3. (i} U(L)D(A) € 0{A),

(1) U(t)Ax = AU(t)x

{i11) for x € D{A), aS'{u(t)-x = AU(E)X), t>0i d.e., x(t) = U(t)ex
9 o ax
proof. From HU(RU(t)x - U(E)x) = U(t) _(M}f__ﬂ

we get (i) and (ii). Me get (iii) by using the fact® that if u{t) € X has
a continuous right derivative, then wu(t) is differentiable - from the right

at t=0 and two sided if t>0. 0O

Fram (i) and (i) we see that if x € D{A") then U(t)x € p(A"). This
is often used to derive regularity results.
4, D(A) is dense in X.
proof. .Let ¢(t) bea ¢® function with compact support in (0,0, let

x € X and set
X, = l¢(t)U(t)-xdt.
(]

foting that

U(s)x¢ = E(t)u(h s)ex dt

= ]Z(r - s)U{t)xdr
]

*This follows from the corresponding real variables fact by considering
t{u(t)) for 2 € X*. See Yosida [262], p.235.
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is differentiable in s, we find that "¢ € D{A). On the other hand, given
any ¢>0 there is a ¢ ({close to the "§ function”) such that
leo-xll <¢. Indeed, choose & >0 such that NU(t)x-xQl <e¢ if

0<t<é Llet ¢ be C with compact support in (0,8), ¢ ®0 and

r}ma: = 1. Then
o 6
Iy =xil = u[o(t)(umx-x)dtu

5
< ]a(t) HU{t)x - xlidt
¢
5

< clo(t)dt =¢. D
)

This same argument in fact shows that n;_'il{)(l\") is dense in X.

5. A is a closed operator; §.e., its graph in XxX is closed.*

Proof. Let x, € B(A) and assume X, %o Ax" — ¥. Ne must show

that x € D{A) and y = Ax. By property 3,

t
U(thx, = x, + ]U(s)Axnds.
]
Since U{s)Ax, — U{s)y uniformly for s €|0,t],
t
U{t)x = x + lu(s)yds.
a

It follows that a%:“(t)* exists and equals y. 0O

+
He shall prove more than this in the proposition below, but the techniques

in 4, 5, 6 apply to certain nonli
Harsc'len'[ S l;.:p ¥ in nonlinear semigroups as well. See Chernoff and
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6. (Existence Implies Uniqueness). Suppose c{t} is a differentiable curve

in X such that c(t) € D{A) and < (t) = A(c(t}), t>0. Then

e(t) = U{t)-c(0).

proof. Fix to >0 and define h{t) = U(te - tic{t} for 0t <to.

Then for 1 small,
Ih(t+7) - R(E}I = NU(Le = t=T)c(t+7) = Ulte - t-IU(TIc(E}
< ueBLt (e 4 1) - U(T)e(0) .

However,
Lic(eem) -urle(t) = Tle(een)-c(e)l - T lu(r)e(t) - e(t) 1,

which converges, as T — 0, to Ac(t) -Ac(t) = 0. Thus, h{t) fis
differentiable for 0 <t <ty with derivative zero. By continuity,

h{ts)= limit h(t) = c(to) = limit h(t) = U(ts)c(0). (The last Vimit is
tit, tio

justified by the fact that i) i <Het5). This is the result with t re-
placed by t,. O

One also has uniqueness within the class of weak solutions {see Bal) {131
and Balakrishnan [10}}. If c(t) is a continuous curve in X and if, for
every v € D(A*}, - (i.e., (Aty, W) = (v,Aw) for all we& D{A}, where { ,}

is the pairing between X and X*y, {c(t),v} is absolutely continuous and

a‘%(c(t).v) = {c(t),A*Y) 3.e.,
t
.0, (c(t),v} = (c{O),v) + ’( c{s},A*v)ds
)
then c(t) is called a weak solution of dx/dt = Ax.
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7. If c(t) is a weak solution, them c{t) = U(t)c(D). Conversely, for

Xs € X (not necessarily in the domain of A} then c(t) = U{t)xe fs a weak

solution.

Proof. If x¢ € D{A}) then U{t)x; is a solution in D(A} and hence a
weak selution. Since U{t) is continuous and D(A) is dense, the same is

true for xp € X, 1i.e., we can pass to the limit in
t

CU(E)x, V) = X + I(U(‘r)xn.v)dt
¢
for x, € DA}, X, — % €X.
tow suppose c{t) is a weak solution. Let w(t) = c{t}-U(t)c(0).
Then w{0) = 0 and for v & D{A*),

t
{u(t),v) = J Cuft), A*vidr
[

t
= (Iw(r}dt, Aty) .
0

t
Thus, ]w(r)dt € D{A) since A is closed (property 5).
]

Here we use the fact that if A is closed then A** C A... identifying X
with a subspace of X**, (If X és reflexive, A*® = A; cf., Kato [136),

p.168.) 1t follows that z(t) = Jw(r)dt satisfies z = Az and since
€

z(0)=0, z is identically zero by property 6. O
Ball [13] also shows that if the equation x = Ax admits unique weak

solutions and A §s densely defined and closed, then A is a generator.

8, T(t) = e'wU(t) is a uniformly bounded semigroup, i.e., UT{t}H <M,

with generator (A -81).
This result, a simple verification, often enables one to reduce 3 proof to
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the case of bounded semigroups.

8. (Feller) There is an equivalent noym on X, say W-W, for which

U(t) is quasi-contractive, i.e.,

ot < etB.

(1f 8=0, we say U is contractive).
Proof. This is readily verified with

Wxi = sup He Bugt)xll. O
t=0

For instance, let X = L?(R) with the norm

WEN = ]l fxyitax + 1 [ 16(x) P
1

-] Re{-1,11
and let (U{t}f){x) = f{t+x). Then U{t) fisa C® semigroup and
Af = df/dx with domain H!(R) (absolutely continuous functions with deriva-

tives in L), Here,
Bu(t)n <.

If we form W Wi in property 9 we get the uysual L norm and a

contraction semigroup.

10! U(t) is nomm continuous at t=0 if and only if A € B{X).

Indeed, choose ¢ >0 so that BU(t) -1l <} if 0<t<g¢ and pick ¢

- €
to be a3 (" function with compact support in [0,c) and &30, ]e(t)dtﬂ.
[

00
Let J¢(x) = ]@(t)u(t)xdt and note that
]

*See Chernoff-Marsden | 39}, p.62 for a nonlinear generzlization.
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350081 =[5l + thear
(']

2 l:(r - £)0{1)xdr.
¢
But

19y - D{x)l = u]:m(umx ~x)dt
a

<3 ]:(r) fixlidt
0

3 Ixl,

50 IlJo-I!I <3 and hence J¢ is fnvertible. But then

U(t)x = a;'(J:(x - t)U{1)xd1),
St

which is differentiable in t for all x and shows A € B(X). The

converse is done by noting that etA

continupus in t. 0O

llext we give a proposition which will turn out to be a complete character-

ization of generators.

Proposition Let A€ G{X,M,5}. Then

(&3] B(A} is dense,
{ii) (2-A) 1is one to one and onto X for 2 >R and
Ry = [2-A) e B(X), (R, 15 called the resolvent),

(i) 1 -a) " s -8)® for A>e and n=1,2,...
Proof. Given x G X, let

130

= ngo(tﬂ)"/(n!) {by uniqueness) is norm

.m%.“

y = Ia"“u(t)x dt, *>8.
L]

Then

Us)y-y = ]e"nu(h*s)x dt - ¥
L]

e e‘\sle'hu('r)x dr - y
s

s
5 (exs -1)y - exsjn'“l!(t)x dt.
]
Hence y € D(Ai and Ay = Ay-x. Thus (x-A) is surjective. {Taking
A — o shows My — X which also shows D(A)} is dense.) The formula

s [:"“u(t)(x -Audt, u € D(A),

which follows fron - Se™Mu(tiu = e fu(t)(-Au shows that (r-A) is-

one to one.

Thus we have proved the Laplace transform relation

Ryx = (A ~A) My = l:'“u(t)x dét, X>8,
¢

from which it follows that

B -7 < je'“ne“dn = H/(r-8).
°

The estimate (i§i) follows from the formulae

(n-1)1{a-A) " = ]e'ntn'lu(t)x dt,
(-]
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Je""t"'ldt = (n-1)t/".
]

The second of these is proved by integration by parts and the first follows

from what we have proved together with the relation
@A = () e -m™ o
The reader may wish to check that the resolvent identity
Ry - Ru = (u-A)RXRu

.holds and that AR, — [dentity strongly as A — oo,
The Hille-Yosida theorem asserts the converse. It is, in effect, an

existence and uniqueness theorem (see property 6 above for unigueness).

Theorem Let A be an {unbounded) operator in X. Assume there are con-
stants M,8 such that
(i) (A} 1s dense,
{ii) (r-A) is one to one and onto X for A>8 and
(r-4)"" € B{x),
(iii) #H - <w(a-8)", A>8, n=1,2,...
Then A € G{X,M,8); i.e., there exists a C° semigroup of type (M,8)

whose generator is A.

Remarks 1 If (ii), (iii) hold for 1A} >p then U(t) is a group, i.e.,

is defined for all t € H, not just t=0.

2 As the proof will show, it suffices to verify (ii} and (iii} for

some sufficiently large A.

Proof. If (A-2) generates the semigroup U then A generates the
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semi-group e"B‘ut {property 8). Thus it suffices to prove the theorem for
g=0.

Rewrite (ii11) as
Mi-0A) ™I <K, a>0, n=1,...,

by taking « = 1/A. How if x € D(A),

(1-0A)'x - x = a(l -oh)"'Ax,

so {1-cA)"? — 0 strongly on D{A) and, being uniformly bounded, on X
as all. .

Let U {t) = (1 -%A)'", uniformly bounded. We show they converge or a
dense set. Write

sot

Un(t}x - Um(t)x Um(t-s)Un(s)x

520

t
s-1im jaf’;um(t - 5)U,(s)x ds
el0 ¢

t
= s-1im ’(%-:—S)A’(l -‘;—SA)“"'lu -28) " ks,
el e '

Thus, if x € O(A®) we get,

2h A2 1, 1,2
U (thx - Upft)xTl < WA 3(5 + it
Thus U,(t)x converges for x € D(A’). But

D{A?) = D({1 - A)*)

"

n

R({1-A)7%)

(1 - A)ID(R).
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how {1-A)"}:X — D(A) is bounded and maps onto B(A). Since D{A) C X
is dense, {1-A)"!'(D{A)} C D{A} is dense, i.e., D{A?) CX

Let U{t)x = :-szun(t). au(t)l < M,

is dense.

Clearly, U(0)x = x and

U{t +s) = U(t)eU(s). Since Y (t)x — U({t)x uniformly on compact t-

intervals for x € D(A?)} and this is dense, U(t)x {s t-continuous. So we
have a C° semigroup.
Let A be the generator of U{t}. We need to show that A = A. For

X € D{A),
Su () = AL - Eay e (o

Thus
t

v (E)x = x + Lu - Ay 1y (s)Ax ds,

50
t

U(t)x = x + }U(S)Ax ds,

and hence x € D(A') and A DA,
But (1-A")"! €B(X) by the previous proposition and (1-A)"' € B(X),

so they must agree. (OO

Remarks 1 In verifying the hypotheses, the possibility that M >1 is a

main difficulty. If M=1 we have a quasi-contractive semi-group and

is sufficient.
tA

verification of (iii) for n=1
2 We shall often write e for the semigroup generated by A.
For applications, there are two special versions of the Hille-Yosida

theorem vwhich are particularly convenient.

First Corollary A linear opei-ator A on X has a closure A which is the
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generator of ‘a quasi-contractive semigroup on % if and only if

(i) D(A) is dense,

(ii) for A sufficiently large {A-A) has dense range and
D(x=A)xil > (a-Blixil.

Proof. Necessity follows easily from the preceeding proposition. For

sufficiency, we use the following.

Lenma (a) Let B be a closable linear operator with a densely defined

bounded inverse B~'. Then (F) is injective, and (B)! = (877},

(b) Suppose that A is a densely defined 1inear operator such that
{A~A)! exists, is densely defined, with a bound K/x as A — =, Then

A is closable. (Hence by part (a), (A-R) fis invertible, with

(=R = (-A)7T).

Proof. {a) 8'_‘ is a bounded, everywhere-defined operator.  Suppose that

E‘Ty‘ =2 0. Wewill show that y=0. Llet y € R(8) (range of B},

Yo — ¥. Then y, =Bx,, X € D(B), and Hx N<U8'flly B — O.
Siice B is closable, we must have y=0. Thus 87 s injective and (a)
follows.

{(b) We shall first show that AR, — [ as i — <, where

R, = (r-A)"' by definitfon. By assumption, IR, | < K/h. How pick any

x € D{A). Then x = RX(A-A)x, S0 X = AR)‘x - RAAx. and
IIRA

But D(A) 1s dense and ARyl <K for all large A, so MR, — I on the

Axll <{R/XMAXD — 0 as A — e, Thus ARA — 1 strongly on D{A).

whole of X.
To prove ‘that A is closable we suppose X, € D{A}), x, — 0, and

Axn — y. He claim that y=0. Indeed, choose a sequence A, — with
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)‘nxn — 0. Then

(:\n-A)xn+y - 0.

Since HAOR,‘ I <K, we have
n

Anaknt (An-l\)xn+y| —_ 0.

So,

Anxn + AnRAny - 0,
But A x, — 0 and AnRAny ~— ¥, 50 y=0. QO

The rest of the theorem follows irmediately, since A satisfies the con-
ditions of part (b) of the lerma, and hence A satisfies the hypothesis of
the Hille-Yosida Theorem {with M=1). 3

Now we give 2 result in Hilbert space (see Lumer and Phillips {1761 for
the Banach space case. It proceeds in exactly the same way, using a duality
map in place of the inner product ). The central idea is that of a
dissipative operator and will be our main too) in subsequent sections. He
will scmetimes refer to this result as the Lumer-Phillips theorem; for
applications we shall give in later sections, it will be the most

useful,

Second Corollary Let A be a linear operator in a Hilbert space X. Then

A has a closure A which is the generator of a quasi-contractive semigroup
on X, i.e., A€G(X,1,8) if and only if,
(i) D(A) is dense in X,

(i1)

there is a B ER such that

{Ax,x} < 8(x,x} for all x € D{A},

136

c

(iii) (1 -A) has dense range for sufficiently large ).

Proof.

First suppose (i), (ii) and (iii) hold.

Then

C{A < A)x,x) > (A -8)Ix 2,

and so by Schwarz's

H(x =AYl & (A-8Mxll.

inequality

Thus A € G(X,1,8} by the preceding corollary.

Conversely, assume A € G{X,1,8).

(Ax,x) SB(x,x)  for

By property 8 we can assume

We need only show that
all x € D(A).

g=0 and U(t) is contractive. [How

Cx (0% <Hxtu(eIxl <ixi?

and therefore
(x,U{t)x -x) < 0.
Dividing by t and letting

If (Ax,x) <0,
condition that (A -A)

we say A

is onto by saying that A

t10 gives (x,Ax) <0 as desired. O

One can rephrase the

is dissipative.

(See, e.g., Pazy [211) or Pazy's notes in this valume. }

Some additional useful results, given without detailed proof are as

follows:
1. (Bounded Perturbaticns)

A+B & G(X,,8 +NBIM)

2. {Trotter-Kato Theorem)

If AeG(X,M,8) and B & B(X), then

(Kato 1136 ), p.495).

If A € G(X,M,8) and A € G{X,M,B) and for

is maximal dissipative.
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sutticiently large,
Bo-A)TE - (A-4)

strongly, then

etAn — etA

strongly, uniform on bounded t-intervals (Kato | 136}, p.502). [If B{A,)
and D(A) all have a common core Y C X, i.e., An' A are the closures of
their restrictions to ¥, and An — A strongly on Y, then

(x -An)"‘ <+ O -AY"' from the resolvent identity. |}

3. {Lax Equivalence Theorem) If A € G(X,M,8) and K. € B{X), ¢>0,

with Ko = Id, we say {Kc} is
(i} stable if ux’t‘/nn is bounded on bounded t-intervals, ns1,2,...,

(i) resolvent consistent if for A sufficiently large

(A=A = selimit (-2 -1))70,
[A31)

{iif) consistent if ag; Ke(x)y co0 = A%s X € 2 core of A,

Then etA = s-limit K:/“ uniformly on bounded t-intervals if and only if
n - O

(Kg} is stable and resolvent consistent (See, Chorin, Hughes, McCracken and
Marsden { 46 } for a proof and applications). Consistency implies resclvent

consistency (assuming stability).

4. (Trotter Product Formula) If A, 8 are generators of quasi-contractive

semigroups and € = A+B is a generator, then

et = slimit (e

n - oo

tA/netB/n)n.

138

{This is a special case of 3.)

5. {Inhomogeneous equations) Let A € G{X,M,8) and consider the following

initial value problem: Let f(t), 0<t<T, beacontinuous X-valued
function, Find x(t), 0SSt <T, with x(0) a given member of D(A),
such that
X (t) = Ax(t) + f(1). (1
If we solve {I) formally, by the variation of constants formula, we get
t
x(t) = etAx(O) + }e(t'ﬂnf(t)dr. D<St<T.
o
x(t) need not lie in D{A)}, however; but it will if f is a C' function
from [0,T] to X. Then (I) is satisfied in the classical sense (Kato

| 1361, p.486). For uniqueness, suppose y(t) is another solution of {I),

with y(0) = x{0). Let z(t) = x{t} - y{t}). Then

Z (t) = Az(t)
z{0} =0

and so z(t) =0 by property 6. Thus x(t) = y(t).

6. (Trend to Equilibrium} Let A € 6(X,1,8) and suppose there isa &é>0

such that the spectrum of (eA) lies inside the unit disc a positive

distance & from the unit circle, Then for any x € X,

emx-oo as t = &0

[If 0 <& <85, we can, via the spectral theorem, find a new nom in which

A € G(X,1,-8"),
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from which the result is trivial. (See Marsden and McCracken, {185), §2a,

and Slemrod [ 230].}  See also Hille-Phillips |125] for conditions under

which spectrum & = gSPECETUM A

e.g., the spectrum of A is discrete.
This result compiements Liapunov techniques in, for instance, Dafermos | €3], ]
The following is an interesting abstract interpolation inequality.

Example (Kato [141)) If A€ G{X,M,1} and u € D{A’}, then

TAUE < 2H(M+ 1) HulllAZull.

(For contraction semi-groups, 2M{M+1) = 4, which may be replaced by 2 in

Hilbert space.)

Rz, , one gets

From (d’/dt’)emu =@
tA t
e u= u+tAu+j(t-s)e5AA’uds.
[]

Proof .

t
from which tlAull <lull + Milull + MDAl I(t-s)ds, f.e.,
]

NAul € (1 +M) lull/t + IMUA*UTIE,

The elementary inequality at + %> 27430 then gives the resuit. O

For instance, consideration of the translation semigroup on [0,») in I.p

gives the inequality

, "
v "Lp < 4EI}JIILp!lu Ile.

We continue now with a few remarks on operator theory in Hilbert space and
its relationship to semigroup theory. The results,due to Stone and von
Reumann,are classical and may be found in any of the aformentioned references.
Recal) that a3 densly defined operator {in Hilbert space) is

symetric if A CA*,
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self_adjoint if A=A+,
essentially self adjoint if A is self adjoint.

For the first two results following, % is assumed to be a complex

Kilbert space.

1. Let A be closed and symmetric. Then A is self adjoint if and only if

A+Ml s surjective when Im: #0,

2. (Stone's Theorem) A is self adjoint if and only if JA generates a one

parameter unitary group.

[From the symmetry of A and |l (A+2)x0% >0 we get
HEA+ )%l > Limhl lxl,

and so for A real,
n(x- Al 2 Ealixl.

Thus 2 results from 1 and the Hille-Yosida Theorem.]

3. {Real Stone's Theorem) Llet A be a skew adjoint operator on a real

Hilbert space (i.e., A=-A*). Then A generates a one parameter group of

jsometries and conversely.
{This follows by an argument similar te 2.1

4. Let A be closed, symmetric and A<0, if.e., (Ax,x}<0 for all x.

Then A is self adjoint if and only if (» -A) is onto, X > 0.

5. If A is dissipative ((Ax,x) <0} and self adjoint then A generates a

contraction semigroup.
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{ This follows from 4 and the Lumer-Phillips theorem.)

Example ({Heat Equation) let N C R" be an open region with smooth

boundary,
X = La(9),
Au s v, DAY = C3(R).

where Co() are the C* functions with compact support in . Then A

generates a contraction semigroup in X.

-Proof. Obviously A {s symmetric and hence closable. Moreover, for

u € B(A),

(Au,u) = ]Au-u dx

b}
-IVu-vu dx <0,
Q

so A is dissipative. By the second corollary of the Mille-Yosida theorem,

we must show that for A >0, {X-A) has dense range, i.e., A is self

vdjoint. Suppose v € L;{R) 1s such that
({A-Au,vj =0 for all u € D(A).
Then

[( (A+8)u,vydx = 0 - for all we CS(R).
1]

At this point we must use a fact about regularity of solutions of elliptic
equations. The above states that (A+4)y = 0 in the sense of

distributions, i.e., v 1is a weak solution, Then v 1is in fact ¢” and
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v=0 on 3. (Proofs of these results are found in, for example,
Agmon | 2], Mizohata | 190} or Morrey [191) and are stated for more general

operators below.) Thus, setting u=v and integrating by parts, gives

AIl vitdx + jl gviddx = 0,
1] Q
and so v=0. Qg

More careful considerations show that A = 4 on
0{a) = {u € H{Q}lu =0 on n}.

We can generalize this example somewhat. It is useful to do so since it
involves concepts which we will need Jater. We continue to work with scalar
equations, although we wil) need to eventually work with systems.

Again let g C a" have a smooth boundary and let X = L,{R). Consider a

differential operator of order 2:

a2
fus Iag, —THo 4Dy —-3",+cu.
i, ' ax'axd i ax

where aij' bi and ¢ are smgoth functions. We can assume aij = aji.

Let D(A) = {u € H}(R)lu=0 oh 3N},

Definition The principal symbol of A is

o(xif) = Ty 00e'ed,
1
where £c . We say A is strongly elliptic if there is an ¢ >0 such
that
o{x,§) Zelgl?

for 211 x €q, CGR".
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The Dirichlet form is defined by

B(ul 101) = Ia"J(x)at“ 3uz = dx

b
i,j=1 ax’ axJ
for u,v2 € H'(R).

