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Bifurcation to Divergence and Flutter in
Flow-induced Oscillations: An Infinite
Dimensional Analysis*

PHILIP HOLMESt and JERROLD MARSDEN{

A qualitative dynamical technique, center manifold theory in particular, yields a
useful, low dimensional, essential model of flow induced vibration which captures
local bifurcation behavior under the action of control parameters.
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Summary—We outline the application of center manifold
theory to a problem of Mow-induced vibrations in which
bifurcations occur under the action of control parameters.
Using these techniques, the governing nonlinear partial differ-
ential equation (PDE) can be replaced locally by a vector
field on a low dimensional manifold. The bifurcations thus
detected, including ‘global' bifurcations, yicld a useful de-
scription of the qualitative dynamics of the original PDE.

1. INTRODUCTION
IN THIS paper we outline an application of some
recent qualitative dynamical techniques: in parti-
cular those of center manifold and bifurcation
theory. For our example we choose a problem of
flow-induced oscillations, that of panel flut-
ter[1,2]. The present work follows an earlier
study[3] in which a finite dimensional Galerkin
approach was used. Here we show how the
partial differential equation (PDE) governing pa-
nel motion can be recast as an ordinary differen-
tial equation (ODE) on a suitable function space
X and outline the necessary existence, uniqueness
and smoothness theory for the secmiflow Fi': X -»X
induced by the ODE. The character of F¥ varies
under the action of the control parameter(s) g,
and the fixed points x;=F(x;) can appear, disap-
pear or change their stability types in bifur-
cations. Under suitable hypotheses on the spect-
rum of the linearised semiflow DF¥(x,) at such a
fixed point, the center manifold theory for
flows{4] can be applied and the existence of a
finite dimensional center manifold M deduced. As
a finite number of eigenvalues of DF¥(x,) pass

*Received 22 August 1977; revised 18 January 1978. The
original version of this paper was presented at the 2nd IFAC
Symposium on the Control of Distributed Parameter Systems
which was held in Coventry, England, during June-July 1977,
The published Proceedings of this IFAC Meeling may be
ordered from: Pergamon Press Lid., Headington Hill Hall,
Oxford OX3 0BW, England. This paper was recommended
for publication in revised form by associate editor P. Parks.

+Department of Theoretical and Applied Mechanics,
Cornell University, Ithaca, New York 14853, US.A.

*Department of Mathematics. University of California.
Berkeley, California 94720, U.S.A.

367

through the unit circle, bifurcations occur which
can be analysed locally without loss of infor-
mation by studying the flow F¥ restricted to M.
The dimension of M is often only 1 or 2 and the
resultant drastic reduction in dimension, while
important in itself, also ecnables us to make
interesting deductions on the qualitative structure
of F* In particular, we are able to use the
Andronov-Takens classification of generic bifur-
cations of codimension 2 on two-manifolds[5].
The present approach is applicable to a wide
range of continuum mechanical problems and a
number of applications to hydrodynamic stability
have already appeared[4].

It is interesting to note that engineers working
on flow-induced oscillation problems have fre-
quently resorted to the study of one or two
degree of freedom nonlinear oscillators in cases
where the full PDE is intractible. The present use
of center manifold theory suggests that these
approaches might indeed be justifiable and can
be made completely rigorous. See [3] for more
details.

The equation of motion of a thin panel, fixed
at both ends and undergoing ‘cylindrical’ bending
between z=0 and z=1 (Fig. 1) can be written in

FiG. 1. The panel flutter problem,

terms of the lateral deflection v=v(z,t) as
at™ + o = ([ +x [ (V') dC
+af§ (10)(0)) "
+pv'+/po+i=0 (1)

see [1] and [3]. section 2. Here -=¢/¢t and ’
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=¢/¢z, and we have included viscoelastic struc-
tural damping terms «, ¢ as well as aerodynamic
damping ./pd: K represents nonlinear (mem-
brane) stiffness, p the dynamical pressure and T
an in-plane tensile load. All quantities are non-
dimensionalised and associated with (1) we have
boundary conditions at z=0, 1 which might typi-
cally be simply supported (v=(d+av)’=0) or
clamped (v=v'=0). In the following we make the
physically reasonable assumption that a, o, J, x
are fixed >0 and let the control parameter u
ef{(p,N|p=0} vary. In contrast to previous
studies[1,2] in which (1) and similar equations
were analysed for specific parameter values and
initial conditions by numerical integration of a
finite dimensional Galerkin approximation, here
we study the qualitative behaviour of (1) under
variations of u.