Thus, for u € H¥{Q), u=0.on 3R,
n

- (Au,u) = Bluu) + ij_}j[aau(n]u— dx + "I i"'— dx + [cu’dx.

Notice that since the a,. are bounded,

i
| B{ua Wz}l < Cluy "Hl“Uz “Hl ’
j.e., B is a continuous bilinear form on H = H!,

We shall need two facts about elliptic operators. {Again, see the

aformentioned references.)

1. (G3rding's Inequality) Let A be strongly elliptic. Then there are

constants ¢,d > 0 such that
B(u,u) > clulldy - diulf,, v R (@)
From this and the inequality 2ab <ea® + %b’, one deduces, equivalently,
- CAu) 2 cillulfy - dylluly
for constants c; >0, dy >0 and u € H}{Q), u=0 on 3.

2. (Lax-Milgram Theorem and Elliptic Estimates) If A >dy and f € L2{0),

there is a unique u € H3(Q), u=0 on 31 such that

v - Au=f.
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tctice that for A >dy, and By{u,v) = (v -hu,vd, By(uau} P oy IIuII’H; .
so the Lax-Hilgram theorem (see, e.g., Nirenberg 12001) can be applied to

B, - The elliptic estimates then show that the resulting weak solution lies
in H3(Q).

From these we deduce the follawing:

Thegrem Let X = £.{R) and A be as above. Then A generates a quasi-

contractive semiogroupf in X.

Proof. Clearly D{A) is dense. Also, if A >di,

CO-Aud e llullfy + (A -di) IIulI’L2
> -d:]llull’z '

so we choose B=dy. By property 2 above, {A-A) is surjective and hence

by the second corollary of the Hille-Yosida theorem, A € G(X,1,8). As

(A-A) is onte, A is automatically closed. O

The above example concerns the parabolic equation

u
if Au,

Ye can also consider the hyperbolic equation

3%
3t ° s

using semigroup methods. Here we are concerned with the operator

0 1
K =
A0

fThe semigroup is, in fact, amalytic. However most hyperbohc type
equations, such as those below. do not generate amalytic semigroups (even if
dissipation of the type occuring in elasticity is added).
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with D{A') = D{A) x H'(Q) C X = N {R) x La(n).
Then (a%v)/(9t?) = Au is equivalent to

)<l
k14 Uy Uy
Theorem Nith A as in the preceding theorem and with A’ and X as just
defined, A’ generates a quasi-contractive semigroup on X,
Proof. By Girding's inequality we can choose
2 2

B{u,u) + dllulil‘_z = Wl

to be an equivalent nom on K!(R). Then using this nomm:

(A {u,u),{u,0)) = {(0,Au),(u,0))

B(u,u) + d (u,u) + {Au,b)

. N rr3agslx)
=dlud) - I ][.Ai_]u.i‘.',d,
ij=rg ax ax?

S C(Mull? + feN?y,
for a suitable constant C. The same estimate holds for -A since u can

be replaced by -u.
The solution of (A=A )(u,d) = (f,f) is easily checked to be

u= (A?-A)'f,
U= f -,

so {A-A) fisonto for 1)1 sufficiently large. Thus, by the second
corollary to the Hille-Yosida theorem, we have the result. 0O
The wave equation can also be dealt with using the following abstract
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theorem {Weiss [253), Goldstein {961]).

Theorem Let H be a (real) Hilbert space, B a self adjoint operator on

H satisfying:
{(Bx,x) # € {X,X}

for a constant ¢ > 0. Let Bl be a positive square root of B and let

3, be the demain of 85 with the graph norm. Then the operator

0 1
A=
-8B 0
generates a one parameter group on I x3 with domain 0(B) x¥,.

tA solves the abstract wave equation (3%x)/(3t?) = -Bx.

The semigroup e
It is not hard to argue that A cannot be a generator on =3 . (Indeed

since [g 5] is bounded on ¥Hx3¥, if A were a generator, so also would be
[g g] But this equation trivially integrates and one sees it is not a
generator,}

Proof. Our condition on B means that the graph nom of 8 s equivalent

to the norm HIixIll = (ng.B§x> . Thus on ¥y x 3 we can take the Hilbert

space norm
(%) IR = ¢Bx,83%) + (y,y).

Provided that A is skew adjoint on ¥ x3(, the result would follow from
the real form of Stone's theorem. Let us first check skew syzmetry.

Let Xt.%z € DB' Yi.y2 € Jf;. Then,

«

CA(xy4%2) o (¥1a¥2)) = C({x2,-Bx3) (Y152}

(83x7.80y,) + (-Bxy,yp

"
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= {(Bxa,y1) ~ (Bxy,y2),
since x2 € D(B). Similarly we get
C(xyaXx2) WALY1,Y2)) = (xy,By2) - (Bya.x)

so A is skew symmetric.
To show A is skew adjoint, let (yi,y2) € D(A*) where A* denotes the

skew adjoint of A. This means there is (21,2:) € 3, =¥ such that
(A(x;.Xz),(.Vl .}'a)> a - ((anz).(zl .22))
for all (X1,%2) € B(B) x¥. This assertion {is equivalent to

(BYxz Blyid = - (xz,22)  for all x; € O(BY),
and

(Bxy.y2) = ¢Bix,,Biz))  for all x, € D(B).

The first statement implies Biy; € D(Bs) or y; € D{B} and the second
implies y2 € D(B}). Hence D(A') = D(A) so A is skew adjoint. D

The group generated by A can be written explicitly in terms of that
generated by C = 8} as

et « cosh(tC) (Identity) + SIUMIE)

where for example coshtC= (etc+e'tc)/2. Division by C is in terms of

the operational calculus.

Remarks 1. The condition C>0 can te relaxed if the spaces are modified
as follows. Let 8 be self adjoint and non-negative, with trivial kernel
and let 3G be the compietion of I with respect to lxMly= {Bx,x). Let
X = Jt‘u «¥ and let A{x,y) = {y,-Bx). Then the closure of A isa
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generator in X.  The argument follows the lines above {see Weiss [253)).
We sha)l prove an important converse to this result in Section 7.
2. The wave equation vy, = &u on @ CH" does pot generate 3

semigroup in WP <P s p#¥2 and n>1, See Littman [1751.

We now study the symmetric hyperbolic systems of Friedrichs [93,94].  This
type of system occurs in many problems of mathematical physics, e.g.,
Maxwell's equations; see Courant-Hilbert [581. As we shall see in Section
7 this includes the equations of classical elasticity. As Friedrichs has
shown, many nonlinear equations are aiso covered by systems of this type.
For general relativity, see Fischer and Marsden [851*. For the time-
dependent and nonlinear cases, see Dunford and Schwartz {72 and Kato {137,
139). We consider the equations in all of space for simplicity. Me
describe the general case in Section 7.

Let u(x) €a" for xeR' and consider the following initial value

problem

wu_ 2u
el = 025+ vt + )

vhere ao.aj and b are NxN matrix functions., One assumes a, and aj
are symetric and 3 is uniformly positive definite, i.e., a)(x) ¢ for
some € > 0. (This is a matrix inequality; it means (ao(x)E.£} > cllgh?
for all £ € n".) In what follows we shall take ap=id. The gemeral case
is dealt with in the same way by weighting the L norm by 2. We can
assume f =0 by our earlier remarks on inhomogeneous equations.

We make the following technical assumptions. The functions 24, b are

*In all honesty we have to admit that we do not krow how to put the equations
of nonlinear elastodynamics into symmetric hyperbolic form.
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to be of class C', uniformly bounded and with uniformly bounded first

derivatives.

Theorem tInder these assumptions, let }\min:t‘f‘,° — L,(nm.R") (C‘: denotes

H

the € functions u +#" — W' with compact support) be defined by:

m
Ayd = E ajtx):—:‘j + b{x)u(x).

tet A be the closure of %in‘ Then A generates a quasi-contractive one

parameter group in Lz(nm,uﬂ).

0
pProof. Define B . ~on o by

3

Bpin¥ © -2a—x5(aj(x)u) + b{x}u.
Formally. Bpi, is the adjoint of A... ~ on Cy. More precisely, it is

" n fermihiipd
easy to see that Am.n 2 Bmin' Let A\n“ = B;".n {In distribution language,

Amax is just Amin defined on all u for which '\ninu lies in Lz, with

derivatives in the sense of distributions).

We shall need the following,

Lemma ﬁuax is the closure of Amin'

Proof. We shall sketch out the main steps. The method is often called
that of the "Friedrichs Mollifier".

et ueD, . We have to show there is u & o such that u — u
nax

and %in“n —_— ‘\uax" € Ly,

tet o:W" — R be C with support in the unit ball, p>0 and
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x .
jp=1. Set oc(x) ’%n"(f) for ¢>0. Llet u =op *u { componentwise

convolution).

We assert that u — u as € — 0 (in Lz}. [Indeed, Ilu€|l<l|uli 50

it is enough to check this for u € Co. Then it is a standard {and easy)

argument; one obtains uniform convergence.
Now each u. is c®. Let L denote the differential operator

3
= Ya. — .
L ..aJ(x)axJ + b{x}
Then one easily computes that

s 3 - -
Lu,) = ]t-ggy—j {a(ydog(x =¥ 1 + blylo x - y)ul)éy
e fe e - ayim ocle=x))

- Ibly) ~b{x}} o (x - y)uly)dy.

The first term is just o * (I\naxu) and thus we have proved
L{p *u) - P *Apg ¥ — O as € — 0. It follows that € MLz is a

core of A.... Thatis, A, restricted to G NL,No has closure

Amax '

Let € Co(H"), w with support in a ball of radivs 2, w1 on a ball

ax

of radius 1. Let w (x) = w(x/n}. Then wu € ¢; and
an
L(“’nuc) = ulu + 1zaj(x);:5)uc.

As n — e this coaverges to Llu.. This proves the lemma. 0O

Now we shall complete the proof. Let A’ﬂnax' For u€ C‘:, we
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get, as aj is symmetric:

{Au,u) = Jf(ajall},u) + {bu,u)dx
x
da.
= Iizii-(a.u,u) -3 (-a—"—u u)+ (bu,u) ddx
ad d awd '

32,
= J-i (—j-u.u) + {bu,u)dx.
ax

Thus,

(Auu) < 81[‘“,“’6’(
‘where
3a,
81 = sup[} —Jr|+ib|].
axd
By the lemma this same inequality holds for al) u & D{A). Thus,
{A-Au,uy > (A -8 Xu,u)
from which it follows that

U(x=Al > (x-gy)ull.

Thus (A+1) has closed range if A > 8, and is one to one. To show the

range s the whole space we must show that

{(A-A)*w = 0 implies w=0.

((2~A)* = D means « is orthogona) to the range.}) But B = closure of

Bmin (defined in the proof of the lemma) equals A*. Thus (A-B)w = 0.
Rs above, we have

B -Blull > (A -8;) lNwil
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50 (A-B)w = 0 implies w=0 for A2>8;. For B = sup(8;.B2) then

A > g implies
N(r-A)"tn=1/{x-8).

Since the conditions on A are unaffected by replacing A with -A we

see that

H{A+A) P H<2/(1a1-8), Ixl>3.

Hence -A generates a quasi-contractive group. O

Provided the coefficients are smooth enough, it is not hard to argue that
A generates a semi group on HS as well as on K® = L. (H® is the
Hilbert space of functions whose derivatives of order <s are in L2.)
This follows by showing the K5 norm remains bounded under the flow on L.
{Use Gronwall's inequality).

Let us return to the wave equation to see how it can be covered by this

theorem. Consider the system:
1 ay® _ vn+1
3t " *
vt | !
N TU
" !
»
1Y
™l o . R "
at =TT N
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Here a) = [0 0 ... 0] etc., so our system is symmetric. By the preceding
0 0...1
0 0...0
¢ 1...0
theorem, it generates a group. Let U,U € By %Ly and consider the initial
data
vy, v o= %;,, covt a3 e

Then the equations for v reduce exactly to the wave equation for v, so
(u)/(3t®) = sy generates a group on H!'=xL, as before.
The final exemple in this section is a fifth order equation which occurs

in supersonic flow over a vibrating panel (see Dowel) [71)).

Example Consider small vibrations of 2 panel, as shown in Fig. 9,
Neglecting nonlinear and two dimensional effects (see Holmes and Marsden

[128) for a more general case), the equations are:

MU L2

Va4 y - +ov 4 5Tve 0,

where v(t,x) 1is the panel deflection, " = 3/3t and ' = 3/3x. Here a

is a viscoelastic structural danmping constant, o s an aerodynamic pressure,
T is an in-plane tensite load and /4T is aerodynamic damping. We assume

ea>0, 6>0, p>0.
If the edges of the plate are simply supported, we impose the boundary
conditions v=0, v' +ai"= 0 at x:=0,1.

He choose

H = {u € H2{[ 0,1 MJle=0 at «x=0,1},
and let X = HixL,.
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Fig. 9.

Let
AY - v ]
G -aol!!‘- v'll'

with D(A) = “V.G) e Hzo x Lzl v + v € K, V" +ov" =0 at x = 0,1,

vE KL, On X we choose the inner product

(v, ¥) o (W, w) ) = (v W) + (¥,0)

denotes the L: inner product.

()

We assert that A generates a contraction semigroup in X.

(- (- o3

(G" ,V") - (a{"lu + V"". G)

where
Indeed,

(V") = (a¥" + ", ")
= -a(¥" ") < 0.

flext we show that (A -A)} is onto for XA > 0. This follows the same

pattern as the previous examples.
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First of all, the range is closed; 1let Xy = (vn,\'ln) € D{A)

and suppose Yo = {A -A)(vn,in] — Y€ X. From the above estimate, and

Schwarz's inequality,
Bax, - Axnllx = Aix 0,

fron which it follows that X, converges to say x in X. Since Yo ¥,
Ax, converges as well. Thus m}n + ¥, converges in H*, so x € D{A) and
Ax = y,

Secondly, the range of A s dense. Suppose that there is a y& X
such that

({(A-A),y} =0 for all x € D(A).
Thus if x = (vy¥), y = (w,%), then

()W' = ‘rlw") = 0
and

(AV + o™ 4 V") = 0.

Set ¥ = 0; the first equation gives v =0, so w=0. The second

equation with v = 0 shows w satisfies o™= g in the weak sense, so is

smooth.  Setting v=0 and V=w then shows w=0 since ) >0, a>0,
Actually, the origin is globally attracting for A, That is, in a

suitable equivalent norm

m“ - e'St

lie x = N ¢ >0.

This is because the spectrum of A (computed by separation of variables) is

discrete and consists of eigenvalues
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s
J\j=-=’—;;.-{1i‘*}1'mr): i=1,2,...

»
with Rer, < max(- & , - 1}, (See Remark 6, Trend to Equilibrium above.)

For the general equations, observe that

el] - 0 ]
v AP 4oV o+ Jabv

is a bounded operator in X and therefore A+B generates a (° semigroup.
For p# 0, it is not simple to compute the spectrum of A+B explicitly;
however, one can do so numerically and determine thereby for which T, p, §,

a the origin is attracting. The estimates (in the spectral norm)

1etA+ By < gIBN-clt

and IV Ilf_z < Ilv"ll‘,_z/u2 give parts of this region. (The term vpS¥ can be
omitted from 8 for this as it is dissipative.) We refer to Holmes and

Marsden [ 128} and Parks [208] for further details.

6 LIKEAR HAMILTONIAN SYSTEMS

At this point we present the theory of linear Hamiltonian systems using the

semigroup theory developed in the preceding section. The nonlinear theory
will be given in Section 9. HWe shall show that classical linear elasticity
is a Hamiltonian system, but shall postpone a detailed discussion of the
existence and uniqueness theory for linear elastodynamics until the next
section, where the equations will alse be coupled to dissipative mechanisms.
The abstract theory of Hamiltonian systems presented here is useful for
seeing how elasticity fits into the general theory, and for best seeing how

Hamiltonian technigues may be applied. Even in linear elasticity the ideas
157
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can be useful, We point out an example following the definition of a linear

Hamiltonian system.

Definitions Let X be a Banach space. A linear (weak) symplectic

structure on X is a continuous bilinear map
QeXx) = R

which is
{i) skew:; {i.e., fu,v) = -p(v,u) )
and (ii) weakly non-degenerate; 1.e., f(u,v) =0 for all v€ X implies
u=0,
We often speak of X with a symplectic structure &t as a phase space.
A linear operator A:D{A) — X 1is called Hamiltonian if it is R-skew,
i.e.,

R(Mly) 2 'H(X!A.Y)

for a1l x,y € D(A).
The Hamiltonian or energy function of A is defined by

H{u) = if({Au.u), u € B{A).

A bounded Vinear map T € B(X) 1{s called a canonical transformation if it

preserves 2, i.e.,
{Tu,Tv) = R{u,v)

for all u,v € X.T

Here is an indication of how Hamiltonian ideas can be of use in under-

fln the pull-back notation of Section 1, this reads T*0 = .

)

standing elasticity (in addition to the Hamiltonian nature of the dyﬁamics).
Suppose there is a linear relationship amongst the phase variables defining
a2 linear subspace L CX. This relationship is called reciprocal if
vanishes on LxL and L is maximal with respect to the property (in finite
dimensions this means diml= QdimX).f

Let us suppose, throughout this section that A is a closed operator.

Thus D{A} becomes a Banach space if we use the graph norm:
Mullt? = BAGH® + UHull®,

Clearly, H:D{A) — R 1is 3 differentiable function and
dH{u}+v = Q{Au,v)

which uniquely determines A on its domain. Conversely, we have the

following:

Proposition Let A be a closed operator and H :0{A) — B a €! function

such that
dH{u)-v = Q(Au,v)

for all u,v € D(A}). Then A is Hamiltonian with energy H, after
modifying H by a constant.

Proof. From the above formula H is C® and

dZH{0)(u,v) = Q(Au,v).

+

'§ee R. Abraham and J. Marsden [1] for further details. For examples in
linear elasticity, see Gurtin {106), p.66,98,101,207,218 and in tinear
thermoelasticity, see Carlson {34}, p.320. :



Since this is symmetric in {u,v), A 3is @-skew, so is Hamiltonian.

Since dH{u)ev = d|iR(Au,u)})-v, H is the energy, up to a constant. [J

Examples 1. {a) Let X;,Y; be Banach spaces with Y, continuously and

densely included in X;. Let X = Y, x¥" and set Q:XxX — R,
n((Y’u)l(yla)) s E(y) - Q(F)'

Then @ is a weak symplectic form.f
{(b) If ¢ , ) is a weakly non-degenerate symmetric bilinear

formon X, and X = Yyx¥;, then
9((3!.*)»(75)3 = (X,y) - {x,¥)

is a weak symplectic form.

In example {a) we call 9 the canonical symplectic form induced on X

and in (b) we say it is the symplectic form induced by the metric.

In example (a) note that we can write
2({y.a),(7.8)) = (3.8 -3-()),

where J = [_? é]. In this case A is formally related to H by

A{y,a) = JedH{y,a}, as is readily checked.
{c) If ¥ s real Hilbert space and we let I = JG w3 be
its complexification then the canonical symplectic form induced on I in (b)

{with Y¥; =¥, %X; = X} can be written

Q1K — v, {s,W) = -Im(d ),

Yif Y: = X2, @ is non-degenerate in the strong sense; i.e., the induced
map of X to X* s an isomorphism if and only if Xi is reflexive; i.e.,
the canonical inclucion X; € X;** it onto.

™

as is easily checked.
2. Let X =a"x(rRM* with g and ¢y Symetric matrices.
Let points in X be denoted by (x,p) = (xi.pj) and set

i o 1ald id
H(x"apg) = 3g77pipy + degx 7,

and et
-y o= i =i
2{(x.p).(X,p)) = Pyx’ - p;X".

The corresponding linear Hamiltonian operator is

M
api' X,

(gijpjn = cijxj)'

A(x,p)

If P s an nxn matrix diagonalizing C = (cij)' j.e., if
PP = A= (x;) s diagomal, then

TeX = X
T{x,p) = (P~'x,pP)

is a canonical transformation uncoupling the terms cijx1x5. If g!j is
positive definite we can simultancously diagonalise gij and c{J and
thereby uncouple the equations into n harmonic oscillators. (See Abraham

and Marsden [1, Section 5.6 ) for further details.)

3, The wave equation & = A is Hamiltonian on
%= KRN <2 (w") with

H(6,6) = !Ilél’dx + QIIVQt’dx.
f :

# /"



"‘“'&né)l(tl':v.” = J((J'DQ) - (cll';‘))dx

{the symplectic form of 1{b} with Yy = H}, X, =L, and { , ) the L2

inner product) and

A{$,0) = [L;J .

with D(A)} = H¥(H") x W3 {nl),

4. 1If Hop

the abstract Schrodinger equation,

is a symmetric operator on complex Hilbert space ¥,

= ’"opw

uJItv
(2l

is Hamiltonian with
H{o) = ~KHoo.w),

(v,9) = Im{y,8), {See example 1(c)),

Ay = i"opw'

If "op is self-adjoint, then Stone’'s theorem guarantees that A generates
3 one parameter unitary group, as explained in Section 5.
How we turn to a few general relationships between Hamiltonian generators

and the corresponding one parameter groups {or semigroups),

Proposition Suppose A € G{X.M,2) and is Hamiltonian with energy H.

Then if U(t) is the semigroup gemerated by A,
(i) each U{t)

(i1) B{U{t)x) = H{x)

is a canonical transformation,

{conservation of energy).
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proof. {i) If wu,v € D{A}, then
Saru(t)u, v(t)v) = 2AUEIL, V(L)) + 2(U(t)u, A(EW) = O,

since A is Q-skew. Hence,

Q{U{t)u, U(t)v) = a{u,v)

for u,v € D{A) and hence everywhere by continuity and denseness of BD(A).

(i1) H{U(t)u) = IN(AU(t)u, U(t)u)

10(U(t)Au, B{t)u)

u"

10(Au,u)

H{u). 0O

One half of Stone's theorem asserts that the generator of a one parameter
group of isometries on a Hilbert space is skew-adjoint. The following is a

generalization of that fact.

Proposition Let U{t) be a one parameter group of canonical trans-

formations on (X,0) with generator A. Then A is f-skew adjoint.

Proof. (Nelsom) Let A’ be the f-adjoint of A. Since

f{U(t)x, U(t)y) = a(x,y), we have
Q{Ax,y) + Q{x,Ay) = 0, %,y € D{A),

so At D -a. How tet feo(aty, Atfeg. For x €D{A), write
t

U(t)x = x 4 IAU(s)x ds,
L]
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t
AU(L)x,F) = Q(x,f) + JQ(AU(s)x.f)ds.
3

Thus

t 3
a(x,U(=t)f) = 2(x,f) + IQ(X.U(-S)A'f)ds.
?

Since O(A) is dense,
t +
U(-t)f = f 4 IU(-s)A‘fds.
-
It follows that f & D(A) and -Af = A'f, QO

The equation § = -2: shows that A being fN-skew adjoint is not
sufficient for A to be 3 gemerator. However it becomes sufficient if we

iopose a positivity condition.

Theorem Let X be a Banach space and 2 a weak symplectic form on X.

Let A be an Q-skew adjoint operator in X and set
{x.y1 = 2{Mx,y),

the energy inner product. Assume

[x,x |2 chxlly {stability)

for a constant ¢ >0,

Let ¥ be the compietion of D(A) with respect to | , | and let

D(A) = {x € B(A)I Ax €70
and

At = Ax, x € D(A).

Then A generates in 3 a one parameter group of canonical trans-
formations (relative to fz, the restriction of 9 to J0)and these are,
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This result is due to Chernoff-Marsden {39].

g«‘

moreover, isemetries (relative to the energy inner product on X).

Proof. Because the energy inmer product satisfies Ix,x 1> clixf, we can

identify 70 with a subspace of X. Relative to { , | we note that A s

skew-symmetric: for x,y € B{A),
{x,By] = a(Ax.Ay) = -alAy,Ax) = -ly.Bx] = [Axy).

We next shall show that A is skew-adjoint. To do this, it is enough to

show that A:D{A) — 7 is onto. This will follow if we can show that
A:D(A) — X% is onto.

Ltet we'X, By the Riesz theorem, there is an X € H such that

alw,y) = Ixyl, forall y&X

In particular,

flw,y) = Q(Ay,x} = -A(x,Ay) for all y € D{A).

Therefore x € D(AT) = D{A) and Ax =w. Thus A is onto.

tA

It remains to show that @, is left invariant by U(t) = e”. For this

we need only verify that A is f-skew: for x,y € D(A),
A(fx.y) = 2(Ax,y) = (x,Ay) = -R(Ay). O

Example {Abstract Wave Equation) Let 3 be a real Hilbert space and B a

self adjoint operator satisfying B> C>0. Then
A=[0 I
-8 0
is Hamiltonian on

X = 0(adyx%
165



with
D(A) = D(B) » BBy,
B({x1551)4(%2072)) = Cya,x10= (xz491)

and energy
H{x,¥) = §lyl? + 3¢Bx,x) .

The
above theorem repreduces the theorem we proved in the preceding secti
ion

on th t ion X
the abstract wave equation X = -Bx. It follows from the above theorem

th
at the corresponding one parameter group consists of canonical trans-

formations which preserve energy.

Example {Classical Elastodynamics)

We now show how the (homogeneous)
equations of classical linear elastodynamics, viz
“p

ol = div(cevu),
i.e.,

na abed
Fel =
Y e ucld)lb’

are a i i
Hamiltonian system. We work in a region R with displacement or

tracti i

:bz:lon boundary conditions imposed, and assume, as in Section & that
»

c comes from a stored energy function; i.e., co0¢d . cbade

He choose X = H!xL,,

R((u,8) (v, ¥)) = ]o(ou - dv)ds,
2

A(U,I..J) 2 [
%div(:'%’u)J’

and

168

S Py

e

H{u,u) = lelﬁl’dx + QECQDCdeabecddx'
Q Q

where &y ® ;(ual bt “bla)' as in Section 4.

fiow A has the form [ 0 I] where Bu =-%div {c-vu) s a symmetric
-8 0

pperator in Lz with inner product

{uy,u2) = ]o(x)u;(x)uz(x)dxf
Q

Thus we have a Hamiltonian system. It will generate a one parameter group

if we can show the energy is positive definite (and the remaining technical

conditions hold}).
This leads naturally to the condition that there is an ¢ >0 such that

for any symmetric tensor e,

Bl o 4 > clle?  (stability condition)’

This condition implies (but is not implied by) the strong ellipticity

condition
abed 2 2
c Eagc"b“d =cllgh?linl
(take ey = Ea"b + Ebna) and thus allows the existence and uniqueness
theory developed for scalar equations in the previous section to go through.
Alternatively, it allows the hypotheses in the abstract theorem developed

above to be verified. Details are given in the following section.

For isotropic elasticity, Cabed = Agabgcd + Zugacgbd as we saw in

Section 4, Here,

*That this implies positive definiteness of the energy for the displacenent
problem relies on Korn's inequality. See Sections 7 and 8.
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4

% ey = Mtre)® + 2ue? Uiyoigh = Hyp g

and a simple exercise in completing the square shows that the stability con- where [A,8] = AB-8A is the operator comnutator.

dition holds if and only if (30+2u)/3 >0 and u> 0. However, as we can Proof. By definition,

guess from our work in Section 5 and as we shall see in Section 7, gemeration

of 2 semigroup only requires the weaker strong ellipticity condition, which {H '"B}(") = (Ax,Bx)

for the isotropic case becomes, as is easily checked (see Gurtin | 106],

p.85-87):

N(Ax,Bx) - I{Bx,Ax)

n

-i0{BAx,x} + IN(ABx,x)
A+ 2u>0, u>0.

10(0A,8 k,x)
In Sections 9 and 10 we shall derive conservation laws for general non-

linear elasticity. They apply, in particular, to linear elasticity. In = ”(A.Bl(x)' o

preparation for that it seems appropriate to make a few comments here on

. flow suppose that A generates a group or semigroup Ut and B generates
conservation laws in the framework of abstract linear Hamiltonian systems.
a group Vt. As we have seen these are necessarily symplectic trans-

He let X be a Banach space with symplectic form @ oand let A and B
: s . formations.
be two Hamiltonian operators in X with corresponding energy functions

Theorem Suppose that VY, is a symmetry group of the function H, in the
Hyu) = 10(Auu),  Hofu) = 3R(8u,0) —EQreR  Sue t ymmetry group A
following sense: each mp V, leaves D(A) invariant, and HyoV, = H,,

3s above. The Poisson bracket is defined by Then Hy is a constant of the motion; that is, U, leaves O(B) invariant

and HB’"t="B' Moreover, U and V commute; that is, Usvt=vtus

{HA,HB}"(U) = 2(Av,Bu), u € D{A) N D{B).
for all s,t.

(The reader can check that for finite dimensicnal systems this is the usua)
Proof. Fix t. Then for each x € D(A) we have

expression

(figd = & [ﬁ_i‘l J3F 3

] Q{Ax,x} = n(AVtx.Vtx) s Q(V_tAVtx.x).
i=1 aq' api ap‘- aqT '

From the polarization identity it follows that
See Abraham and Marsden [1] for details.)

AV,

A= VoAV

Proposition If x € D{IA,B]), we have"
168 i 169
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But V-tAvt generates the group (or semigroup)

s — V_UV,.

Accordingly we must have U, = v_tusvt. That is, Uth = VtUs. From this
it follows that U.b(B) < D{B). Finally, we have the relation, for
x € D(B),
uBx = LUV xl, = VXl = BUx
s gt Us'tt =0 g6 "tUs* ' tep s™"

Hence

Hs(st) ;n(nusx,usx) = ;n(Usmx.st)

u

19(Bx,x) = Hg{x). O

In order to conclude that the flows U, and ¥, commute, it is not
enough to have (HA.Hs} =0, f.e., [ABI=0. 1In fact Nelson [198] has
given a counter-example: two skew-adjoint operators A,B such that
[AB]1=0 on D(AB) nD(BA), but such that e** and e® 4o not commute.
Thus the infinite dimensional case is much subtler than the finite
dimensional case, and it is well to be wary of reliance on formal
calculations alone.

As we indicated in the earlier example dealing with the Schrodinger
equation, there are usually complex structures Torking in the background for
real Vinear Hamiltonian systems. [n fact, under fairly genera) circum-
stances one can show that a real linear Hamiltonian Systenm can be given a
tomplex structure in which the group is unitary so its generator must be
self adjoint (See Cook [ 57 and Chernoff-Marsden | 39 | » Sect. 2.7).

Actually in the context of second order systems, this idea in a version due

to Weiss {252 ) will be useful for elastodynamics. It is related to the
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~roblem of showing that Cauchy elasticity cannot give rise to 2 bounded

group. Details are given in Section 7.

In the previous section we saw that the wave equation can be written as a

mmetric hyperbolic system. The same is true of classical elastodynamics.
5y

this gives an alternative approach to the existence and uniqueness problem.

E‘e Cla Slcal ElaStod 1amics as & Symletl ic Hype'bolic S.ySte l)l The
S Y
Exal (

: ) .
basic equations in a region @ cw?, viz.,

3% 3 auk] summation implied)
Pget gl Ry 0

can be written in symmetric hyperbolic form as follows {c.f., Brockway [ 30}

and Wilcox [2561)-
Let u = (u,T,v) where u = {uy,uz,us}, T2 {TieT22,TannT12,TissTas)

and v = {viavz,vs)e  Let e = {enfazi@aniMiaiYiaeya) where yy4 < 2845

i i ut in the matrix form
The constitutive equation Tij = C5ik1%1 can be p

T=ce. Mewill need the condition that ¢ is symmetric and uniformly

positive definite, so ¢ is invertible. As above, these requirements are

Cisk1 = SK1ij and there is an ¢ > 0 such that cijkl(x)eijekl 2 eijeij
1
for all symetric €5 and 311 x € Q. Define

r .. N PR
- . .. D
°°=[' fli]’ R [I o1 l

where 1 is the 3 =3 identity matrix a dot denotes “zero", and

a/3xny . .
. 2/8xz .
. . a/3xy

/3%, 3/3x) . *

3/9x,y . /8%,

. 3/9xy  d/3x2
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Let
S | .
b=). . ., and f= o
... ob

where b = (by,bs,b,).
It is i i
readily verified that the basic equations now have the symmetri
hyperbolic form -

U
aoﬁ= a{—eii_+ bu + ¢,
1

Thus for ue :
U € L(R*) we get a one parameter group, by the general theory fo
r

symmetric hyperbolic systems given in Section §
For the full initia) boundary value problem,

we refer to Hughes
Marsden g "

{131) where sharp regularity results are obtained. However, {t is
*

considerably more technical than the second order approach, because the
¥

latte
' r can make use of the deep results on elliptic boundary value problems
The second also has the advantage that it only requires

and not stabilitz.

He s i
aw above that the equations of elasticity form a Hamiltonian system

strong elliEticitz

fo
r conditions under which symmetric hyperbolic systems in general are

Haﬂlnt nian, see ||E' noff and Marsd n 39 . See dlso Cllel nof f 38 for an
0 ) Cl e l ' l l

intrinsi i
trinsic treatment of symmetric hyperbolic systems on manifolds

7 EXISTENCE AND UNIQUEHESS FOR LINEAR ELASTODYNAMICS

The p? i ]
pian for the first part of this section is summarized in the table below

o , . sos
e section begins by 9iving further credence to the idea that Cauchy

elasticity i i
ity is unphysical. Using a result of Weiss (253 ] we show that Cauchy

elasti
city can never generate a contractive semigroup unless it is actuall
Y
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nyperelasticity. In the dynamical sense, a contraction semigroup means

dynamical stability. Thus Cauchy elasticity cannot yield stable dynamics.

following this we examine the case of hyperelasticity.
A main result in hyperelasticity is that the strong ellipticity condition

is necessary and sufficient for the generation of 2 contractive semigroup on

{= H'xL,. This is proved by combining results from elliptic theory with
the second corollary to the Hille-Yosida theorem in Section 6.

The fact that the equations generate a semigroup in X embodies the idea
that we have a continuous linear dynamical system in X. In particular the
solutions depend continucusly in X as tke initial conditions are varied in
the same space X. This is to be compared with other types of continuous
data dependence vhere the solution and initial data vary in different spaces.
For the latter, strong ellipticity is not required. See Knops and Payne
[151) (and related references in the bibliography) for extensive discussion

of these points.

We show that stability in the sense that energy is positive definite
relative to the H® topology is equivalent to dynamical stabiliity; j.e., a
contractive semigroup. The use of Korn's inequalities to prove stability
for classical elasticity from positive definiteness of the elasticity tensor
&5kl {acting on pairs of symmetric: tensors) is discussed.

As we saw in the previous section, stability is a stronger assumption than

strong ellipticity. When a bifurcation occurs in the nonlinecar theory, one

expects the linearized theory to lose stability, but not strong ellipticity.
(34

Khen stability is lost, directions of exponential grouth (the e growth of

the semigroup) will develop. This is perfectly consistent with strong
ellipticity.

If strong ellipticity "strictly” fails, we will show that the equations
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cannot generate a semigroup on any space ¥ x L2, where Y Cl, This

result was suggested by N.S. Wilkes [ 258-260) using a logarithmic convexity

argument due to Knops and Payne [ 149].

as follows:

The overall sitvation is summarizeq

Linear Myperelasticity

, strong ellipticity = the equations of motion
) generate a quasj-
contractive semigroup in
W' xL; (relative to
some Hilbert space
structure).
stability (classical e generates a contractive
elasticity) . 3
semigroup on H!x{,
(Korn) {relative to some Hilbert
) space norm),
elasticity tensor
positive definite
strong ellipticity -

no- semigroup on any space
"strictly" fails 9 ?

Yxla, YCL,,
Cauchy Elasticitx
generation of a
contractive semigroup .
on a Hilbert space = hyperelasticity,
Yxl,, YCL,

'Following these results we give a few abstract theorems relevant to hyper-

elastic systems with dissipation. These are inspired by Dafermos {611 and

are complemented by an appendix by €. Navarro.
Many of the results presented here for existence and uniqueness of linear
elastodynamics are well-known (see, Fichera'[83]), although their proof has
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not usually employed the semigroup approach. The results here on the

necessity of strong ellipticity and hyperelasticity seem to be new. They
give further weight to the value of the semigroup approach.

Consider then the equations of linearized elasticity on a bounded tmooth

+ n
region' G CH

p;]. E] div(a 'VI.I),

i.e.,

U, = sutmation implied),
ous = (85,10, (s
and work in Euclidean coordinates for simplicity. There is no essential

difficulty in working covariantly. He have dropped the inhomogeneous terms
f= -p§ + pb + div(f) for they cause no added difficulty in questions of
existence and uniqueness, as we saw in Section 5.

The boundary conditions are assumed to be either

on M,

on 3ft,

displacement: u = 0

traction: awu = 0

again taken to be homogeneous without loss of generality. We assume ai.jkl
are €2 and p{x)>6>0 i§s C°.
We recall that the material in question is hyperelastic when
= This is easily seen to be equivalent to symmetry of the
35k T ikt Symetry
operator

Ay = %d‘lv(a .vu)l

i I jons the
JETR A S O il
throu f i
3:533 ?:g:-u?ral:gnggssthose gf'Brow'der {31 ] or Agmon, Douglis and Hirenberg
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in Lz with nom (u,v} = jpuvdx.
Q

We rewrite, as usual, the equations of motion as UcAu or

e R

The domain of A is taken to be H?(Q) with the appropr%ate boundary

conditions imposed.

Let us begin by disposing of Cauchy elasticity. This can be done by the

following abstract result for Hamiltonian systems.

Theorem (Weiss [ 253)). Let A be a linear operator in Hilbert space ¥

with domain D{A). Let Y be a Hilbert space,
O{A) CYCH.
Assume

“' a ] I . 2’ = x
[A Ol O(K ) = D{A) x¥

generates a contractive semigroup on X = Yx3. Then A is a self-adjoint

operator, and in particular is symmetric.

Proof. By the Lumer-Phillips theorem of Section 5, we have
¢{u,0), N (u.ﬁ))x <0,

i.e., (u,ﬁ)Y + (ﬁ,Au)“s: 0.

Since this holds for al} u € D(A), UE Y, we can replace ¢ by -u. The

left side chenges sign, so we must have

(u,&).{ + (d,Au);,( = 0,
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Thus,
(LA = = Cuyidy,

and so A is symmetric and mon-positive. It is also self-adjoint since

(> -A) is surjective for X >0. O

This result shows that linear Cauchy elasticity can never lead to 3 stable

dynamical system in YxLlz, unless it is hyperelastic. This is presumably

an undesirable situation for Cauchy elasticity. It is a semigroup 2nalogue
of the usual work theorems which are used to cast doubt on Cauchy elasticity

(cf. Gurtin [106), p.82). Therefore, from now on we will assume we are

dealing with hyperelasticity.

The above theorem has another interesting corollary. [t shows that we

are forced to choose the Y nom to be the energy norm: for the contractive

case
"Il[lzv“ - (U)AU)J(W

and that our semigroups are forced to be groups of isometries.

Remarks 1. Weiss [253] also shows that one fs forced into working on
Hilbert space as opposed to general Banach spaces.
2. Related to the contractive assumption is an abstract result of
Hagy [ 196, nemely that a bounded one parameter group on Hilbert space is
actually unitary in an equivalent Hilbert nom.
We say that 3 5k1 is strongly ellilzticf when there is an € > 0 such

that

The strong ellipticity condition is closely related to the reality of wave
speeds; see Gurtin [1061, §570,71.
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G5k RIEEM Z cle Inl?; gner", xeq.

He say that strong ellipticity strictly fails if there exist & and noard

a point x for which

%jk1 (X)Egyngmy < 0.

Let H'(R) from now on, stand for HM(n) {i.e., with u=0 on ) in
the displacement case and just H}{(Q) in the traction case. Thus H'(q)

is the H' completion of D(A).

Theorem  The operator A’ = {0 I] on X = YD) xL,(R) with domain
A0

D{A) xH'(R) generates a quasi-contractive group (relative to some inner
product on X) if and only fif 3451 is strongly elliptic.
To prove this we need two results from elliptic theory, as we did for

scalar equations in Section 5.

Ggrding's Inequality is strongly elliptic if and only if there are

3K
constants ¢ >0 and d>0 such that

B{u.u) > Cllully, - d!lulll:

for all u € H(R), where
B{u,v) = ]’ijkl“k.]vi.jdx'
f

Lax-Milgram and Elliptic Estimates If aijkl is strongly elliptic,

2>d and f € L(N) there is a unique v € W (Q) satisfying the boundary

conditions such that

Au - Au e f,
178

-rf'.' 5,

{t should be noted that these results are for systems and as such are

S iz
~ore delicate than the scalar versions. The gifficult parts are Garding's

Their proofs for general elliptic
{The

inequality and the elliptic estimates.
soundary value problems {systems) may be found in Morrey [1911].
glliptic estimates are also found in Agmon, Dowglis and Nirenberg [3}).

i iptic. Notice that
proof of Theorem. First assume aijk! are strongly elliptic

for v € D{R), uE€E H(Q),

8{u,v} = - (L,Av)

[ " 1
vhere the Lo inner product is weighted with p, as above. By Garding's
“# inequality,
" 1= o’
B{u,u) + dliu ILz =
We use it on H' =xL:. Then

is equivalent to the H' norm.
(A (u,l),(u,u)) = n‘:.Au)L2 + Luidy

Blu,u) + d(u.ﬁ)'_z + Chugudy

= cl(u.l'n,_z

< W lul® + Lun?)

R e e A Gt i

< yd(Muliz +100%).

a3
A3

.A since u can be replaced by -i.
if x> d,

The same estimate holds for

is solvable for u and the solution

AL

<vtnasyanias

We know that Ju-Au = f
of
(- K Hub) = (F.6)

is
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u = (a?-A)7°F,
u=f-hu,

so {i-A) is onto for 3] sufficiently large. Thus by the second
corollary of the Hille-Yosida theorem, A' is the generator of a quasi-
contractive semigroup.

Hext we prove the converse. The Lumer-Phillips theorem implies that

(u,d>H, + (:\u.ﬁ)Lz <sltuudy + (d.fnl_,}
for a1l u € D{A), u€ H'., Letting u=au, a>0, gives
- (Au,u) 22 fatu,ud - BCuw) - Baf (o) ).

Choosing o > 8 we see that
- CAu,u) > cliuliyy - dhullla,

vhere ¢ = {a-B)/a, d = Ba. Thus GSrdfng‘s {nequality holds and so we have

strong ellipticity (The latter result is due, essentially, to Hadamard)f. a

He note that, as remarked above, generation of a semigroup automatically
implies generation of a group for second order systems under consideration.

It should be noted that this result automatically gives us a sharp
regularity result, at least if the elliptic estimates are assumed; i.e., if

u € H}(Q) and u satisfies the boundary conditions, then for s > 2,

Tullys € C(0AUlyg-2 + Bull ).

:The argument in Truesdell and Woll [248], p.253 will give the result stated
ere,
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This shows that D(Am) € H*™(which, by the Sobolev embedding theorem, lies in
¢! if 1 <2m - w2).
we know that if (u(0),5(0)) € D{& )™, then (u{t),0(t})} € D(A )™ as well.

From the abstract theory of semigroups in Section 5

For instance (u(0),0{0)) € D{A")® means

u(0) € B{A*}  and  U(0) € D(A).

Note that this automatically means u{0) and u{0) must satisfy extra
boundary conditions; in general, these extra conditions for (u,u) to

belong to D{A' ) are called the compatibility conditions.

In particular, if u(0) and 0{0) are C° in x and belong to the
domain of every power of A, then the solutions are C™ in (x,t) in the
classical sense.

For later use, we make an observation about second order systems in
general. Namely, if A’ generates a quasi-contractive semigroup on Y x3,

then necessarily, A generates one on .

1f we have
3 (XIEsENym > (=} el Ini?,

and ¢{x) vanishes at some points, then one can still, under technical

conditions sufficient to guarantee A is selfadjoint (see, e.g., Reed and
Simon | 217 ] and references therein), get 3 quasi-contractive semi-group on
Yxl,, where Y is the completion of H'(R) in the energy norm. One can
argue, 2long the lines above, that if A’ generates a quasi-contractive semi-

group on YxL:, then we must have
3; 551 {X)E€nymy 2 0.
By the remark just made, without assuming Y = H'(R), one cannot hope to use

181



well-zosedness to prove strong ellipticity.

hext we wish to study the relationship between strong ellipticity and
stebility, HWe first define stability in terms of positive definiteness of
the energy and then show that this is eguivalent to dynamical '.r.tabilit_y.f

We say that is stable provided that there is a ¢ >0 such that

35K

Blu,u) > Clluif

H for all

v € H'(A),

i.e., the elastic potentia) emergy is positive definite relative to the

nornm.