2. EXISTENCE, UNIQUENESS AND SMOOTHNESS

Here we prove theorems showing that (1)
defines a unique global semiflow F* on X and
that F* is smooth. This program in a more
general context will appear in a forthcoming
paper[6]. We first formulate (1) as on ODE on a
Banach space, choosing as our basic space

X =H§([0,1]) x ([0, 1]),

where H? denotes the Sobolev space of twice
differentiable functions which vanish at 0,1 and
I? is the usual Hilbert space of square integrable
functions. We denote elements of X by {v,¢} and
select the norm

e el = (e +

vnlz )l 12.

where || denotes the usual [ norm and define
the linear operator

A, =

M

(0 1); Cor=—t""+Tv" —pr 2)

C. D) Di=—as™— /pév
The basic domain of A, D(4,), consists of all
{v,6}€X such that seH} and v+aieH* with

the appropriate boundary conditions imposed.
After defining the nonlinear operator

B{v, 0} = {0, [x|v']* + o (v, ')]0"}.

where (-,") denotes the I? inner product, (1) can
be written as

dx/dt=A,x+ B(x)=G,(x);
x={no}=x(t)e D(A,) 3)

We definc an cnergy function and some related

Liapunov functions by
l <2 |2 K |q
Hy(x@)=3 | [¢ + 0" +3 |v1] (4a)
1
Hz(x(r))=§[|d|2 +I'|v’|2+|v”|2+§|v'|"] (4b)
] 2
Ha(x(f))=i[\/; ool +av”)? +
+2(v,z§)+%|v’|“:| 5)

and let H,=H,+vH, and H,=H,+vH,, where
v is a positive constant to be selected later.

We now prove a number of propositions re-
lated to the evolution problem (3). The first result
gives some properties of the functions H, and H,
and gives a parameter region in which all oscil-
latory motions die out and the panel does not
flutter. Larger regions in the (p,I') plane for
which this happens might be obtainable by use of
a modified Liapunov function. The method here
is adapted from Parks[7].

Proposition 2.1. (i) Hy: X—N and H,: X >R are
C* functions, bounded on bounded sets;

(ii) there are constants K >0 and B>0 (depend-
ing on the parameters T, p,0,...) such that if x(t)
={p(t), (1)} is a solution of (3), then

d
gy Halx())SKH, (x(t))

and if ||x(1)|| 2 B. then

ar o(x(1))<0:

(iii) if p2<(\/;6 +an*)?(I" +n?), then
. (a) Hy(x)=0 and H,(x)>0if x+0, xeX:

(b) (d/dt)Hy(x(£))<0 and (d/d1)H,(x(1))<0 if
x(t)#{0,0} where x(t) is a solution of (3); and

ic) x(t)—{0,0} in X as t— +c0; ie, {0,0} is
the unique attracting fixed point of (3). .

Proof. (i) It is well known, as indicated in [4]
and references therein, that in one dimension,
multiplication induces a continuous bilinear map-
ping of H' x H' - H!'. This, together with con-
tinuity of differentiation from H? to H' and from
H' to I? and continuity of the inner product
proves (i) since the functions H,, H, and Hj; are
made up of compositions of these operations.
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(i1) Using a Fourier sine series we have the
clementary inequality

P2l

if v vanishes at z=0,1. If v’ vanishes at z=0,1,
we therefore get

Ivnlz g nllvllz g n4lv'2‘
Without assuming v’ vanishes at z=0,1 we can
either prove |v"?2n%v]* directly or as follows:
integration by parts and the Schwarz inequality
gives:
IUIIZ = (ul’ ul)_: (U, vn)g IUI Ivnl
and hence
7o < |of o), ice., w32 <o)
It follows that
H, 2406 + 2v(e, 5) +v(p 0+ an* o + |v"]2]

and, setting v=(\/p +an*)/2 that

[ (fb+am) (\/—6+om)
H,z5| o [v]?

l ” 4
+|v"l’]zglv"lz+—~(‘/ PILT

Differentiating along solution curves of (3) we
have

%I-f— = —p(v,6)-T (v, b’)—\/;6|13|2 —ofs”|?
+v[Jo]? =P =PI — oo, o' 2 — vicfe'|*

< —p,5) =T, &)= [/p = v1|i|* —as"|?