K generates a contractive group on H! xL, (relative to some

Proposition

inner product on H') §f and only if we have stability.

Proof. In the above proof of sufficiency we saw we could take 8 = g-. But

stability is precisely the condition d=0, so we get a contractive group.
Hote that since stability implies Ge?rding‘s inequality, we have strong
ellipticity automatically.

Conversely, if we get a contractive group relative to some equivalent

inner product « , M on H', we saw in Weiss' theorem that we must have

B(u,u) = ((u.u))".

which implies stability. O
For the displacement problem in classica) elasticity, positive

definiteness of the elasticity tensor, i.e., there is 2 & >0 such that

2
cijk]eijek1 2 élell

o . !
This is usually called the energy criterion for stability, It is discussed
in Section 11 for nonlinear Systems.
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.
i

for all symmetric €ij implies stabih‘tzf by virtue of Korn's first

inequality
le’dx 2clulip, ¢>0,
1]
where e;. = u, . +u, .) and u=0 on 3R. By considering isotropic
i 5
classical elasticity, strong ellipticity does not imply stability. Korn's
first inequality is readily proved using Fourier series and a partition of
unity argument for reduction to the case of a torus.
For the traction problem, Korn's first inequality cannot hold since
eij is invariant under the fuclidean group. Instead one has Korn's second

inequality (see Fichera {831, Friedrichs [92], etc.)

[e’dx + ]u’dx > cHun;,.

Q f
As it stands, this shows that positive definiteness of the elasticity tensor
implies Ggrding's inequality. However, we already know Girding's inequality
is true from strong ellipticity alone. Thus Korn's second inequality does
not seem to be needed. MNevertheless, there is a deeper reason for Korn's
second inequality which is not usually appreciated. HNamely, if we view the

traction problem as a Hamiltonian system and move into centre of mass and

constant angular momentum "coordinates".ff

then in the appropriate quotient
space of H!xL;, we get a new Hamiltonian system and in this quotient
space, Korn's second inequality can be interpreted as saying that positive

definiteness of the elasticity teasor implies stability. Since this is a

*He saw in Section & that strong ellipticity is implied as well.

ﬁ'In Hamiltonian systems language this is a special case of the general
procedure of "reduction”. Sce Abraham and Marsden [1) and Marsden-Heinstein
11861).

183

e w4



rather invoived, but straightforward story, details are omitted. (Consult
Gurtin [106], p.104)
lext we sketch out an argument due to Wilkes | 258-260 | based on logarith-

mic convexity ideas (see Knops and Payne [49]) to show:

Theorem If the strong ellipticity condition strictly fails then A’ cannot

generate a semi-group on YxL, where D{A) CY C,,

Proof. When strong ellipticity strictly fails, as defined above, the

argument used to prove Hadamard‘s theorem shows that

inf -{u,Au) = -
II‘uliL =1
2

{Roughly speaking, one can rescale u(x) keeping its L, nom constant, but
blowing up its H’

{M,8}.

norm.) Suppose A’ generates a semigroup U{t) of type

Then we can choose u(0), U{0) such that

2(4(0), u(0)) > 8, uu(o)u‘he 1,
and

1€u(0}, 6(0)> - 3{u(0), Au{0)} = ¢ < 0.

Let (u{t),u(t)) = U{t}{v(0},4(0)) and F(t) = 3<u(t),u(t)). Then clearly

F=tiuy and F = QuAu) + (0,00

iote that ¢ is the initial energy, and the energy is constant in time.

Then by Schwarz's inequality,

2 " a2 .
p e G < angn
=2 +F.

Thus,
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Fr

FE - F2 = -0¢F > 0.
Hence,

dz

Kt—‘“"g” 20,

and so, .
F(t) = F(D)exp[Fri-g-} t] ’

i.e.,

helf, > (0, e't

where Y = 2{0{0), u{0))/ u{0},u)0})). But because U(t) is a semigroup of

type (M,8)., the ¥ topology is stronger than the L: topology and Y > 8,

and such an inequality is impossible. 0

This concludes our discussion of the Cauchy problem for linear elastic
systems. MNext we consider a couple of abstract examples of dissipative
mechanisms which can be added to the conservative equations. These results
are inspired by those of Weiss [252] and Dafermos (61}. In the appendix to
this section the ideas are applied to linear thermoelastic materials with

memory.

First we consider dissipation of rate type; i.e., the equation

i = Au + Bu,

Theorem Suppose A and B generate (quasi)-contractive semigroups on a

Hilbert space ¥ and D(B) C D(A). Suppose A’ = [0 1] generates a

A 0
(quasi)-contractive semigroup on Y x¥ with domain D(A)xY, D(A}C Y.

Let C = [0 I] with D(C) = D(A) x0{B). Then T generates a {quasi)-
A 8

contractive semigroup on Y xI(.
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Proof. We need the preliminary result:

Lemma {Trotter [2441). Llet A and B generate (quasi)-contractive semi-
groups on a Banach space X and let D(B) CD(R). Then there is a 4> 0
such that cA+5 generates a quasi-contractive semigroup if 0 <c <3,

we refer to Trotter's paper for the proof.
Proof of Theorem. Let B >0 be such that
C{uy0) R U8y 50 € BIMU) Iy L g
and Y >0 be such that
. a .2
(8u.u>3t<vllullm-.
Then if B = {0 0],
0 B
¥ ' . 2 " v ) »
C{u,0) (A + B )yl by, g < 80Ny + N0I5) + YHUIG < o{u, 0} I, 50

where p = 8 + Y. By the second corollary to the Hille-Yosida theorem, it
remains to show that x ~C = A -A' -8 has dense range if X\ is sufficiently

Yarge. Suppose {v,v) is orthogonal to the range of X -C. Then
(3y-d,v)y + (3= Au =B,V = 0.
Setting u = Au, we get

{1%y - Au - ABu,v) = 0,
j.e.,

(w - %Au-Bu,G) = 0.

1f A>3, where & is given in the lemma, we conclude that X - A/X - B
is onto, so v=0. Returning to the origina) orthogonality condition, we

126

il

get v=0. O
Note that if A is symmetric, so that iu=Au is Hamiltonian and B <0,

then the energy is decreasing:
3 (9,0 - (u,hud) = €@,Bi) < 0.

This is the usual sitvation for rate type dissipation.

For example, we can conclude that if ai.jkl is strongly elliptic, then H

oy = (3g5Y,10 i * V4,55

j.e.,

e rerace

ot = div(a -Vu) + au

with say displacement boundary conditions, generates a quasi-contractive
semigroup on X=H'xL.. If the elastic energy is positive definite, i.e.,
stability holds, then the semigroup is contractive (it does not seem to be
analytic). One can establish trend to equilibrium results either by
spectral methods (see Section 5) or by Liapunov techniques (see Dafermos
161)). The theorem can also be applied to the panel equation in Section 5.

1f the dissipation is of thermal type, the equations take the forn

Au + B8,

e
1

€8 + Du.

e
n

We make these assumptions:

(i) A = {0 I] generates a quasi-contractive semigroup on ¥ =3
A 0

{ii) ¢ is a non-positive self adjoint operator on a Hilbert space Jfa
{(iii) B is an operator from ¥, to ¥ and is densely defined.

Moreover, D = -B* and is densely defined,
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{iv) D(A) CD{D) C V.

{v) D{C) C D(B).

{vi) B{1-C)"*D, a non-positive symmetric operator, has self-adjoint
closure (i.e., is essentially selfadjoint). [In the example below

B{1-C)™'D is bounded|.

tet 6=1{0 I 0] with domain

B(A) xB(D) xD(C) € ¥ xHx¥, = X,

u

u
s0 that ad? u] e G|Gl represents the above system.
] (5]

Theorem Under these assumptions, G 'generates a8 quasi-contractive semij-

group on X. (If A generates a contractive semigroup, so does E).
Proof. We have, in the inner product on Y xifx.'r{o,

C(u,2,5),6(u,u,9)) = ¢ {u,0,08),(0,Au +B8,C3 + Dd))
= (u.d)y + (G.Au+89)ﬂ+ (e,cemﬁ);(o

<8I {u,8) Iy, g0 + €0,B8) + (0,D0) + (5,C0)

®ynl
BI(UL Gy | g + €9,C8)
<RI {u,0) Iy 50 < BULu,8.0) I
so (G-B) is dissipative. By the second corollary to the Hille-Yosida

theorem, it remains to show that for X sufficiently large, (X -G) has

dense range. Let (v,v,9) be orthogonal to the range:

(A -0,v) 4+ (A -Au-BO,V) + (AB~CO -DU,g) = O,
188

For uED{A), let U= iu and & = A{A-C)"'0u, Then

(A% - Au - AB{A ~ C)"'Du,v) = 0.
By using Trotter's result and the same argument as in the preceding theorem,
if A is sufficiently large,

A2 -A-AB{A-C)"!D

will have dense range. Thus v=0, Taking 4 and ©=0, one sees that
v=0 and taking u=0=u, one gets g=0. O
For example; if 2 i1 is strongly elliptic we find that

pi = div{a-%u) + mve,
cb = kA8 +%v-£|, u8 =0 on M,

generates a quasi-contractive semigroup on H'xLzxLl: (with the Lz spaces
appropriately weighted), where c¢,k>0, m> o.*
Finally we consider visco-elasticity of memory (or Boltzman) type. The

equations now have the form

Au + Bw,

Cw.

£ 3
"

e make these assumptions

()N = [0 l] generates a quasi-contractive semigroup on ¥ xX(,
A 0

{ii) C generates a contractive semigroup on it,

+Above we saw that "well-posedness”of the elastic part implied 3 s
strongly elliptic. The Clausius-Duhem inequality implies k > 0. Well-
posedness of the heat part then implies c >0 and then of the whole implies

o0,
i89
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(iii) There is an injection i :3 — 3 {constant histories) such that
Coi=0.

(iv) B is a densely defined operator of * to I such that i°§ i
symmetric and non-negative, D(B) c D(C), D{(B)

is a core for C and B

is one to one.

{v) Let Q(wy,wy) = (i-Bw,.w;G} for wi,w; € D(B). Suppose that on

X = YxJ(xj("
II(u.G.w)IIZX= Il(u.ﬁlfhw H{fu - w,iu -w) - Q(iu,iv)

is an inner product equivalent to the original one. Let

G=f0 1 o
A 0 B
0 0 ¢

which is the operator on X corresponding to the above equations, with

domain  D(A} x Y x D(B).

(vi) (iBw,Cw) >0 for all we D(B).
Theorem Under these assumptions, G generates a quasi-contractive semi-
group on X (contractive if A’ generates a contractive semigroup).

Proof .
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We have, in the X inner product of (v),
LUl W), (0,Au +Bu,Cw)) = ¢u,b) + (U,Au) + (0,Bu)
+ CiB{iu - w),i0 - Cw) - (iBiu,iu)
2 0U0) + (0,Mud + CiBiu - w), - Cu)

(uud + (0,Au) - CiBliu-w),Cliv-w))

<{u,0) + (0,Au)
< 8lu B I | S8 (v 5,u) Wy

for a constant 8. ;

It remains to show that (X -G) has dense range for A sufficiently

large. If (v,v,h) is orthogonal to the range then using the original

inner product,
Cu-u,vdy + Qs - Bw,v)y + (dw-Cw,hdz = 0,

for all u€D(A), GEY, weO(B). Taking v = Au and w=0 we get,

since (A -A) is surjective, v=0. Then cheosing u,u=0, and using the f

fact that D(B) is a core for C, we find that h=0 and finally 0=0,
w30 gives v=0, 0O

The exact determination of D(G) in examples is given by Dafermos [ 61]
and in the appendix following. (It seems a little easier to show that
(A-G) has dense range and to determine D(T) later than to show directly
that (1 -G) is onto.)

APPENDIX (by C. Navarro): Existence and Unigueness in the Cauchy problem

for a linear thermoelastic material with memory .

This appendix presents a detailed-example in which semigroup theory is
applied to the problem of existence and uniqueness for evolutionary equations
arising in linear thermoelasticity with memory effects.

More particularly, the evolutionary eguations studied describe dynamical
behaviour of a body whose constitutive assumptions are those of an inhomo-
geneous and anisotropic linear thermoelastic material with history of the

fading memory type (cf. Coleman and Mizel [55]). This history depends upon
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the independent kinematic variables of displacement and temperature
difference. The theory represents a linear approximation to that for a

simple solid, apart from the fact that the functional dependence assumed for
the heat flux vector is the same as

in classical linear thermo-

elasticity.

Asymptotic behaviour is not treated. However, such an analysis is
unlikely to present any difficulty within the context of contraction semi-
groups in Hilbert space and using techniques from topological dynamics {(cf.,
Dafermos and Slemrod | 66 F)

We proceed to formulate the problem. It is supposed that the body
oceupies a bounded region {2 C 2" with smooth boundary 3}, and that the
reference configuration is 2 natural state in which stress is zero and base
temperature 6, is a strictly positive constant. Let x € R be the
position of a material point at time t, u{x,t) the displacement and
8(x,t) the temperature difference from 0,.

We assume that the Cauchy stress t and specific entropy difference n
are given by functionals depending upon both displacement and temperature

difference history in the following form:
txut) = g{x,0)-%u(x,t) - 0(x,t)1(x,0)
. ]?g' (£,5)+Vu(x,t=5) = V' {x,8)8(x,t-5)}ds,
A
o{xin{x,t) = 1(x,0}-Yu(x,t) + n{x)c(x,0)0(x,t}/2

+ j?lix,s)-?u(x,tos) + o{x)c (x,5)8{x,t-5)/8,}ds,
[

fA complete asymptotic stability analysis using a different methed has been
given elsewhere [197].
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where p(x)
by a'. The material functions g(x,s}, 1{x,s) and c(x,s}, s>0 are
the relaxation tensors of fourth, second and zero order respectively. He
1{x,0)

the instantaneous elastic medulus, instantaneous stress-temperature tensor

call the values g(x,0),

and instantaneous specific heat, respectively. In terms of Euclidean

coordinates the system above states that
tij(x.t) s gijkm(x'o)uk,m(x’t’ - e(x,c)lij(x.o)
+ ":.. Ls)u, {x,t-s)ds - |15 (x,s)e(x,t-s)ds,
jogukm(x k,m L ij
and
plxin(xst) = 1y i{x,00uy 5{x,t) + p(x)e{x,0)0{x,t})/00

+ ]E%j(“’s)"i,j(x’t’s)ds + (p(x)loojlc'(x.s)e(x.t-s)ds

where the summation convention is employed.

is the mass density in the natura) state and da/ds is denoted

and ¢{x,0) of these quantities at s=0,

The set of constitutive equations is completed by restricting attention to

Fourier's law for the heat flux vector q(x,t):

q{x,t} = x{x}:vo(x,t},
ie.,

qi(x.t) = "‘ij"‘)“.j("'t)'

where x(x) is the thermal conductivity in the reference configuration,

Let v denote velocity and a superposed dot the partial time derivative.

The local equation for balance of momentum is then

divt(x,t) = o{x)v{x,t)
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while the linearised energy balance equation becomes
g:o{x)n{x,t} + divg(x,t) = 0.

Substitution of t, n and q into these equations then yields the system
of coupled equations for the linear theory of thermoelastic materials with

memory:
i(x,t) = alﬂ-div(g(x.OIOVu(x.t) - 8{x,t)1{x,0)

+ Fg (x,5)*Yu(x,t~s) - 1" {x,5)0{x,t-5)}ds)
]

3(x,t) = 8p(divic(x)-v8{x,t)}/0, - 1{x,0)-Tv(x,t)

+ ]?1 (%,5)-90(x,t-s} + (p{x)/86)c’ (x,5)B(x,t-s}}ds)/{o(x)e(x,0))
]

Obviously, we have supposed that the specific body force and the specific
heat supply vanish identically, except possibly for t <0.

The boundary conditions are assumed to be
v{x,t) = 0, g{x,t} = 0 on 3 x{0,2)

while the prescribed initial histories for the displacement and temperature

difference are given by
u(x,~s) = W (x,~5),  @(x,-5) = a%(x,-s), O<s<w xeq.

We shall now state the main hypothesis on the material properties. First
of all, we assume that the functions w(x), and g({x,s), 1{x,$), c{x,s)
for fixed s & 0, are Lebesque measurable and essentially bounded on §t.

The associated norms are
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"i‘{g(s)n = essé ‘S?UP |al:“'g(xls)l| i=1,2
3s &
uf’_i{;(s)“ = e:sé ;up |;a—:;C(K-S)l-
s
vihere
: i
Ifslfg(ns)l " imlta |:?gnqrs(*"’“'rs|' Iml = ('“pq"'pq)!'

are assumed to be continuous on [0,) and elements of L:{(0,~). Moreover,

we assume that
gijkm(x,s) = g‘mj(x,s) a.e. on

for all s 2 0.

In addition we also postulate the following conditions:
{1) 0 < py = ess. inf p(x),
XxXEQ

(ii) 0 <co <ess. inf ¢(x,0},
x€Q

(ii1) IVy(x)-g(X.w)-Vy(X)dV > 9in LRy XY, for all y Col2)
f n

where g is a positive constant and g(x,=) = 1im g{x,s) is
§ ~+w

the equilibrium elastic modulvs,

(iv) lvs(x)m(x)-va(x)dv > kle‘i(x]e’i(x)dv. for 211§ € Cp(A)
2 o

where k 1§ a positive constant,

(0 forteg sy ayin > aasifyy sty e,
a f
' for a1l y € Cs(n)
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where 0 <s <> and g:(s) >0,

{vi) -Ic”(x.s)e'(x)dv>c:(s)[la(x)|’dv. for all & & C;()
Q ]

where 0 < s <o and <¢;(s) =0,

{vii) For all s> 0,

W' (s)ll = e:sé ;up llkq(x‘s)lbq(x.s)li € 11{0,2)
(30 < B2 ca(s) P iaatsy 1.

Remarks 1. Since 1lim 01 (s)l= 0, condition {vii} and the Cauchy-
§ — oo

Schwarz inequality imply

IV ()N (pa/0a) ca(s) 1P 1aa(s) 1}, 05 <o, (1)

where

ci(s) = [Cz(s' Jds'  and  gi{s) = !g,(s‘ )ds’,
s s
Then,

l6 (x,5)8%(x)dV > c;(s)JlB(x)I’dV, for all ¢ € Cy(n) (2)
Q ]

Jovtxdeg trasy-sytaay = uishfy sixly; jxan, for an1 y e ).
f o
{3}
2. Condition (fv) is clearly related to the heat conduction
inequality.  Assumptions (v}, (vi) and (vii) are motivated by sufficient

conditions for the internal dissipation inequality to be satisfied
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{cf. Navarro [197]).

Let now w(x,t,s) and ax,t,s) denote the displacement and temperature

difference histories, i.e., w(x,t,s)=u{x,t-s) and ofx,t,s)=0({x,t-s),

0s5 <o,

Definition Consider the elements (u{x),v(x),8(x),w(x,5),a(x,5)}. We

shall denote by X the Hilbert space obtained as the completion of the set
(uava0,i0) € ColR) x Co(R) x C5(R) x C7([ 0,5) sH3(Q)) » €°(1 0,%9) ;1 (R))
under the norm jnduced by the inner preduct

Q

- ”?( u-Yu(s) l-q' (5)+{ u-vW(s))
Q []

+ 7(s)V (s)+ Yu-vw(s) )

+ a(s)1 {s) [ 90-Yw(s) ]-g—ac' (s)a(s)a(s)}dsdv

(4

where dependence on x is omitted for convenience.

Remark It is obvious from (i), (ii) and (iii) that the first of the two

integrals appearing in the expression for ((u,v,0,w,a),{u,v,8,w,a)) is non-

negative, whereas from (1) « (3) the second is bounded below by

ﬁl 9 (s) lijl Pu-Tu(s) I*d¥ - | (0o/80)C1(s) #Il 313dv)3ds > 0.
° ] f

Thus, we see that {4) is indeed an inner product.
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J »
e now transform our boundary-initial history value problem to an initia}

value problem in the Wilbert space X. To do this vie define the operator

v v

l L]
v 2 div {g(0)¥u - ¢1(0) él[g' (5)+¥u(s) = T (s)a(s) lis)

0
6ls| = (00/0C(0))(-1"(0)+¥ = 1(0) v + div(x-¥8)/8¢ - {oc’ (0)/0,)0 -
[j 17(s)-7u(s) + {0/¢c)c" {s)a(s) lds}

" -v(s)
[»] -a'(s)

with domain D{G) given by

u

v

B(6) = {{u,vi8.a) € X G(o] €X and wl0)=u, a(0)=0 for x € q}
w '
o

Thus, we obtain the abstract evolutionary equation

u(t) u(t} u{0) w’{0)

4]t v(t) v(0) v

g MV = Gfett)].  [e(0)} = 1a*(0).
"(t) "(t) w(0) w®
oft) aft) a(0) a®

Ye n i i
ov state the existence and uniqueness result for the equation above

Th i
gorem  The operator G is the infinitesimal generator of a (,

contractive semigroup on X,

Proof. i
We first note that D(G) 1is dense in X. Furthermore, and after a
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lengthy but straightforward calculation, we obtain for (u,v,8,w,a) € i},

the following inequality analogous to that in the theorem preceding this

appendix; o
(B{u,V,0,4,a) ,{u,v,8,0,a)) = = 1]IIIVU -vw(s)] +g" {s}*[ Yu - Yw(s)]
Q °
- (p/8e)c" ()0 -d(sP?

216 - a(s)) 1" (s)l Yu - Tw(s }} hdsdV

(1/8;)]v9~<ovadv
a

<- k]l v6 129 - FI g2(s) 15]|vu-w(s) i2av
Q ° h

- ({o/8o)cals) Iill 0 -a(s) 12dv}3ds
aQ

< 0,

where we have made use of integration by parts and conditions (iv), (v}, (vi)
and {vii). Therefore, we conclude that G is a dissipative operator.
Hext we show that the range condition R({l -G) = X is satisfied. Then,

the theorem will be proved as a consequence of the second Corollary to the

Hille-Yosida theorem {see Section 5).

Assume that (u,v,8,W,a) € X. Then we must show that the system of
equations
u u
I
(1-6)ylel =17 (5)
W I
a )

has a solution ({u,v,0,w,a) in D{G). The last two equations of (5) are
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€

WSy + W {s) = wis)

afs) + & (s) = &(s) {6)
and can be invented to give
s s
wis) = e lus [e5ie)as |, a(s) = e Sfe+ [eSuieyar].
[ L ] a{s) { Le a{g) J {7

Introducing (7} into the second and third equations of (5), and using the

first equation, we get the System

where
Au = u - (3/p)divil g{0) +J;' (s)e"Sds J-vu},
]
FO = (1/0)div{l 1{0) + [T’ {s)e %ds Jo},
L}
Cu = (00/0c{0))(1(0) 4]?‘ (s)e"*ds)-vu,
°
Dg =

s §- (eo/ac(O)){é_div(zvo) -ge(ﬁ' (s)e"Sds)e),
]

o e ..
h = THT (plaivefg (s)e *[etoR(eracas - 7 (s)e™fea(c)dtds)
. s ., ., |

h

= 4 (86/0c{0)){i(0)+74 + ]rl'(s)-vﬁ(s) + (0/8s)¢’ (3)3(s) Mis
[]
< - s — I
- J]v (s)e S.Jeivw(r_)d;ds - (O/Qo)JC' (s}e'sltsfi(z)d:,ds},
° o A A

Concerning (8) we have the following:
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Lenma  There exists a unique solution (u,0) € Ho xHa to the system (b).

groof 1 (-,») are Lz inner products conveniently weighted, the
T . )

pilinear form Bl {u,8),(u,8)}1 = (A {u,0),(8,8)) clearly determines 2 norm

equivalent to H{a,8)1 = |Iulh=+lle|h;. since

8l {u,8),(v,0) | = (u,Au+F8) + {9,Cu+De)

= ]{ou’ +9u-{g{0) + I; {s)e " ds)*Tu + (1/60)90+x V0
Q ¢

+ (ol&a)(]:' {s)e >ds)e?}dv.
[]

All we need to prove now is that (hj,h:2) € H 1 xKH"! with norm

I{hy A2l =1y lh-; +ilh; Ih-|. where

| fomyer]
€]

sup — i=1,2.

ih, -y =
ih s Th Iyl
First, since
= - ) =S
= Ig' (g)e%dg = -g (s)e”5,
as
S
integration by parts yields the identity

];' (s)e's-j:':ﬁ(t:)dcds = Fjg (£)e~5dg 1e5-wu(s)ds,
L] [ ] s

and, in the same way,
o L3 P W _ -
Ir (s)e"‘]l‘-a(s;)dms . ll[l' (£)e” 54t 1e%a(s)ds.
0 ° [ s

Next, choose any y € H3(n). Thenm,
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o e
hyd¥| = l Yruly - Vye ¢ - .
Ily ' I |n{(v*u}y vy L‘Ig (£)e™"dE) V() ds It can be shown in a similar manner that h; € W i{n). Mence, Riesz's
s
theorem implies the existence of a unique pair {u,8) € B}(Q) xH3{N).
Going back to the proof of the theorem, and considering the first equation

of (5), u-v=U, weseethat V€ Hi(q) by the Lemma. On the other hand,

+ W'L(_[V (£)e"5de)e a(s )dsav
S

» »
<[ I',v . -[ ' -£ s
U7yt -[q (8)e %z 1 0% wayav)? the equations

0 Q s

x ([F(s) ol ~[o' (£e™"dg 1€ -vis)an)? + ur;' (£)e Sdenes (l, vy 12av)} L ]{Vw(5)°9' (s)+Vu(s) + Tu(s)"9’ (s)+W {s)}dVds
0

s s 0

N,

=

‘( . r]w(s).g' (5)+Vw(s)dvds,
Q2

—

(s Rav)dids + 1T T0, Uyl
2 °

Q
< Nyliya{lig(0) - g(=) 1t -] Ya(s)g (s)-Vii(s)dvds [ ] joez'tc‘ (s)a?{s) + € {s)a(s)a’ (5)}dVds = r[oea‘r:' {s)a{s)a(s)dVds
6'Q g L]
follow immediately from (6}. The use in the expressions above of the

+ l(DQ/GQ)[IC'(s)?(s)dVds]!)+ “v’E"L ).
[] 2

a Cauchy-Schwarz and Young inequalities, together with integration by parts and

assumptions {v), (vi), yield the estimates

H
ere we have used the Cauchy-Schwarz and Young inequalities, the estimate

(¢ (e1e°E e
g - s : - = o
L {¢)e “dE < -9 (s)e”” and the inequality - j jvw(s)-g'(s)-Vw(s)d\’ds <. l [vﬁ(s).g' {s)-Vw{s)dVds

Q Q 8 f
- Iw-g’ (0)+vud

"Ll' (£)e”Sdg e < es(m/e.)lﬁc,(;,g,(g) 13 e bae
Q

< "‘s‘l"v%'c-(s)e“dc)itﬁ.(e)e'f’-ds)* and
S s @
. ) X . r 0031¢ (s)a?(s)dvds < | {eB3ic (s)a’(s)dvds + 003'c’ (0)0%dV.
< e%(0s03 " ca(s)e”5) (ar (s)e™%)} [s‘ Usz ° ]9
2 (Dneixn(S)g;(s))s, Furthermore, condition {1) and standard inequalities imply
2 ” Iu{s)]’ (s)-W(s)d\Pdsl < ] [{nﬁ;‘c’ {s)a*(s)
monotone decreasing functions. Finally, we have made use of (2} and (3) : e o
- 9w(s)-g {s)-Vw{s)}dvds

vhich im f
ch is plied by (1) and the act that C)(S). !’1{5) are positive
)

Therefore, we conclude that h, & H™'(f)
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and this estimate, with the two previous ones and (6), shows that

- ﬂ(w’ (s)g (s)+0W (s) + 2 (s)1' {s)-W (s)
°a

- p03'c¢ (5)a' (5)°)dvds < .

We conclude that (u,v,8,w,a) € D{G), i.e., R{I-G)}=X, and the theorem is
proved. O
Remark  Introduction of a specific body force and specific heat supply to

study the forced problem causes us no additional difficulty as regards

existence and uniqueness {see Section 5, variation of constants formula).

8 LINEAR AND LOCAL HNONLINEAR ELASTOSTATICS

This section discusses for completeness the existence and uniqueness theory *
for linear elastostatics and for nonlinear elastostatics with data near that
of a given solution. The emphasis is just slightly different from that
given by, for example, Fichera | 83].

The linearized equations under consideration may be written (see Section
4)

div(a-vu)(x) = f{x), xXEQ

where f = -pb-divf, b is the body force and t is the Cauchy stress in

the configuration we are Vinearizing about and 3 = L®§+cC is the
corresponding elasticity tensor (assumed sufficiently smooth). We assume
the boundary conditions are either displacement or traction. They may be

assumed to be homogeneous. {If they are not, match them up arbitrarily to a
displacement ¢ and replace f by f«rdiv(mvﬁ) and v by u-i.)

We let A{u) = div{a:%u) be the linear operator in L(R1) with domain
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K(Q) with the relevant boundary conditions imposed.

We make the assumptions:

1. a is hyperelastic, i.e., 35p1 * 3551k and so A is a symmetric

operator.

2. a is strongly elliptic, i.e., there is an ¢ > 0 such that

a3 k1 (M8 BNG™ zelgl?int?,

for a1l x€n and E,nE f". {See the previous section.)

As mentioned in the previous section, these two assumptions imply that the
elliptic estimates hold, i.e., if ueD(A) then for each s >2 and

1 <p < there is 2 constant £ such that

+ liuIILz).

s'zlp

llullus W

< C{llAull
W

R . +
(if A€ Hs-Z.p)_ ....see Morrey [191] or Agmon-Douglis ard Nirenberg 13k
Strong ellipticity also implies (from the elliptic estimates and Rellich's

theoren) that

{i) kerA is finite dimensional
(31) (r-A)"' is compact for ) sufficiently Yarge,
{iii) the spectrum of A §s discrete and each eigenvalue has

finite multiplicity.

0f more concern to us is:

J to verify that the boundary conditions satisfy the complementing (or
nggt?::ky-smpir{)) conditions. This is clear for the displacement problem
and may also be verified for the traction problem,
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Theorem La() = Range (A) ~ Ker (A). (L: orthogomal direct sum, )
Proof. First of all, for any selfadjoint operator A in a Hilbert space %

we have the formally obvious fact

X = Wange (AT ~ Ter TAT.

{See, for instance, Yosida {261]). In our case, ellipticity shows that
KerA is closed because it is finite dimensional and, rore significantly,
the elliptic estimates show that the range is closed as well. This yields
the stated theorem. D

If we write the decomposition as

f=Au+g, g € Ker A

then Alu=f so Au is as smooth as f. From this and the elliptic
estimates we see that we get reqularity of the decomposition, i.e., the more

delicate decomposition
w**P(0) = [Range (A) N WS*Pa) ] @ [ Ker {A) Nnw>"P() ],

where again the sum is L, orthogonal.
The above are genera) facts for eltiptic boundary value probiems usuaily

referred to as the Fredholm alternative. (See Wells [254] and for the case

of the Hodge theorem, Morrey [191]},
+

In the non-self adjoint case, the
result reads

W' < [Range (A) M US*P) i [xer (A%) N uSIP) .

These results have wide applicability in geemetry in addition to partfal
differential equations. See, for example Fischer and Marsden [86] and the
references therein.
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From these we can deduce immediately the main result for our boundary

value problem.

Theorem Let f € L,{R). Then there exists @ u € O(A) such that
Aus f

if and only if

(f,h) = 0 for all h € ker (A)

In this case (i) u 1is unique up to addition of elements in kerA;
(ii) if £ s of class W*'P, sois u (up to and including
the boundary).

In particular, note that if A s stable then kerA={0}, so one has
existence and uniqueness. As discussed in the previous section this can be
verified, by the use of Rorn's inequalities, for classical elasticity if
cijkl is positive definite. (If t is sufficiently small, similar results
The calculation of KerA however can be done directly in

(1f U

may be deduced.}

iy + "j,i =0, u

must be an infinitesimal Euclidean motion; if u=0 on 3R, u must vanish

this case and Xorn's inequalities are not needed.

if ¢%u=0 on 38, uv is unrestricted.)

Corollary For the equations of classical elasticity, assume that 5% is
positive definite: i.e., there is an ¢ > 0 such that

3
cijkleijekl =elel

for all symmetric e, Then

I
(i) {Displacement problem}) For any f € L (0}

div{c-Vu) = f



e

has a unique sotution v € HX(R), u=0 on 3, If f€ySP then
ueu“""" for s 20, 1<p<wm,

{ii} (Traction problem) The equation

divic-Wu)=f,  f e Ly{n),

with cPu=0 on 30 has a solution u€ H3(Q) if and only if

[f{x)-(a +bx)dx = 0
Q

where a is any constant vector and b s any skew symmetric matrix

If this holds, u is unique up to the addition of a term of the form
a+bx, b a skewmatrix. 1If f¢& ws.p' §20, 1<p<e, then

u€ us+2,p_

We now discuss the nonlinear problem following the methods outlined in

Section 4. First we consider the displacement problem. Suppose we are in

a situation in which the linearized problem about a given configuration ¢
has 2 unique solution (e.g., stability holds}.  Then, by the composition

theorem in Sobolev spaces (Section 4}, the map
b = DIV(T(F)) + 0,8

will be smooth provided ¢ is of class WP $>2 and s>8 41, with
the range space Ns’z'p. Moreover, its linearization at a solu:iun 3 will
be an isomorphism. We ¢an conclude from the inverse function theorem that
{i) the solution ¢ is isolated {lecally unique) in ws"’;

{ii) if the data (B or the boundary conditions) are close enough to

©
those of ¢, the perturbed problem has a locally unique solution.

0f course, if parameters like the loads or boundary conditions are varied
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over a larger range, we expect the linearization to cease being an iso-
morphism and bifurcations to occur. Hevertheless, in analyzing the problem,
use of the inverse function theorem is a basic first step. (The bifurcation
results are an entirely different story not entered into here.)
The above results go back to Stoppelli 1235). Ve refer also to
John [135] and for additjonal references to Wang and Truesdell [252].
However there are some words of caution we would like to give by way of an
example (see Ball, Knops and Marsden [161). In the existence theory for
minimizers in the calculus of variations, the spaces wl'p play an important
role. This is the case in elasticity as well, in view of the fundamental
results of Ball |[12] (see also Ball's article in volume 1 of these

proceedings). Unfortunately the inverse function theorem does not work in

“l.p. even when the linearized problem about the equilibrium solution is

stable. We consider the displacement problem in one dimension, writing u

for the nonlinear displacement: u=¢-identity. On [0,1] we consider a
stored energy function H(ux), no externa) forces and boundary conditions

u(0) =u{1)=0. Assume W is smooth and let p <0 <p_  be such that

Wip) =W (0)=W(p,)
and
¥ (0) > 0.

{See figure 10.)
In WP (with the boundary conditions u(0)=0, u{1)=0), the trivial

solution up, ¥ 0 is isolated because the map
u +— "("x)x
from W2 to LP is smooth and its derivative at u, is the linear
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N
¢
operator Px for 0<x<¢,
. PP,
v Wipa)v,, u (x) = {pe+p_(x-€) for e<x< €
e i ; . P =P,
which is an isomorphism. Therefore, by the inverse function theorem, 2eros 0 for [ o kxsl
of W{u ), are isolated, as above.
{See Fig. 11)
W Ve
for slope = p slope = p_
- 4 ™ . P
| . x
- 0 1
' !
J| % v, Fig. 11.
P Pe pt
Since "‘”"cx) is constant, each u. is an extremal. Alse
_ Py = P p P
J:"cx g I 4% elp 1% +etp 1F1p |
Fig. 10. which tends to zero as £ — 0. Thus us is not isolated in WP,
1
ioas . =H =W{0} and if ¥ =W{0) for all the
The second variation of V(u) = !H(ux)dx is positive definite (relative Remarks 1. 1f W(p.)=H(p,) =H(0) (p) > W(0) Ps
same argument shows that there are absolute minima of J arbitrarily close
to ue in Hl'p.
2. Phenomena like this seem to have first been noticed by
See Bolza {28}, footnote 1, p.40.
Here the situation, even

1,2 .
to the H!'=W topology) at u, because if v is in ”1,2 and vanishes

at x=0,1, then
1

2
a%zv(ug H:v)I =0 ° V(Do)!vx’dx

2
» cllvllul.z.

Now we show that u, is not isolated in u‘"’. Given ¢ >0, let
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Weierstrass.
Next we briefly discuss the traction problem.

locally, is much more interesting, because of the kernel which A always

has, namely the infinitesimal Euclidean motions described above.
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We consider an unstressed equilibrium state and then for given loads g,
and 1o, we ask if, for 9 small enough the traction problem with loads
B=86By, and 1=47,

has a solution near equilibrium. These loads Rust

satisfy the necessary condition

]di + [o,dv =0 (1
an Y
as observed in Section 3. According to Da Silvas theorem {Truesdell and
No1l [248), p.128) we can make a rotation of the reference configuration sp

that the second necessary condition for a solution always holds:

. I(xxx(x))un ' !o,XxB(X)dV - 0. (2)
M Q

(Since the Yoads are pot rotated, the reader is cautioned that this actually

changes the problem.) A load (B,t} s called equilibrated if both these

equations (1) and (2) hold. An equilibrated load is said to have a vector

. & as an axis of equilibrium if any rotation of the body about this axis,
keeping the loads fixed, maintains the equilibration conditions (1) and (2).
For instance, axes of symmetry are axes of equilibrium, but the latter need
not be axes of symmetry; (see Capriz and Guidugli [33) for an example). Let

1=(B,t)

us write for the load,

The solution x= &(X) must also be such that the moments are balanced:
Ix * T(X}dA + ]ogx xB{X}d¥ = ¢
N Q

a8 compatibility condition of Signorini that cannot be a priori assigned since

4 is unknown,

Theorem {Stoppell§ [2351) Suppose 1 s equilibrated, has no axis of ﬁ;

3/
equilibrivm, and the linearized problem is strongly elliptic (see the A
72 ¥

2

preceding theorem}. Then if ¢=1d 1is an unstressed state, and 1 is
sufficiently sma]lif there is a unique solution of the traction problem near

id which fixes a given point, say ¢{0}=0.

sketch of Proof. (Van Buren [251]) The proof is 2 somewhat clever use of
2ketch of "rogl

the inverse function theorem.
Under appropriate Sobolev or Holder differentiability assumptions, let

B= {loads 1 which are equilibrated on 2},
D, = {displacements u near O such that u(0}=0},

D:= {u €Dy such that Wu(0) is symmetric}.
Let o(u)=(-DlVT(u),T-n|an). s0 we are trying to solve

{u} = Al

The inverse function theorem does not apply as things stand because of
rotational ambiguities; the linearized problem has a three dimensional

xernel, namely the skew-matrices, i.e., infinitesimal rotations. 7o get

around this, one uses

Suppose ) has no axis of equilibrium. Then there is a

Stoppelli’'s Lemma
neighbourhood ® of Id in D: and a unique map Q:MN — 50(3) such that

$(u) - Glu))
is equilibrated; GQ(ld)=1d and DQ(Id)=0.

This is a direct application of the inverse function theorem; the three

conditions of momentum equilibration uniquely determine Q. To avoid

fThe smallness of A depends on 1.
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special kernels, we need no axis of equilibrium, as is intuitively evident,

Now define
?\: nbhd of Id in D; — B,,
u — $(u) - Qu)Al.

Now D¥,(Id) are the equations of the linearized traction problem; this map
is a linear isomorphism from D; to B; (on these spaces the rotational
indeterminacy is gone). So the inverse function theorem enables us to solve
?x(") =0 provided we can get near zero; this is done by taking ) small.
This is slightly tricky because ¥, itself depends on 1, so the estimates
involved have to be looked at explicitly.

By material frame indifference, the solution to the original problem is

E(U)Tu. a]

Notice that the rotational ambiguity present at the linearized level is
"absent" at the nonlinear level and this is one reason for the delicacy of
the proof.

The only references in English where results for the case of an axis of
equilibrium are discussed are Grioli [105] and Capriz and Guidugli [33].
The only reference for the proofs (known to us) is Stoppelli [236]. He will
discuss the problem from a completely different point of view in Section 11.

9 DYNAMICAL SVSTEMS AND HAMILTONIAN STRUCTURES

The abstract set up developed in this Section is designed for classical
{smooth) solutions of the dynamical equations of elasticity, This means, in
effect, that we are concerned with solutions, maximally developed in time,

but before shocks develop. While shock structures are important, so is the
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dynamical system in the pre-shock stage. In addition, one should dis-
tinguish singularities in time which are “essential" in the sense that by en-
larging the space and possibly extending the dynamical laws, the solutions
still cannot be extended in time to make reasonable physical sense. For
elastodynamics non-essential shock type singularities are well-known, but
there may be essential singularities as well. The analogy with celestial
mechanics is clear: some singularities, like collisions, are inessential and
solutions can be continued beyond them (by various regularization devices,
including ad hoc postulates such as conservation of linear and angular
momentum), while others, in which infinite velocities in a finite time
develop, seem essential. For the Euler equations for an ideal fluid in
three dimensions with periodic boundary conditions, essential singularities
seem likely. (See Chorin, Hughes, McCracken and Marsden [ 46 for a

discussion.)

Definition Llet S be a topological space. A continuous flow (resp. semi-
flow) on S is a continuous map F:DCSxR — S (resp.

F:DCcSxmr" — S) where D 1is open, such that

(i) Sx{0} CD and F(x,0)=x,

(ii) if (x,t) €D, then (x,t+s) €D iff (F(x,t),s) €D and

in this case F{x,t+s)=F(F(x,t),s).

For general properties of flows and semi-flows such as separate continuity
in t and x implying continuity etc., see Chernoff and Marsden [39] and
Marsden and McCracken [185]. We shall usually write Ft(x) = Fix,t), so
(i) and (ii) respectively read F,=id, Ft+s= Fs°Ft (where defined).
For nonlinear elastodynamics, the proof that the equations define a

continuous flow is nrot so simple, especially the continuity in Sobolev spaces
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WS with the lowest possible s. See Section 10 and Hughes, Kato and

Marsden |129) and Kato [142].
The “equations” generating the semi-flow Ft constitute the generator,

defined in a way similar to the linear case.

Definition Let I-'t be a semi-flow on a set D in a Banach space (or mani-
fold) X. The X-infinitesimal generator of Ft is the map

LORE LXCIR

taken in X on the domain D(G) for which the derivative exists.

"We shall next give a result of Dorroh-Marsden (70} which is applicable to
quasi-linear hyperbolic systems. The theorems concern the differentiability
of F, for t fixed. Such results are important for understanding the
sense in which Fy 1s a canonical transformation.  For theorems applicable
to parabolic systems, see Marsden and McCracken {1851]. Before commencing,
we remark on the delicacy of the results.

. us H 3
shows that Ft’H — H>, S>Y

Indeed, the example Uy +uu, = 0
is continuous, but not Holder continuous
On the other

for any positive exponent. See Kato [139] for the proof.

hand, F,:H5 — Wl differentiable and its derivative extends to a
t

bounded operator on w1,

We shall need to define the relevant notions of differentiability for G

and for l»'t in order to state the resuit. First, for the generator.

Definition Let X and Y be Banach spaces with Y C X continuously and

densely included. Let UCY be openand F:Y — X be a given mapping.

We say f is a-differentiable if, for each x € U, there is a bounded

linear operator Of(x) :¥ — X such that
Nf(x +h) - f(x) -Df(x)-hllx/ﬂhllx — 0

216

ORI

S ———— e =+ - -~

¢

as "h“Y_' 0. If f is a-differentiable and x +— Df(x) € B(Y,X) is

norm continuous, we call f C' a-differentiable. (Notice that this is

stronger than C! in the Frechet sense.) If f is a-differentiable and
I f(x +h) -f(x)-Df(x)~hllx/ Ilhllx is uniformly bounded for x and x+h in
some Y neighborhood of each point, we say that f is locally uniformly

a-differentiable.