=o' = —a (@, 5 —wklv|* (7)

For v<\/;_) & we can use the Schwarz inequality
and the clementary inequality

abgl(fza2 +l bz)
2 g

to give

(v, 8) < [?lbl“’ |b|2]

for any >0

1
2~ 12
[F@, o)< [wlv] +w|u| ],
for any w>0 (8)
Choosing y and w sufficiently large, (p/2y)|5]* and

(T/2w)|'|* are absorbed by the [5* and |5"]?
terms of (7); we can then conclude that

dHﬂ p7+rw_' "2_"”2
d{g[ a lryu o]

—a (v, ¢') —vk|v]*. )

Clearly for small |v'|, H, can increase along so-
lution curves, but the |v'|* term guarantees that
we can find a positive number C such that
dH,/dt <0 for |v'|ZC. In fact, (9) implies that

dHu ’ ’ 7| ’
d_,éclh’ = Co|v[* =o' P(C, = Cofv)

for constants C,, C,. Hence, if

dH,

[t'|>/C./Cs, 3 <0.

It follows that (dH,/dr)<0 if ||x]|y2B for a
constant B,
Inequality (9) implies

dH, [py+Tw 2
< ¥
di =( 2 )IL I*

Now we use the inequality
o1 <ol [
noted above to conclude
[o']* < 3ol +2fo"f?

and hence,

d
j" < (Constant) ([¢|* +|v"|*) £ (Constant)H,

by (6). Thus (ii) of Proposition 2.1 is proved.

(iii) For stability bounds on the fixed point
{0,0} eX we use the Liapunov function H,. First
note that by taking the ‘natural’ energy function
(4b) and differentiating we obtain

s e —p(e0)= /7 O~ = o' 6?

for p=0 we immediately have dH,/dt<0 for
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||x|| Z0. For p£0 we work with H,, obtaining an
expression analogous to (7):

d
s~ pw, )= [p S ant vl

=T +x?]']* —a(,0)* —vkfe’*  (10)

For global asymptotic stability of {0.0}. (10)
must be negative definite. This occurs for

102 <[ /p d+an* —v]v[l + 7).
Taking the optimum choice of

v=(/pd+an*)2

we obtain (a) and (b) of part (iii). (Note that for
p2<(\/;_)é+a7z“)(l“+n2], H,=0 automatically.)
To prove (c), note that H,(x(r)} decreases and is
nonnegative, so converges to say, H_ 20 as ¢
-, From

td
Hy(x(s))—Hy(x(t))= -I EHb(-\'(t))dT. t>s,
2 (Const) f! ]¢]* dt

we find that v satisfies a Cauchy condition, so
converges in [* as t— . Since H,20 and is
decreasing, the limit must be zero: i.e., -0 in I
Similarly, ©'=0 in I n L* and hence v—0in I2. If
we use these facts in the explicit expression for

Hy(x(s)) = Hy(x(1))

4

we find v” converges in I7. Since v—0, ¢ must
converge to zero. Thus x(1)—{0.0} in X. ||

Corollary 2.2. Let x(t) be a solution of (3) for u
=(p,[") fixed. Then there is a constant M >0
such that ||x(t)|| xS M for all t jor which x(1) is
defined.

Proof. Incquality (6) shows that
||lx(1)]| x < (Constant)H (x(r))

Let B be as in Proposition 2.1(ii). and
Hg=sup{H, (x)|||x]| xSB} <=

Thus
H, (x(t))Smax{H(x,), Hg}

and so ||x(1)|| y £ M, where

M = (Constant) x (max! H(x,), Hp}) ]

A similar stability criterion for the linear pro-
blem was originally developed by Parks[7]. As

he points out, such criteria are suflicient but not
necessary: in fact our estimates are probably over
conservative. This does not matter here since we
arec mainly interested in establishing that the
nonlinear term x[v/*v” in (3) leads to a global
stability property. Thus part (ii) of Proposition
2.1, with Corollary 2.2, suggests global stability
in the sensc that as t— + oo all solutions x({r) of
(3) approach some set AcX. For ‘small’ I" and p,
part (iii) guarantees that 4={0,0}, the unique
fixed point at the origin. The bulk of this paper is
devoted to a study of the structure of A when
{0,0} first fails to be an attractor.

Note that the nonlinear damping term
a(v', &' " does not guarantee stability alone, since
a(v',£')* in (9) is zero in the event that ¢ and &'
are orthogonal.

Another fact we shall need is the following,

Proposition 2.3. The map B:X -X is C*.

Proof. This follows directly from the fact that
(v, ¢") and (¢v”.¢) come from continuous bilinear
forms on X and the fact that ¢—u” is bounded
from H? to 2. |

The next proposition shows that the linear
equation dx/dr=A,x is soluble in X. This is done
in terms of semigroup theory (see, for example,
Kato[8]).

Proposition 2.4. The linear operator A, is the
generator of a C° semigroup in X.