Host concrete examples can be checked using the following:

Proposition Suppose f:U C Y —X is of class C* and Y- locally in «x,
2
] f(x)(h_.h)l&/llhllyllhllx
is bounded. Then f is locally uniformly C! a-differentiable.
This follows easily from the identity
1,1
f(x+h) - f(x) -Df{x)«h = I ID’f(x+sth)(h.h)dsdt
[ 2]

Next we turn to the appropriate notion for the flow.

Definition Amap g:UCY — X is called B8-differentiable if it is

a-differentiable and Dg(x), for each x € U, extends to a bounded
operator of X to X.

The nice thing about 8-differentiable maps is that they obey a chain rule,
For example, if gy :Y—Y, g2:Y—Y and each are B8-differentiable (as
maps of Y to X) and are continuous frem Y to Y, then gyogq; is

8-differentiable with, of course,
0(g2° 91)(x) = Dgz(gi(x))°0gs(x)

The proof of this fact is routine. In particular, one can apply the chain

rule to Ft°F5= Ft+s if each Ft is e-differentiable. Differentiating

this in s at s=0 gives
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DF (x)+6(x) = G(F,(x}),

the flow invariance of the generator. For completeness we formally state
this result and give another, direct proof as it illustrates Just how
B-differentiability is needed. (The proof of the chain rule mentioned above

uses similar ideas.)

Suppose Y C X and Ft is a continuous semiflow on an open

Proposition

set DCY with X-infinitesimal generator G:D — X. Suppose that for

each x€D and 0€t < Tx’ F, is B-differentiable at x. Then

t

G(Fy(x)) = DFy(x}6(x)
for x€0 and 0<t < Tx.

Proof. %th(Ft(x)' Felx)] - DFt(x)-%(Fh(x) - x)

= HF(FR(X)) - Fy(x)) = DF (x)-MF, (x) - x).

In Y norm Fh(x)-x-—v 0 as h — 0 while in X norm

1 i

H(Fh(x) -x} — G(x}. Thus by definition of the g-derivative, the displayed
expression tends to zero. It also converges, since DFt(x)'E B(X,X), to

G(Fy(x)) - DF.{x)-6(x), so our claim holds. O

One can also use the chain rule to prove a uniqueness theorem for integral
curves of gererators of semi-flows of F-differentiable maps by much the
same method as we used for the linear case in §5, so the details may be
omitted. Thus in this context, which includes elastodynamics one can say
that existence of semiflows implies uniqueness of solutions of the Cauchy
problem.

under hypotheses which include quasi-linear parabolic and semi-linear

{In Chernoff-Marsden [ 39} this was proved, by the same method, but
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hyperbolic equations, but which exclude the quasi-linear hyperbolic case.
The present version includes all of these.)

for the following theorem we assume these hypotheses: Y CX s
continuously and densely included and Ft is a continuous semi-flow on an

open subset D C Y and the X-infinitesimal generator G of F, has domain

D. Also, we assume:

(Hy) 6:DCY — X is locally uniformly C! a-differentiable,
{H2) for x €0, let Tx be the lifetime of X, i.e.,

{t €RI F;(x) is defined}. Assume there is a strongly continuous
linear evolution system {u*(t,s):0<s <t < Tx} in X whose
X-infinitesimal generator is an extension of {DG(st) € B(Y,X);

0<s< Tx); j.e., if YEY,
39 U (£25) Y| g ® DB(F(x))y.

for the theory of linear evolution systems (i.e., time dependent Tinear
The results relevant for the
The

semigroups), ve refer to Kato {137,138].

present discussion are reproduced in Marsden and McCracken {185].

following is the principal result.

is B8-differentiabie at Fs(x)

Theorem Under the above hypotheses, Ft-s

and in fact,
X
OF, _((Fs(x)) = U (t.s).
Proof. Define &(x,y) by

G(x) = G(y) - DG(y)=(x - y) +iix -ylyo(x.y)
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{or zero if x=y) and notice that by local uniformity, lé(x,y) llx is

uniformly bounded if x and y are Y-close. By joint continuity of
X

Fo{x), for 0<T<T", B¢fF.y, Fs")"x is bounded for 0 < s <T if

% = yily is sufficiently small,

As in the linear case, we have the equation
LF (x)= G(F 0<s<
3= Fe Jx)) s<7, xED,

Let

wis) = Fgly) = Fo(x)
$0 };hat

W (s)

GF () - 6{(Fs(x))

DG(Fs(x) yw{s} + lw(s) [lx o(Fsy,st).

Since DG(st)-w(s) is continuous in s with values in X, and writing

U=t*, we have the backwards differential equation:

k] '

ﬁu(t.s)w(s) = U(t,s)w () - U(L,$)0G(F (x})-u(s).
Hence

t
wit) = U(t,0)(y~x) + JU(t.s) n"(s)[‘x°(Fs(Y)nFs(xl)'d$-
o

Let NU(t,s)lly o <M and He(Fely), Felx))lly <My, 0<s<t<T.
Thus, by Gronwall's inequality,

fw(t)ly <H|GM'H’THy-xIIx = M;IIy-x!Ix.

In other words,

i)

a

t
1 (y) = Fy(x) - B(.0My - x)ily /By -xlly € M.M,j:lo(rs(y) Felx)fyds.

From the bounded convergence theorem". we conclude that Ft is

g-differentiable at x and DFt(x) = U{t,0). This is the theorem for s=0.

The general result follows hy making a translation. O
A technica) problem one should note is that in general one does not have

the forward differential equation that one might expect from semigroup theory

(when U{t,s)=U{t-s)); i.e.,
FU(ts)y = DG(F(x))-U(tus)y

need not hold. The trouble is that U(t,s) need not map the demain of

DG(FS(x)) into that of DG(Ft(x)). On the other hand, we do have the

backwards eguation:
3 - o .
= U(ts)y = - U(E,S)DG(F(x}) Y

as was used in the previous proof. In order for the forward differential
equation to be satisfied we need to assume that the evolution system U(t,s)
is Y-stable, f.e., U{t,s)Y €Y. [In his papers, Kato gives a number of
conditions guaranteeing this. It is satisfied for quasi-linear hyperbolic

systems of second order and for quasi-linear symmetric hyperbolic systems.

we shall now show how these results apply to Hamiltonian systems. We
shall temporarily assume that the spaces are Vinear for simplicity, but this
is not essential and will be abandoned shortly. Assume Y CX is as above

and Ft is a continuous {semi~) flow on Y with ¥-infinitesimal generator

fo(Fs(y).Fs(x)) is strongly measurable in s since &lx,y) s continuous
for x #¥.
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G defined on an open set D C Y. Let w:X»X ~ K be a weakly non-
degenerate skew symaetric bilinear form., As in the linear case, we say G

is Hamiltonian if there is a C' function H:D — 3 such that
w{6{x},y) = dH(x)-y

for a}1 x,y €Y. If & is C!, this is equivalent to saying that UG(x)
is w-skew, by the Poincaré lemma or directly. Indeed if G is C' and
Hamiltonian, H is C?, since dH(x) = w(G(x),"). Differentiating gives
w(D6(x) y1,¥2) = d®H{x}+{y1,¥2). Since d?H(x) is symmetric in y,,ys,
DG{x) must be w-skew. Conversely, if DG{x} {s w-skew we can choose

H{x) = lw(G(tx),x)dt + Constant
°

as is easily checked. (This is analogous to the criteria for an operator to

be potential; see Yainberg [ 250] and Hughes and Marsden [1301]).

Proposition In addition to the hypotheses of the previous theorem, assume
the evolution system U{t,s) is Y-reqular. [f G is Hamiltonian, then

F;u = wy 1.0,
S(OF (x}y1s DFy(x)o¥2) = wly1,32)
for x €0 and y,,¥2 € X.
Proof. For y,,y; €Y, we have
e 90 ()71 OF (x)+y2) = g {U(£.0)-31,8(8,0)-y2)
= G{DG(F{x))-U(£,0)+y1,U(2,0)+¥2) + w{U{t,0)¥1,D6(F {x))-U(L,0)-ys)

which vanishes because DG s w-skew. This proves the given result in
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case yi.y2 €Y. Since Y is dense in X, the conclusion for yi.w2€X

follows by continuity. O

In this result we took Y and X to be linear spaces and w 2 constant
pilinear form only for convenience. The result alse holds on general (weak)
symplectic manifolds; the proof is only slightly more complicated. We can
conclude from all this that a satisfactory theory of canonical trans-
formations can be built around the concept of g-differentiable maps.

For conservation laws one can do somewhat better. For example, vhen
shock waves for‘quasi-linear hyperbolic systems develop, the result below
shows that the solutions cannot be continued into spaces in which {i}) the
dynamics still defines a C° semi-flow, (i{) in which the generator is
Hamiltonian and (iii) for which energy is not conserved when shocks form.
This is because we shall prove a general conservation theorem {including
conservation of energy) under the rather weak assumptions {1) and {ii) just
stated.

indeed, when shocks form it is well-known that uniqueness fails unless
entropy conditions are imposed. The conservation law below may be
interpreted by saying that in elastedynamics a lack of well defined dynamics
from the Hamiltonian structure alone must accompany a lack of energy
conservationf.

As we shall see shortly and in Section 10, the Hamiltonian structure makes
natural sense for weak solutions. 1t is, perhaps, an interesting problem to
make sense of the semi-flow defined by shock solutions as a dissipative
Hamiltonian system; cf. Quinn (214], Crandall | 591 and Dafermos {64); the

latter reference applies to one-dimensional elasticity. He turn to the

*In thermo-elasticity, where energy is probably conserved through the shock,
this remark is frrelevant.
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conservation theorem under discussion. Me let Y C X as above and let F
be a C° semi-flow on an open set D C Y with generator 6. Assume ‘
G:8 — X is continuous and is Hamiltonian with energy H. Let

G, :D — X be another continuous operator which s Hamiltonian with energy

a €' map K:D — R, Let the Poisson Bracket be given by

{K,Hl{x) = w(GK(x),G(x)) for x €D

Theorem {Chernoff-Marsden). Under the assumptions just stated, for xep

K(Ft(x)) is t-differentiable with derivative
% KR (D) = (KM (F(x))

for 0Kt <Tx’ the lifetime of x. In particular if (K,H} = 0, then

K(Ft(x)) = K(x) and so, taking K=H, it follows that H(Ft(x)) = H(x).

Remark The tricky point is that K(Ft(x)) is not obviously
t-differentiable under these hypotheses; the chain rule does not apply since

t— Ft(x) €D is not differentiable in the Y-topology.
Proof, It suffices to prove that for each x; € D,

8 ¥(F,(x0)) = {K,i}

e KF(xo)) ag = (KHHX)

by the semi-flow property of Ft' Also, we can take x,=0 by translating
the semi-flow.
As remarked earlier, we can relate K to GK by

1
K(x) = K(0) + Im(GK(tx).x)d:.
[]

Let x, = rt(o). Then
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! x
1 (k(xy) - K(OD = ]:,(axmt), e

low as t — O, 5 = 0 in D and as Gy is continuous,
* X X, - Xz
Py t t 4

GK(“a) — GK(O) uniformly for 0 <t <1l. Also —=—%¢

— 6{0) as

t — 0 since G is the generator of Ft' Thus, we can pass to the limit

under the integral sign to obtain

1
Yinit L t(x,) - K(O)) = I::(GK(O).G(D))dr £ u(6,(0),6(0)) = {K,H}{0). O

Once this basic result is established one can go on to more sophisticated
geometric set-ups, such as general conserved quantities {or momentum
mappings) associated with Lie group actions, as in Abraham and Marsden [1],
Chapter 4.

For applications in the next section it will be necessary to use a number
of results concerning Lagrangian systems. These applications also must
allow X and Y to be manifolds. {This changes Tittle of what we have
already donme.) For example, the basic configuration space for the place
problem of elastedynamics s 2 nonlinear space < of maps; it is not even
an open set in a 1inear space, as-we shall see, For the traction problem it
is an open set in a linear space, but this is lost if constraints such as
incompressibility are imposed. Details are given in the following section.
The material which follows is standard and susmarizes what we need for the

readers’ convenience. For additional details and references we refer to
Abraham and Marsden [1] and Chernoff and Marsden [39].
tet ™ be a manifold modelled on 2 Banach space X. Let T'H be its
cotangent bundle, and m* :T*M — M the projection. The canonical one
form 8 on T*H is the one form defi'ned by
8{a)*w = a-Ta*(w),
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where o € /M, x €M and w€ TQ(T'H). In a local coordinate chart

¥ C X, this reads:
8{x.a)*(¥.8) = -a(y),

where (x,a) € UxX*, (y,8) € XxX*, If ¥ is finite dimensional, this
farmula reads
8 = L'pidqi
: n
where Q'y .. 3 Qs Pla ses P, are standard ccordinates for T*M.
The canonica) two form is defined by w=-dd, where d is the exterior
derivative. Using the local formula for d one computes that in a local

coordinate chart U C X for T*M,

o{x,a) {{¥1:21) o (¥2:02)) = az{y1) ~o1(y2)

lwhich coincides with the canonical symplectic form in the linear case
discussed in Section 6, In the finite dimensiona) case, the formula for w
is

w = -‘-'dq‘»dpi.

The canonical two form «w on T*M is a weak symplectic form since dw=0
1. .
{because d*=0) and since w on each tangent space is a weak symplectic
form in the linear sense.

1 . . .
Next we consider symplectic forms induced by metrics. If €, s a

veak Riemannian {or pseudo-Riemannian) metric on M, we have a smooth map

$:TM — T*H defi z
efined by “"x)"x SR A )

Oy where x €M and

veu, €T M. If (,) is a (strong) Riemannian metric it follaws from the
implicit function theorem that ¢ is a diffeomorphism of TMH onto I*M but
this is not the sitvation in most examples.
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In any case, set Q=¢*(w),

C

the pull-back of w by ¢ where w is the canonical form on T*M.

Clearly Q is exact since fad(o*(0)).
Using the definition of pull-back we can readily verify the following.

Proposition (a) If (’>x is a weak metric, then @ is 3 weak symplectic

form. In a chart B C X for M we have

Qlx, ) x1 oy Yo (x2sy2)} =

= D, {ysxadyxz = D 4yaxady Xy * Cyaaady - yiaxady

where D, denotes the Fréchet derivative with respect to x.

(by 1f ¢ >, is a strong metric and M s modelled on a
reflexive space, then R {s a strong symplectic form.

{¢) n=dd where, 1ocally, G(X.G)(E“Ez)=-<e.e:)x.
tote In the finite dimensional case, the formula for § becomes

. T gad e Fatged o ggk
n-Zgijdq ~dq +..;i—qd dq

where @', «ve 5 Q' Q%4 v s a" are coordinates for TH.

Generalizing the case of Y C X, two Banach spaces with the inclusion
dense and continuous, let us call 3 manifold domain of P, a subset DCP
such that D has its own manifold structure for which the inclusion
§:0 — P is € and such that its tangent Ti:TD — TP is also
injective.

For the nonlinear case we shall refer alternatively to generators as
vector fields. If (P,w) is @ weak symplectic manifold, the condition that
2 vector field 6:0 — TP (with manifold domain O C TP) be Hamiltonian

with energy H is that

iGw = dH,
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i.e., for x€P, and ve TXP,
ux(G(x).v) s gH(x}v,

The reader will note that this is a generalization of the definition in the
Vinear case. Also note that locally, & is Hamiltonian iff d(iﬁm) 20; in
a chart in which w s constantf, this says that DG(x), a linear operator,
is w-skew, just as in the Vinear case.

We shall write G=GH because usually in examples H is given and then
one constructs the Hamiltonian vector field Gy-  Of course in the finite
dimensional case, where w = Xdg' ~dp;, the generator takes the familiar

form of Hamilton's equations:

S MM
% = (35,0 aq"

Because w s only weak, given H:D — R, GH need not exist. Also,
even if H is smooth on all of P, G“ will in general be defined only on a
certain subset D of P, but where it is defined, it is unique. The
linear wave equation discussed in Section 6 is a case in point. Hotice,

however, that even if M is only defined on D, for x€ 0D, dH(x) must
extend to a bounded linear Functional on TXP because of the defining
relation between G and H. Thus in the obvious sense H is
B~differentiable.

The reader is invited to extend the proofs given above on conservation of
energy and the symplectic mature of the flow to the case in which the phase

space is not mecessarily linear and . is not necessarily constant,

+

Such charts always exist if o is strongly nondegenerate, (Darboux's
Thearem). [n general they need not (Marsden [ 1807 ) aithough they do under
Irg::oln)able conditions which are fulfilled in all examples of interest {Tromba
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For elastodynamics we shall be interested in Lagrangian systems, so we now

recall some of their essential features.
Let 1 be a manifold modelled on a Banach space X;, and Jet QCH be
a manifold domain. Consider the following subset of the tangent bundle TM:

P= v T M

meQ
We call P the restriction of TH to @ and write P=THIQ. If ¥y s

the model space for @, we can endow P with a manifold demain structure by

giving it the local product structure X=Y; xX.
By a Lagrang.ian on P CTH we mean a smooth function L:P — R. In
particular, for each m€Q, L restricts P to a smooth function on TmM.

Thus we can form the fiber derivative FL:P — T*M; explicitly, if

v,WE TmM, we have the formula

FL{v)"w = a‘-’EL(v + )| ya0°

Define w = (FL)*w, a two form on P where w is the canonical two

formon T*M. Thus "'L='d°L where 0L=(Fl.)*0, O being the canonical

gne form on T*M. tLocally, one has the formula

w {xav) ({2 wWi1da(x2,v2)) = DifDal{x,¥)=x1) %z = Di{Dal{X,¥)*x2)"xs

+ D2D2L{x,¥}*vzxy = 0202L(X,¥)*ViX2.

We will call L regular if . is weakly non-degenerate; i.e., if

B.0aL{x,v) Is weakly non-degenerate. This assumption will be made here.

The action A and energy E are defined by

Alv) = FL{v}v,

A-L.



Let ' be the subset of P consisting of all points v such that
GE(v) € TP is defined. Thus we regard G as a vector field on P with

domain D. We call G the Lagrangian vector field determined by t.

The classical Lagrange equations are second-order equations, There is a
general notion of second-order fields on a tangent bundle TM, and we can
extend this notion to the case of vector fields defined on P C TM. Indeed,
the projection =:TH — M restricts to a map from P to Q; we say that
G is of second order iff Tn(GE(v)} = v for each v & D.

The following is proved as in finite dimensions {see Abraham and Marsden
111},

Theorem Let L be a regular Lagrangian, with associated vector field GE
defined on D C P as discussed above. Conclusions:

(i) bCTg;

{ti) xE 15 a second-order vector field;

{ii1) In locai coordinates, a point (x,v} of TQ belongs to O

if and only if
o(x,v) = Dil{x,v) - B2(DyL{x,v) V)

lies in the range of D;D;L{x,v), regarded as a map from X,

into YJ. If this condition is met, we have the formula
Gelxov) = {vil BaBal{x,v) 17} ~a{x,v));

(iv) A curve ¢{t) in @ is 2 base integral curve of GE if and

only §f Lagrange's egquations hold:

F0aLlc(t), C(8)) = DiLfe(t), c'()).
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Remarks 1. As we shall see, this form of Lagrange's equations for field

theories is a statement of the weak form of the equations.

2. By a base integral curve we mean the projection to Q of an

integral curve of GE. Explicitly, let c¢(t) €D be an integral curve of
Gg.  (This means that E’(t)=GE(E(t)), vihere € {t} is computed relative to
the manifold structure of P.) Define c(t) = =(Z(t}), 2 curve in Q.
Because G is a second-order vector field, we have c'(t)=¢(t), where the
derivative is computed relative to the manifold structure of H.

3. Because E is a smooth function on P, it was not necessary to
introduce a manifold structure on N in order to construct GE' Actually,
in many instances D will have a manifold structure, akin to the graph
topology in the linear case.

To illustrate these constructions, consider again the wave equation. We

start with M=%, =LZ(R") and the Lagrangian
L(648) = 3€4,8) « 3(V8,¥8)

defined on the space P=H'xL?, Note that P is just the restriction of
LZxL2=TL?2 to Q=K' CL%. The fiber derivative of L is the map from

Hixt? to t2x(L?)*=T*L? given by the formula
FL{$,8) = (6460")).

Hence we have
mL([®;.5x). {82,42)) = {((2,8:1) - (§1,920);

This is the same symplectic form we used in Section & for the wave equation.
We know that w is weakly non-degenerate on P. By 2 straightforward

computation we find the energy to be
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E{ea) = 34,80 » KUe,ve),
whence we have
dE{@,8)+(v,d) = (4,0) + (Te,7u).

lext, let us use the above theorem to determine the domain D of GE' He
know that D is contained in Q=H'xH', Ue must consider a{l} = -{V$, %)
as a function of ¢; when does o lic in the range of DzDzL(:né‘) = (g, 7

This is so if and only if & € H2, in which case a(¢)=(a¢,0) and so
G[(éné) = (‘5.M}

on the domain D=H xH!, This is then in accord with our treatment of the
wave equation in Section 6.

We now generalize the above example. Suppose that M is a (weak)
Ricmannian manifold with metric (-,-). Let Y:QCH ~— R be a smooth

function on a manifold domain Q. Define a Lagrangian by

L(vq) = s<vq,vq> - ¥(q), g€ T acu.

L is a smooth function on P = TMIQ. Moreover, the fiber derivative of L
does not involve Vi in fact it is just the map fram TM to T*M deter-
mined by the metric {«,«). Hence 9 is the weak symplectic fom induced
by the metric.

We say that the weak Riemannian metric has a smooth spray provided there
is a smgoth Lagrangian vector field s,: ¢t TH — T{TH) associated to the
kinetic energy function K{v) = Hw,v} on . (It is customary to give a
geometric  definition of sprays in terms of connections. Our approach
leads to the same thing.} 1In local coordinates, the condition for existence
of a spray is that there be a smooth map Gs{x,v) satisfying the relation
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(Y;{x,v),v;)x= goxtv,v)xw, - Dx(v.v,)xov.
The spray GK is then given by the local formula

GK(X:V) = (x,62{x,v)}.

It is easy to see that Gy(x,v) depends quadratically on v; this is a
characteristic property of sprays.

Even though the metric ( , } is weak, it may nevertheless posess a smooth
spray. This occurs in elastodynamics and fluid mechanics as we shall see in
the next section. It also occurs in 3 number of other situations as well
(see Fischer and Marsden [84 ], Choquet-Bruhat and Marsden [451, Ebin 175]
and Tromba [2421).

If q€ 0, wesay that grad ¥(q) exists provided there is a vector

ue TqM such that, for &all v € qu.
dv{q)ev = {u,vl.

We write u=grad¥(q) in this case, and let Do={q € Q:gradV{q) exists},
the domain of gradV.
Using these definitions, we generalize a familiar theorem of Lagrangian

mechanics to the infinite dimensional case by a straightforward catculation.

Theorem Let {(-,-}Dea weak Riemannian metric on M which has a smooth
spray. tet V:QCMH — R bea smooth function with manifold demain Q,
and define L on P=TMIQ as above: L(vq) =K(vq) -¥(q). Assume that the
spray GK exists and maps P into TP.

The domain D of GE‘ the associated Lagrangian vector field, is

0=TQ1D, where D, is the domain of gradV. He have the formula

GE(vq) 2 Gx(vq) - | grad ¥(q) Itq, vq en,
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where | |
‘a

into Tv (TM) given by
q

denotes the canonical injection ("vertical lift") of IqM

2 d
[uqlvq = Hf(vq'*t“q)!t=0‘

In the next section we will briefly discuss some problems connected with
incompressible elasticity. To do so we shall need some general facts about
constrained systems in the context of the present discussion. A crucial
fact we wish to emphasise is that in many cases the property of having a
smooth spray is not destroyed by the presence of constraints. For the case
of an ideal fluid with the constraint of incompressibility this fact was
discovered by £bin and Marsden {77]. It has considerable technical utility
for analytical purposes as well as being of interest in its own right. In
the next section we shall explain how this same result can be used in

elasticity.

Theorem Let M be a weak Riemannian manifold possessing a smooth spray
S:TM — T2M. Let N be a submanifold of M. Suppose that, for each
n €N, there is an orthogonal decomposition* TnM =TnNc»cn. Using this
decomposition, define a projection P:TMIN— TN. Assume P is smooth.
Then the restriction to N of the Riemannian metric has a smooth spray,

given by
SN = TPo S at points of TN,

The verification of this theorem is straightforward. The difference

t : fas .

The existence of such decompositions is automatic for strong metrics. For
:ﬁak metrics it usually relies on the Fredholm alternative and elliptic

eory,
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SI -$ is vertical over N, and so it may be identified with a vector field

K

on NCHM. This vector field is orthogonal to N; intuitively, it gives

the "forces of constraint® which ensure that particle trajectories remain in
N. For incompressible fluid dynamics or elasticity, this force of
constraint is, of course, the pressure gradient.

In addition to the above considerations, we also will wish to regard
elasticity as a Lagrangian field theory in the classical sense. We can then
make use of the Noether theorem on conservation laws, etc. The remainder of
this section reviews this topic. (See, for example, Hermann (121] and
references therein.)

Most classical field theories work in the context of vector or tensor
valued fields. This means that one deals with sections of a vector bundle.
Examples like elasticity show that one should in fact be dealing with fiber
bundles. (As we already saw in the first section the fields ¢ in
elasticity do not transform like vectors but rather like point mappings.)

Let w:E — M be a fiber bundle and let J'(E} be its first jet bundle
(see, e.g., Palais [2071). By definition, its fiber over a point x €M

can be written
s ! i 3
J’(E)x = (4,08, ) 10, €E =7 {x} and & is a linear map of

TxM to Tthx).

We shall assume that M is endowed with a volume element u and that E
is equipped with Riemannian structure on each fiber as well as a connection.
If & is a section of E, then its first jet is the section of JHE)

given by

j(2) = ¢ wDe



é{"\

where l: is the covariant derivative of R
To ircorporate the velocities ¢ we need to take a variation of the
fields :. Let vs define a new bundle £ over M by giving its fiber over

X €M

z(:x.$x) l:x €K, ¢, € Téxix}'

(LN

C

Define t~e bundle F over M whose fiber over x consists of triples ¢,
X

b &

Fx = ((ox'sx’éx) ! (éx,éx) € éx, (¢x‘5x) e Jl(E)x}‘

(R "diagonal® in J}(E) @ £).

A Lagrangian density is a map
L:F— R
and we shall, with abuse of notation, write
£(x,2,6,09).

(For much of what follows, x is irrelevant and is suppressed. )

Let x denote the space of sections of the tundle £ of an appropriate
differentiability class. {For elasticity, boundary conditions of place are
to be inpesed on x as wel); for the traction problem, see below.) Then
Tx can te identified with the space of sections of the bundle . {for x
the space of configurations in elasticity, the bundle is HxH — with 2
configuration 3 :M ~ K jdentified with the section X =~ (X,8(X)).

Then the description of Tx here coincides with that of Section 4.)

Writing a section of E, i.e., an element of Tr, as (¢,4) we define

the Lagrangian L({$,8) by
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L:Txy —~— &

L(6ad) = [£0x.0(x).8(x),Ds(x))au(x).
M

Hotice that I can depend explicitly on the base point x € M,
because £ is 2 map on EJY{E), and the fibers depend on the base point.
In general relativity the metric is one of the fields, so u depends on the
fields. In this case it §s better to regard £ as a density than a scalar.
In our discussions in Section 2, the metric g was included as a variable in
L but only as a parameter; it was ;;t a field variadle. In relativistic
elasticity, g will be a field variable; our formalism developed in
Sections 2 and 3 makes coupling with gravity fairly natural.

We choose for the configuration space Q=. a suitable Sobolev class of
sections of E. With the appropriate choice one can prove that L{¢,é) is a
smooth function of (¢.$) by using the composition results of Section 4. Then

one caneasily establish formulae like the following (using the obvious notation):
DL{&,d)+(hh) = D;L(6,8)+h+DyL(6,8)+h

= [35E(0u6000h dus ([3,2(0,8,0) i+ [3,8(0,8,06) D ).
M M M

Consider now Lagrange's equations derived above:
8 DiL{s,3) = 0,L(5,3)
a? & v & vev)e

This means that for any section h, the relation

%]352(0.5.00)-hdu= I%J.'(o,é.,u@).hdu, 139,5(3-5.0:)'%@

To get the
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holds. This is exactly the weak form of the field equations.



strong form, assume h has compact support or vanishes on M and that we
have enough differentiability for the second integral on the right hand side

to be integrated by parts. We then get

3 - ] -di -
L{Eiaétl hdp L{a°£ d1vBD¢£} hdu.

Since h is arbitrary, we must have the Lagrangian density equation

2 e
Felgh) = 38 - divag,L.

The expression on the right hand side is often called the functional

derivative of L and is denoted

% = 3,k - div 3L

The above formalism is suitable for field theories in all of space or with
Dirichlet boundary conditions, i.e., in elasticity, the displacement problem.
For the traction problem however, integration by parts leaves a boundary term
so we shall have to modify things, as follows.

On using elasticity terminology for general field theory, let

Ta2E
E D)

be the first Piola-Kirchhoff stress tensor. Suppose, instead of ¢ being

prescribed on 3M, the traction T-N=1 is prescribed. Here we assume the
fibers Ex are embedded in a Yinear space so this makes sense, and N is

the unit outward normal to M. Now consider the Lagrangian

L{s,3) = J£(o.$,no)dn + I¢°t da.
M

Then the same procedure as abave shows that (if we have enough
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differentiability to pass through the weak form of the equations) Lagrange's

equations
4 0:L{¢.9) = D,L{048)
LI e CRhA

are equivalent to the field equations

and the boundary conditions

TH=1 on 3M.

Thus we conclude that with this modified Lagrangian, the boundary
conditions of traction emerge as part of Lagrange's equations. (This fact
is important in numerical work since T-N=71 are, in general, nonlinear
functions of ¢ which are hard to impose in practice; cf. Oden and Reddy
1205}.) .

HWe now consider Moether's theorem. As we saw above we can establish
conservation laws for the total energy or other quantities under rather
general circumstances. Noether's theorem gives results which are formally
stronger (and really are stronger if we assume encugh differentiability).

We begin by proving a conservation law for the energy demsity.

tet L:E®J¥(E}) — R be a smooth Lagrangian density and Jet ¢(t) be a
differentiable curve of sections of E such that the Lagrange density

equation of motion holds:

b _ ai
si(aéz) = 3¢£ dlvanof.

Define the energy density by &=636£~£. Then & obeys the conservation

equation {“continuity equation")
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o
2.
(3

|

div(ésbet) = 0.

had
-

Indeed, using the chain rule together with the equation of motion, we fing

s By 3L
s ﬁ(é?‘f) ~ 3%

$3

.L*.’a_ S) -3 s - nl.
& edt(% ) ¢Dé£ $3,L - Do amr
= $:2(3;L) - 83 L - D3 £
FALR o " Dy f
= §{a L-div 3put} - éa°£ - Dé~au¢£

z -a -0,
S divap£- ey

-div(oan¢£).

One can similarly localize the conservation laws associated with general

symmetries.  This proceeds, briefly, as follows, Let ¥y be a flow on M

and let A be a flow of G on E, preserving fibers, covering ¥y.  This

extends, naturally to a flow on JME), called say q,. (It is determined
by: ?tvj(o)ﬂvi‘ = j(?t°e°?;’) for & a smooth section of E.) et &y
and & be the corresponding infinitesimal generators on M and €,

Assume that £ §s ipvariant in the sense that Ly is unchanged under pyll-

back:
Lo{¥, ® ¥, )eu = Lo,
If ¢ is a solution of the Lagrange density equations, set

75 = L;M + aoef'(§£°° - n¢-£H) {a vector field on M),

and
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j& = 36£-(ctu@ - D¢'£H) {2 scalar field on M), -

where £ stands for L{&,5,D4) etc. Noether's theorem states that the

following identity holds:

o,
{3 : s
-—3? + div T{‘- 0.

and it is readily proved along the lines indicated in the proof of the

conservation law for the energy density.

10 THE HAMILTONIAM STRUCTURE OF HOHLINEAR ELASTODYNAMICS

{n this section we show that elastodynamics in the hyperelastic case is an

infinite dimensional Hamiltonian system. For thermal or viscous effects, it

becomes a Hamiltonian system with dissipation, as in the linear case.
Two applications of the Hamiltonian structure will be given. First of

all, we show how the conservation laws of Knowles and Sternberg {158] and

Fletcher {89] can be obtained using standard conservation theorems for

Hamiltonian systems. Secondly, we show how conditions of incompressibility

can be dealt with using ideas of Ebin and Marsden [ 77} and Ebin [ 76}.
He begin with 2 description of the Hamiltonian structure. This consists
of putting the standard variational methods in the geometric setting

described in the previous section. (See Oden and Reddi { 205) and Duvaut and
Lions [ 73] for the traditional variational approach and Blancheton {27] and
Chevallier |40 | for work related to ours.)

As usual, we Jet ! denote the reference configuration of the body. We
assume M is a smooth compact manifold with boundary. For technical
reasons related to smoothness, we shall deal with the displacement and
traction problems separately and not with mixed boundary conditions.

tet x be the set of all regular configurations ¢:M —— N of class
24
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“s.p' 1 >-% + 1 which, in the case of the displacement problem, have their
assigned values on M. As described in Section 4, ¥ will be a smooth
manifold. Its tangent space at ¢, as shown in that section, consists of
vector fields v:M — TH covering ¢; i.e., u{X) € T¢(X)N. {Compare
the definition of the bundle E in the previous section.)

Consider the equations of motion derived in Section 2:
pah = DIVT + peB;

ve assume T = po(aW/3F) for a stored energy function W, where F=T¢ is
the displacement gradient, as usual. HNow define the potential energyf

V:x—~ R by
V(o) = Ioow(r)uv . ]o.a-wv
M #

{+ Jr-¢dA for the traction problem).
M
{Here we explicitly assume H=H" so that t:3; — " and 746 and
B-$, the inner product, makes sense.)

Define the kinetic energy K:Tx — R by
K(u) = }qu lull2av,
M

and Tet Hek+V, LaK-V, and £(6,4,03) = Jpoldll? - poH(D3) - ool as
usual. The Hamiltonian system corresponding to this energy function is

defined by Lagrange's equations:

*The term B+¢ appears a little strange but it is because of the dead
loading. If b were prescribed, we would use \*o¢ where AX> is a
potential for b.
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F05L(6:8) = DL(0,8).

As explained in the previous section, these equations are precisely the
weak form of the equations of motion {and boundary conditions in the traction
case).

te shall now use Noether's theorem to derive conservation laws for
elasticity. From the Kamiltonian point of view, this is straightforward,
{We have already considered the equation for emergy in the previous section,
50 it can be omitted.)

In carrying this out,it is important to keep straight spatial and material
invariances; i.e., invariances under transformations of N {the space) and
of M (the body) respectively. Such ideas are implicit in work of Arrold
[9] for instance, and it is in this respect that our treatment differs from
that of Knowles, Sternberg [158] and Fletcher {831, (These authors prove
more in the cases they consider. They show that the only transformations
which produce the desired infinitesimal invariance of Lu are those with
vhich they started.*)

Let us begin with spatial invariance. Let ¥, bea flow on R
generated by a vector field w. This gives a flow on the bundle MxN — M
by holding M pointwise fixed and moving N by Y¥,. Thus, invariance of

L reads:
£(X,2,(6),0¢ (8)+¢, DU FN(Y,) = L(X,8,4,F),

as an identity on £ 1in its arguments X, ¢, 4, F.  Hoether's theorem now

*These conservation laws can also be carried out for plates and shells in an
analogous manner.  See Naghdi [194) and Hughes and-Marsden [132]. HNotice
that the results here include, as special cases, the linear case and the
static case.



states that if ¢ satisfies the equations of motion, then we have the

identity

595(35:-\.;) + DIV(3eLow) = 0;
i.e.,

afaL

ﬁ{@""ﬂ] * [a(ac%x“) ]lA

Using the equations of motion, this can be simplified to

3L Dued + B L-Dw-F =

i.e.,
L 2 b L a3 b
—w . + w  F, =0,
28° Ib aFaA o™ A

(In the notation of the previous section, Ey= 0, and &E = (0.w))
For #=R' and choosing
{i) ?t an arbitrary translational flow: ?t(x) =x+tw, W a constant

vector, we recover the equations of motion

Iv

2

=T + DIVaFI = 0,

[+

é
i.e., balance of momentum. (The invariance of £ does not depend
on the point values of ¢; cf. Section 3.)

(ii} Y, an arbitrary flow of rotations; here w(x)=Bx where B is an

arbitrary skew symmetric matrix. Noether's theorem {together with

the equations of motion) now gives:

mraé+aF£¢

@
is symetric. For elasticity, a.le$ = 2Ldb. gagb | i
yrmetric, or elasticity, a°£eo=—c oo 15 symmetric,
o

I%‘j

so this reduces to the assertion that t=TF 1is symmetric; i.e.,
balance of moment of momentum. Again, this invariance assumption

will hold if £ depends only on F through C, as in Section 3. )

Rotice that Noether®'s theorem provides a natural 1ink between balance laws
and material frame indifference. The assumption of material frame
indifference plus the above Hamiltonian structure implies the usual balance
taws. Thus, from an abstract point of view, the foundations of elasticity
theory written in terms of a Lagrangian (or Hamiltonian) field theory seems
somewhat more satisfactory - certainly more covariant - than the usual
balance laws.

Next we turn to material invariance and let A, bea flowen M
generated by a vector field W on M. This induces a flow on the bundle
MxN by merely holding N pointwise fixed. An important remark to be made
is that Hoether's theorem is purely local. Thus we may consider rotations
about each point of M but restrict attention to a ball centered at each
such point. The result of Hoether's theorem is still valid since the proof
is purely local. This is necessary since we wish to speak of isotrapic
materials without assuming M itself is invariant under rotations,

Invariance of £ under nt now reads as follows:
£(4,(X)48,8,00DA, )3(,) = £(X,8,4,02)

as an identity on £ 1in its arguments.

Noether's theorem in this case states that

LDp-MY + DIV(BFI D&+ - LU) =

i

at(a

2L 2 B A
W - LW = 0.
aF?y B ]IA



{In the terminology of Noether's general theorem of the previous section,
Gy & = (W,0}. Note that the “field values" of £p ore 2ero.)
Again this can be rewritten using the equations of motion, if desired.
fNow assume M s open in R and:
{i) At is an arbitrary translation ht(X) =X+tH, W a constant vector.
Then £ will be invariant if it is homogeneous, i.e., independent of

X. In this case, lloether's theorem yields the identity:
93l .2 of ca - -
et Al YAl e
3F%g 1}
j.e., for any subbody U CM, with unit outward normal Hps

3 {af ca_, a
ﬁ[%—a v = I(mA S Figlan.
y 33U B
This identity expresses conservation of momentum; indeed, for

elasticity,

fggF&A DoﬁaFaA
is just the momentum density expressed in material coordinates.
Thus,

o, - 2Ny = oy - TEFN,
aF? B

{where T 1{s the first Piola-Kirchhoff stress tensor} may be inter-
preted as a momentum flux. (If L[ is independent of X, the
rcmentunm identity can be verified directly using the equations of
motion and the chain rule on I,A.)

{i1) At is 3 rotation about the point Xo, then W=B{X-Xo) where B

is an arbitrary skew symmetric matrix. We can write, in vector

notation,
W= V*(X-XQ).
where Y is a constant vector, or

H = cﬁecv"(x"-xf),

where CABC is the alternator. MNoether's theorem becomes (in

fuclidean coordinates):

= 0.
lo

ﬁl

3 (€ a_ABC af .a ABC, _ . DBC
{ 3 A Xc] + {?aDFAﬁ Xc Le Xc

Here this expresses a conservation law for the actual angular momentum
of the body. For it to hold L must be isotropic in the sense

discussed in Section 3.

1f £ is also homogeneous, then using the identity in (i), {ii)

reduces to
ABD
=0,
a R
aF b
i.e.,
ToFac M0 .o, B21,2,3.

If one uses the standard isotropic representation for T, one sees

directly that this identity holds.

Remarks 1. R11 of this can equally well be done from 2 space-time point of

view,
2. Other symmetry groups {e.g., dilatations, etc.,} can be dealt
with in the same way.

s our second application of Hamiltonian methods, ve shall discuss
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incompressible elasticity. Here we impose the constraint J=1; i.e.,
divv=0, and replace the Cauchy stress t by t+pl where JtFo! = o,%‘g,
that part of the stress derived from a stored energy function and where p
is determined by the incompressibility condition. Interestingly, the
geometric ideas developed in the last section can be of technical benefit
for the incompressible case. Cne of our goals now is to explain why this is
s0. The ideas for this program are due to Ebin and Karsden [ 77 ) for the
case of fluids.

As we have seen, the equations of elastodynamics may be regarded as a
Himiltonian system with configuration space x. For incompressible

elasticity we work with
X2 {6 exlJ{d) =1},

Recall that in the displacement problem ¢ is fixed on 3M, but no boundary
conditions are imposed on ¢ for the traction problem.

To distinguish the various spaces, we introduce the notation

x, s f6:M — H1¢ is regular and J(¢)=1},

0 {6:M — Hle is regular, J(¢)=1 and &(3H) C aM},

=, 0" {4:M% — NIl& is regular, J(2)=1 and ¢(X)=X for X € 3M)L

LR

Proposition In W'P, s >%+1. each of these spaces is 3 smooth sub-

manifold:
*u,0 C"u.ﬂ €5 cx

Their tangent spaces are:
Tt = (UE Téxldiv(uw") = 0},

b 14

a 3 “ly . < at
1%, q° €T ldiviues™)=0 and u is parailel to &M},

2 4 i od 1Y = =
T@"u.o {ue Ta.,.ldw(u 4" ')=0 and u=0 on M}.

The proof relies on the Hodge decomposition. lLet P" denote the
projection of a vector field onto its divergence free part parallel to the
boundary and P be the projection ontoe the divergence free part,

corresponding to the orthogonal decompositions:

u=v+vp, divv=0, v,
and

u=v+Vp, divv=0, p=constant on oM,

respectively.
The proof that .fu and afu g are submanifolds using these decompositions
9
is given in Ebin-Marsden [77] and need not be repeated. (For x“ g one
»

considers the map

Bix, |, — ws={/PhP o amy

¢ — ¢ 1M,

and shows it is a submersion).

The appropriate phase space for incompressible elasticity is :4'“. or
.xu'“ for the displacement problem. The space 'xu.O will appear as the
domain of the generator in the displacement problem 2long with other

compatibility conditions depending on the degree of smoothness assumed.

Proposition The equations (and boundary conditions) of incompressible

elasticity are equivalent to Lagrange's equations for the usual tagrangfan
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L{6,5) = gjo,néu*dv - ]agN(F}dV - [o.l);wdv
" M M

(- |1-20v for the traction problem)
M

ar

defined on Tt 4 {or Tx, for the traction probiem).
*

The proof of this proceeds in the usual way cutlined earlier.

tlow define the bundle map
Pilxlx, — W,
u b Pluos™!)oed,
{and similarly on X, ll)'

Theorem P is a smooth mapping from the w>*P topology to itself,

>R,
H 5 1

This result is at the heart of the paper of Ebin and Marsden [77].

Indeed, it shows that the spray on the space X {s smooth and so the

B, I
local existence and uniqueness of geodesics becomes trivial. This is one
way of proving the existence and uniqueness theory for the Euler equations
for an incompressible fluid.

for elasticity, we know that the equations can be written, using the

results of Section 9, 3s

2 .
2% = 1es(,8) - 1P gragv(e) 1

where § is the spray - the algebraic Christoffel symbol terms in the

equations of motion. Since P is smooth we see that these equations differ

from the compressible equations

nen

2 "
B2 s(04é) - larad V(o))

by the application of the smooth map P.

For the case of elasticity with boundary conditions the initial value
problem is not yet completely settled and is very complex. Kato {142] has
proved lacal existence and uniqueness, but not continuous dependence on
jnitial data. (We shall remark on this in the next section.} For all of
space however, Hughes, Kato and Marsden | 1291 have shown local existence,
uniqueness and continuous dependence on the initial data in K xps
spaces, S >-% (again see the next section}.

1f those proofs are examined, it will be seen fran the fact that P is
smooth (so P and its derivative are Lipschitz from H to Hs). that the
estimates needed in the abstract existence theorem are not damaged.

Therefore one can conclude that for the equations of incompressible

elasticity in all of space, under the usual strong ellipticity condition we

have local existence, unigueness and continuous dependence on the initial

data in HS*D xS,

We conclude with a few remarks on the incompressible limit, based on Rubin
and Ungar | 223] and Ebin [ 761]. If we imagine the incompressible pressure
p replaced by a constitutive law pk(o). where (dpk/dc) =k, so 1k is
the compressibility, then a potential Vk is added to our Hamiltonian which

has the property:

V(o) =0 if s€x,

vkw)k—- w if S EX.

won
In such a case, it 35 intuitively clear from conservation of energy that this
ought to force compressible solutions with initial data in X, to converge
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to the incompressible solutions as k — oo,

Such convergence in the linear case can be proved by the Trotter-Kato
theorem (see Section 5}. Kato [138] has proved analogues of this for non-
Tinear equations which, following Hughes, Kato and Marsden [129], are
applicable to nonlinear elastedynamics. These approximation theorems may
now be used in the proofs given by Ebin (76]. Although all the details have
not been checked, it seems fairly clear that this enables one to prove the
convergence of solutions in the incompressible limit, at least for short
time.

¥e also mention that the smoothness of the projection P and the
convergence of the constraining forces as k — o should enable one to give
a simple proof of convergence of solutions of the stationary solutions by
merely employing the implicit function theorem. (Rostamian [222] gives some
complementary results in this direction but in larger function spaces than

may be appropriate for the methods just outlined.)

11 A SURVEY OF SELECTED NONLINEAR PROBLEMS

In this final section we shall describe briefly a few problems in nonlinear
elasticity which we feel are fundamental. MNeedless to say, there is a vast
number of basic issues not described here. Qualitative and global problems
in bifurcation theory and global existence of weak solutions {even in one
dimension) are just two of these.

We shall consider first some aspects of nonlinear elastostatics and then
move on to elastodynamics.

1. (Minimizers and Globa) Analysis) The existence of minimizers for the

total energy in hyperelastostatics has been demonstrated by Ball [ 12,15}

under conditions which do not imply uniqueness of solution. The usual
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convexity arguments (cf. Beju 24]) are unsatisfactory because they preclude

non-uniqueness and hence buckling. However many basic problems remain:

(a) Are the minimizers found by Ball regular enough to be called

solutions?

{b) Can one develop a Morse theory which enables gne to count

solutions algebraically?

The -usual Morse theory, as developed by Palais and Smale (see, €.9.,
schwartz {2251) is suitable for semilinear problems, but is not applicable
for many quasi-linear problems such as elasticity (The same can be said for
existing topolegical methods in bifurcation theory, such as Rabinowitz
[216]; however as Antman and Rosenfeld { 8] have shown, some quasilinear
problems can be made to be semilinear if a clever change of variables is

n
made). The work of Tromba [242] on the Plateau problem seems to be 3

important step towards dealing with these questions. For semi-linear

approximations a great deal is known. The von Karmen equations for a plate

is a good example. See, for instance Berger [ 25] and Hale [118]).

2. (Embedding in the Dynamics) It should be borne in mind that in elasto-

statics one is studying the fixed points of a dynamical system and that the

problem may not be considered completely solved until the dynamical structure

enveloping these points is understood, i.e., are the points dynamically

stable, unstable or saddles? Are there periodic orbits nearby, etc.

{Remark 5{a) below is relevant to this discussion.) Again for semilinear

approximations, a great deal is known. See, for instance, Reiss and
Matkowsky |2181, 8all (11] and Holmes and Marsden [128]).

3. (Stoppeli's Results On the Traction Problem With an Axis of Equilibrium.)

A method for analyzing this problem will only briefly be sketched here, with

details given elsewhere (Chillingworth and Marsden [42]). In Section 8 it
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c

was explained that in the traction problem where the loads have no axis of
equilibriun and are sufficiently small, the nonlinear problem has, locally,
unique solution. For the case of an axis of equilibrium, Stoppelli [236]
has shown that there may to 0, 1, 2 or 3 solutions (under suitable
hypotheses} and he showed how to expand the solutions in power series in o,
Tl or Vioi. Actually, if the hypotheses are relaxed further, it seems
that using the methods below, one can get up to nine solutions near
equilibrium {e.g., four saddles, a maximum and four minima).

Our point of view is to use the methods of Catastrophe theory and gencric
?ifurcation theory. tet x be the space of configurations of a body M
and eliminate translations by taking, say ¢(0)}=0. Define, following the

Hamiltonian ideas in Section 10,
Vix— R

¢ — [oN(F)dV + Iooﬂ-vzdv + [x-fbd.-\.
M M 3M

Then the .solutions of the traction preblem are exactly the critical points of

Y. Catastrophe theory is precisely suited for such a situation, and its

application to elasticity is not unusual (see Chillingworth [41] and Zeeman
f2e3l).

We can regard ¥, B and < as parameters in VY and can seek to find the

structure of the set of critical points of V, Let us write, therefore,
¥{4: W, B, 1}.

Material frame indifference tells us that if Q is orthogonal,
¥(Qs, ¥, B, 1) = V(¢, W, Q7'8, Q" F1),

so V has an equivariance property with respect to the action of the
2541

orthogonal group on X and the parameters, which must be taken into account.

The condition that B and T have no axis of equilibrium implies that in
the appropriate quotient space, d¥ will have a unique critical point near
equilibrium if B and 1 are emall. This procedure gives what seems to be
a more gecmetrically transparent approach to stoppelli’s results. " 0f course,
secretly the method is the same as that outlined in Section 8.

Next, suppose B, 1 have en ixis e of equilibrium. This time ¥ has
a degenerate critical point in the quotient space. By passing to the
bifurcation equation we eliminate the strivial” directions and obtain a
problem in one'variable (corresponding to assuming that the axis e is
*non-degenerate”).

We make the gemeric assumption that the Taylor expansion of W as a

function of the Cauchy-Green tensor C has the form
W(C) = aC + ¥C* + ...

where y #0.
How we hold everything fixed except a and 6 ({a scaling parameter in

B28Bg, t°61¢). Then V has the form of a quartic:
¥(x) = yx* + ax* + ex + h.o.t.

Its critical points form 2 cusp, 2s shown in Fig. 12,

For various values of a and varying © note that we get either one or
three solutions. (If the axis e is rotated, the picture will rotate
accordingly.) For example, if we pass through the origin along the § axis,
we get 3 unique solution whose amplitude varies with Viat .

Using these methods we can reproduce Stoppelli’s results. Utoreover, it

is expected that if there are two axes of equilibrium or a degenerate axis of
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equilibrium one obtains a double cusp in which up to nine solutions are
possible. This is intended to complete Stoppelli’s classification of the
structure of the set of solutions.

In the language of 54, the nonlinear equations in the presence of an axis

of equilibrium are linearization unstable. As such, we know that any

possible directions of perturbation must satisfy certain compatability con-
ditions. This reproduces the Signorini compatibility conditions in a
perturbation expansion {See Truesdell and Holl [248]), p.226+).

1f one views the equilibrium solutions in the context of the dynamics, one
sees that the linearization instability in elastostatics disappeers:
i.e., there is no reason to reject either linear or nonlinear elastostatics;

the fact is that the lincarized theory does not give solutions which to first

Ton incompatibie cases, the solution given by the infinitesimal theory
cannot be the first tem {n a series... satisfying formally the particular
problen of the finite theary”. Compare with our discussion in Section 4.

N

order approximate solutions in the nonlinear theory. These points are
discussed in Truesdei} and Noll [248] and in Capriz and Podio Guidugli [33].
{The example of a nonlinearly bent plate discussed in the latter is useful for
seeing what happens physically.)

4. {Well-Posedness of the equations of nonlinear elastodynamics}) In

Hughes, Kato and Marsden | 129] the equations of nonlinear elastodynamics in
311 of #" are shown to be locally well-posed in X =H*1xu® for S>%f 1.
This means that for short time, there exists unique solutions depending
continuously on the initial data.

The idea is to consider an abstract quasi-linear Cauchy problem

u + Alu)u = fu),
u{0) = ¢.

One sets up a2 map of functions u{t) with the given initial data to the

solution of the frozen coefficient equations

v + Alu(t))v = flu(t)),
v(0) = ¢.

Note that we now deal with time dependent linear equations and for them the
results of Kato [138] are used. If A{u) is a generator for each u
{which as verified in Section 7 is true for elasticity) and certain other
technical conditions hold, one can show that this map has 2 unique fixed
point which is the desired solution.

A delicate part of the analysis is the continuous dependence on the
jnitial data. Indeed, as remarked in Section 9, this dependence is not in
general ltocally Lipschitz.

One of the key features of the analysis is the use of several Banach



spaces, YCXCZ. Here for each v € ¥, A{u) is a2 generator in Z of a
quasi-contractive semigroup which leaves Y invariant (i.e., is Y -stable)

and D{A) C X. One assumes there is an isomorphism
S{u) € B{Y,2)

such that
S(u)A{)S(u)™! = A{u) +B(u),

whgre B{u) € 8(Z). This isororphism S plays a fundamental role. The
rest of the assumptions needed are more of a technical nature and we refer to
the papers cited for details.

Smooth solutions will not exist globally in time because of shocks.
Finding spaces to deal with this is a major open problem.

For the initial boundary value problem, Kato [142] has shown local
existence and unigueness, but the continuous dependence on the initial data
is not yet known. The major complication which needs to be dealt with is
the compatability conditions and the possibility that the domains of powers
of A will be time dependent, even though that of A is not. All of this
is caused by the degree of smoothness required in the methods.

We shall now sketch out an idea which may be useful in proving the

continuous dependence. Write the equations this way:

u hb(u) = 0,

Uy = 0,

where A(u) sA{u)-u and we have dropped the term f{u) for simplicity.

Suppose that the boundary conditions are written

B{v) + 0, u €& D).

T

¢

If we seek solutions in the domain of {A{u)1’, then the compatability

conditions for the initial data are obtained by differentiating B{u}=0

twice:

(i) B(¢) =0,
(ii) 8 (8)+h(s) = 0,

(111) B (o) (M¢)

A(3)) + B (8) 4 (¢)-A(0) = 0.

The difficulty is that even if 8(¢)=0 are linear boundary conditions,

this is a nonlinear space of functions in which we seek the solution.

Let

C denote the space of functions satisfying the compatability conditions.

It seems natural to try to show C is a smooth manifold.

itself is linear for simplicity.

Proposition

{a)
(b)

Let ¢ €C and assume

B is surjective,

the linear boundary value problem

A (8)w =

oy Bv =0,

has a selution ¥ for any o,

{c)

has a solution y for any p [Note that in case sb{6)=A(s)-2,

the linear boundary value problem

AT (0 AS)0) + (& (0))2v=05 B-w=0, BK (¢)9=0

highest order term

neighbourhood of ¢.

Proof.

Let C; =kerB,

We assume B

this has

(A(0}2-¢]. Then C is a smooth manifold in the

the "first" boundary conditions.

Hap



¢ € Cy — B (0):A(8) = B-A(s).

4 given by

Ly

This has derivative at

v B (o)e0.
Since B is surjective and 4’ ($) : kerB— (range space) {s surjective by

{b), this map has a surjective derivative, so

C; = (& €Cyl BeA(g) = 0)
:By=0 and

is 2 submanifold of C, with tangent space T7,(y={y

88 {¢)+¢ =0}, by the implicit function theorem.

Finally, map
C; — (range space)

¢ b B (¢)-A(e)

vhich has derivative

v Be(AT(0MA(S) ) + (A (e)P).
Thus, by assumption (c}, this is surjective on T¢Cz. Thus,

Ch={oC€CiB-X(2)Me)=0}=¢C

is 2 submanifold by the implicit function theorem. [}

We want to solve

%% Ay =0
for u(t) € C given initial condition ¢ € C.

the local diffeomorphism

To do so, we can try using

$:C — {linear space} = ¥
in C to a ball in a linear space obtained

We write

mapping a neighbourhood of ¢
is only defined implicitly.}

from the proof above. (S0 %
#{s)=3.
Let v=¢(u). Thus

3 s o O
¥ (TN ),

so v satisfigs

%% +£—(v) =0
where A(v) = ¢ (071 {v})-A{¢"(v)).
{In gecmetry notation,

ﬂ' = °'-7$)-
[f the modified problem is well-posed, then clearly the original one is as

¥e can choose Y={¢|By=0, B-A{¢)r=0 and B-A{¢)(4(¢),¢)+

well.
(A ($))?0=0} and let ¢ be the projection of C onto Y; see Fig. 13.

all fns,
C
\ /10/ .
¥ = fns. satisfying
3 linearized compatability
conditions at ¢.

Fig. 13.
v lies in the fixed linear space Y and s0 we

In the new formulation,
¢an reasonably suppose that a fixed “S-operator™ can be chosen.



Kow let & (u}=A(u)-u, Since % is a linear projection,
A(v) = Mo V)27 (v)

(+='(v) €C) is still quasi-linear, Since ¢ projects onto Y,
Ale) = A(e)¢ = A(s)

so we should be able to take S to be the 5 that works for A{¢).

In this context it seems reasonable to ask that the abstract quasi-linear
theorem in Hughes,Kato and Marsden | 129 ] applies to the new system o If
it did, one would be able to prove continuous dependence for the initia)
bou-ndary vatue problem.

5. {Jhe Energy Criterion) The energy criterion for elasticity, or more

generaily for a Hamiltonian system of the form H{x,x)=3Ixl? +¥(x), states
that if xo is a minimum for the potential emergy, (x,,0) is an
equilibrium point, then (x,,0} is dynamically stable.

This criterion has been discussed extensively in the literature. See,
for instance, Koiter [164,165), Knops and Wilkes [157], Gurtin [110) and
references therein. In particular, examples like V(x):}(ux’ -ux‘) in one
dimension (see Knops [146] and 5{a) below) suggest that for elasticity, such
a sweeping criterion is probably false.

To obtain a rigorous result, two assumptions are usually made.

(S1) There is a continuous local semiflow (perhaps consisting of weak

solutions) defined in a neighbourhood of (x0,0) in some Banach space

such that  (a) H{x,x) decreases along solutions and
{b) there isan n>0 and 1 >0 such that initial data
in the ball of radius n about (x,,0) can be con-
tinued forward in time by an amount at least 1;
(S2) x¢ 1lies in a potential well; i.e., there is an € >0 such

that {3} Vixo) <¥(x) if 0< lix-xoll <¢, and

{(b) ofc)=: inf V() > V¥{x:), for all 0<¢ <e¢,
Hx=xqll= ¢

The following is then wel) known from the above references.

Theorem 1f (S1) and (S2) hold, then (x,,0) is dynamically stable (in

the Liapunov sense).

Proof. MWe must show that if Ix{0)Il and Ux{D) -xo!l (these are different
norms in general, but it is irrelevant here) are sufficiently small, then the
solution can be continued for all time and remains in 2 neighbourhood of

{x0,0). By the fact that energy is decreasing, we have
JUX{t) N2 + V{x{t)) < 30x(0) 1% + V(x(0)).

Choose 31x{0}11? <min(p{e’ ) -V{Xo)},36%) where 0 <2 <¢ and

{{x,X)) Hx ~xoll <2¢', I <8} is a ball about ({x,,0} in which (S1)(b)
holds. let {0,T) be the maximum interva) for which the solution remains
in the ball {{x,x}I Mx-xoll <¢&', Uxll <&}. Assume T <o, Then since
x(t), x{t) fis defined for some (0,T+1) and satisfies (x(t)-xoll <e,
we have V(x{t)) ® V(xo) and so Ux(t)N<UX(0)}I<&. MNow this implies

that lIx{T) =xoll = ¢ . Hence,

o{c’ ) < ¥{x(T))
< JIx(0) 42 + ¥(x{0))
< {o{c" } - ¥{x{0)}} + ¥{x{0))

= olc" ).
which is clearly a contradiction. Thus T=4+e, QO

Remark If we modify (S2)({b) by only assuming o{c") > V{xs) for some
¢ >0, but assume §n (S1) that n can be arbitrarily large {with 1



depending on n), and in particular n > 2¢’, then the same result is true.
5.(a) (An Example} As in Remark 4 sbove, there are lots of spaces in
which one can get a local dynamical system, but virtually nothing is known
about the validity of condition (S1){b}), even in the simplest examples,
However one can run into serious trouble trying to verify (52) as well, as
Knops [146) and Knops and Payne [154] have shown. We shall illustrate the
difficulty with a general example {8all, Knops and Marsden [161).  He give
the result for the interval [0,1]) with zero boundary conditions for the dig-
placement u(x), but the argument is rather general. Let up(x) =0 denote

the trivial equilibrium solution for a potential
]

Y(u) = [u(ux)dx.
Q

The result shows:
(a) positivity of the second variation {in W!'»? = H'} at the trivial
solution Jmplies u, locally minimizes ¥ in a topelogy
as strong as W''*™ although it need not locally minimize V in
WsP for any p, 1<p<es, Ip any topology as strong as !>
we always have

inf  V{u) = Y(us)
"ll'lla l=e

for ¢ sufficiently small; i.e., {52){b}) necessarily fails in

topologies as strong as '™,

Thus, the only spaces Teft are ones like ':P where (S2){b) is possible
Then ($2){2) may be verifiable using suitable convexity assumptions (like
convexity in one dimension and Ball's polyconvexity in higher dimensions).

Of course this stil) leaves (51) wide open.

For the details, we let W:y — o be 3 smooth function with ¥ (0) -0

and W (0) > 0. As in the example in Section 8, uy is an extremal and
the second variation of ¥ at u, is positive definfte, Let X be a

Banach space continuously included in W'»®. Then there is an ¢ > 0 such

that
if 0<lu-uolly <ec then V(u) > V(up).

j.e., up is a strict Tocal minimum for V. This follows trivially from
the fact that O is a local minimum of W and that the topolegy on X is
as strong as that of W',

In W!''P ohe cannot conclude that uy is 2 local minimum. Indeed the

- " :

example H(y,) = s(u; - u;) shows that in any W!'*P neighbourhoed, V{u)
can be unbounded below, even though its second variation at up, is positive
definite.

Finally, we show that

inf V{u) = V{up).
lu-u, IIX =g

Indeed, by Taylor's theorem,

1
¥(u) - V{vo) = !(H(ux) - H(0))dx

1.1

. [ I(I-S)H"(sux)(ux)zdsdx
3

< CI(ux)’dx.

where € > 0, since su, is uniformly bounded {(by the assumption X C W's™}

and W"” is continuous. However, the topology on X is strictly stronger

than the W!*? tapology, and so



H
inf I(ux)’dx . 0.
uU'Ugﬁx=C °

This proves our claim.

5.(b) (Semilinear Approximations) In practice the energy criterion has

great success, according to Koiter [165].  However, this is consistent with
the possibility that the energy criterion may fail for elastodynamics.

Indeed "in practice" one usvally does not observe the very high frequency
motions. Masking, dissipating or averaging them may amount to replacing the
qhasilinear equations of elastodynamics by finite dimensional or semilinear
approximationsf. For the latter, the validity of the energy criterion is
basically trivial (see, for instance, Marsden | 182] and Payne and Sattinger

[209]). We shall illustrate the idea with the equations’

Ype © “‘"x))x * Uyxx

where T{u,) = w'(ux). HW{0} = W'{0) =0, W0} =0 and ¥ is smooth.
We work in one dimension on an interval with boundary conditions u=10,
u =0 at the ends,
We claim that in H¥xL:=X and u, =0, the conditions (S1) and {52) are

true. The equations are clearly Hamiltonian with

H{u,u) = gltﬁ(x)!’dx + [u(ux)dx + illuxxlzdx,

and
V{u) = illu“ladx + j’w(ux)dx.

fThe use of Fourier Integral Operators and Oscillatory Integrals may be
relevant here.

"tor a more complex axample, see Holmes and Marsden [128).,  This simple
illustration was suggested by R. ¥nops.

First of all, the linear part; i.e., the operator

0 I ~
N o= s Mu)=u .
[A CJ XXXX
generates a contraction semi-group on X, where X 15 given the linearized

energy norm
TRLE ;]1 S(x)12dx + ill'uxx(x)lz dx,

{well-known to be equivalent to the W2 xL, norm). This is proved by
exactly the same procedure as in the example of "panel flutter" given in
Section 5.
Secondly, the nonlinear term
3u,i) = [ 0 ]
T("x)x

isa € mapof X to X. Indeed, from the composition theorems given in
Section 4, the following maps are all smooth (we recall that in ane dimension,
w c eyt

HE wme HY = W' — L,

LR dl Ml T(ux) — (T{ux”x'
It is a general (and rather simple) fact that a o perturbation of a linear
generator generates a local semiflow and that this semiflow can be maximally

extended in time. {See Segal 12271)  Moreover, since J and its deri-

vatives are bounded on bounded sets, the time of existence is uniformly

1Note that this sort of exarple "just" fails in two dimensions since MY & Co-
lowever, two dimensional models related to those in Holmes and Marsden [128]
do work.



bounded awzy from zero on bounded sets. Also, from our work in Section 9,
or directly, we know that energy is conserved aleng solutions, This shows
that (S1) is valid.

Since H! CW!+™, condition {s2)(a) is valid, as in 5(a) above. Also,

since V:H? — R is smooth,

v{0) = 0, DY(0) = O,
and

D*V{0){v.w) = vax"xxdx + Jw”(O)vxwxdx.

V' has 2 non-degenerate critical point at zero {in the strong sense that
D*V(0} yields an isomorphism of HZ to H® which, in this case is A-a4,
where 1=W(0) > 0}). Therefore, by Taylor's theorem (or the Morse lemma,
if one desires) one easily obtains (S2){b).

This proves that in this model, the trivial solution lies in a potential

well and that it is dynamically stable.+

One must admit, however, that the sense in which semilinear approximations
approximate the dynamics is not understood. For instance, periodic orbits
and a vibrational analysis may be rigorously justified using Hamiltonian
methods for semilinear equations. However, as in ticCamy and Mizel [179],
periodic orbits are probably impossible in the usual';ggﬁlinear elastic
models because of shocks.

It is perhaps appropriate to end these notes with a simple sounding but

non-trivial problem. Is there a precise way in which observed periodic

vibrations (in rods, say) can be predicted from an "exact” nonlinear elastic

model,

*lf one assumes ”("x) =0 for all Yy then the energy estimate shows that

solutions-are global in time for any initial data. We proved global
syistonce near the trivial <nlutinn in renart § abnyn,

J%Eﬁ
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