Proof. Let A, denote the operator A, with the
same domain, but with the terms I and p set to
zero. Since A,— A, is a bounded operator, it
suffices to show that A, generates a C° semi-
group. In fact, we shall show that 4, generates a
C° contraction semigroup. To do 50, we establish
two things:

(i) for xe D(Ay). {Agx, x> £0
and

{ii) 2 — A, is surjective for A>0.

From these it will follow that — A, is m-accretive,
so A, generatles a contraction semigroup.

The proof of (i) is casy, as in the proof of the
energy inequality; if x=(e.¢), then, taking the
inner product in X, we get

i v
<"°-‘~-‘>=<_m:«~'_w' >

=", 0" )+ (— 2" — ", )

= —of¢"|* £0.

Next, we prove that 2— A, has dense range. To
do this, we suppose that for some

yeX, ({2 - Ag)x.y>=0

™)
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for all xe D(Ay). We must show that y=0. Let x
=(v,5) and y=(w.w). Then our supposition
becomes

(lv" — l;", ‘vll) = 0
and

(A6 +a™ + 0", W)=0

for all v.6e D(A,). Setting 6”"=0 in the first
equation and using the fact that ¢” is arbitrary,
we get w'=0, so w=0. The second equation,
with =0 shows that v is a weak solution of w"”
=0, so w is in fact smooth (it is a cubic
polynomial). Setting 6=w, v=0 and using i>0
gives w=0.

It remains to show that for A>0, i—A, has
closed range. Let x,=(v,,6,)€ D(A,) and suppose

Ya=(A—Ao)x,»yeX.
Letting y, = (w,,W,), we have
AUy= Uy =W,
and

s o

A, +ady” + v,

=W,

Multiplying the second equation by ¢, and the
first by v, and integrating yields:

MBp Bp) + (i, ) + 2 (05, o))
= (W, 0,) + (Wp, 1)

SO

5l

1+ [[eallr < CUMWall2 +[wallr2)
Similarly,

”".‘n - ém”"z + "vn - "’m”"z
g C(llwn - wm”Lz + “W,, - wm" )lf:

Thus, (v, b,)=x, converges in X to, say, z and &,
converges in H2. If we use this in the equation
ACy+ (@B, 4 u,)" =W,

we get the estimate
”(“'3n +0,) = (@0 + )”n“ S, — ‘i'm"l.‘

so ab,+v, converges in H* All this together
implics that ze D(A,) and thus (A—Agy)z=y, so
the range is closed and (ii) is proven. [ |

From computations in Section 4 one finds that
the spectrum of A, lies in the half space Rez<

—¢ for some £>0. In fact, for the simply sup-
ported case

¢=min{an*/2, 1/a)

It lollows that in a suitable norm
llexp(to)|| Sexp( <)

where 0<¢'<e. (See [4, §2A].) In the original X
norm, |lexp(t4,)|| £ ! and so

llexpleA,)|| Sexp(iB)

where f=||4,— Ao|. In the contracting region of
Proposition 2.1(iii), the semigroup exp(r4,) will
itself be a contraction. This may be proved using
the norm associated 1o H, in the proof of
Proposition 2.4, We remark that the semigroup
generated by A, is probably not analytic.

With these preliminaries we can now make use
of a result originally due to Segal[9] concerning
nonlinear evolution equations generated by oper-
ators of the form A+ B, where 4 is a linear
operator and B a C* map, k=1. By modern

- standards, the result is rather elementary.
Existence of solutions of
dx
=Ax+B(x
i (x)

can be deduced from the usual Picard iteration

. techniques. It is not quite so obvious that the

solution depends in a C* manner on the initial
data. For the convenience of the reader we
present a straightforward proof of this fact.

Proposition 2.5. Let X be a Banach space and
U, a linear semigroup on X with generator A and
domain D(A). Let B:X-X be C* kz1. Let G
=A+B on D(A). Then

dx/di=G(x); xo=x(0)eX (11)
defines a unique local semiflow
xo€ DtA), then F(xo) is in D(A)=D(G), is X-
differentiable and satisfies (11) with initial con-
dition xy, F,(xy) is the unique such solution and
moreover, F, extends to a C* map of an open set
inX toX for each 1 0.

Remarks. (a) In the terminology of Marsden
and McCracken[4], G generates a smooth semi-
Jlow. The proof will show that if G, depends
continuously on a parameter p (with domain
fixed), then so does its scmifllow.

(b) If B is merely locally Lipschitz, one can still
construct F,, but B should be C! in order to
show that F, maps D(A) to itself and for (11) to
be satisfied in the strict sense.

Fi(xo): If

*
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Proof of Proposition 2.5. For uye X, we define
F(ug)=u(t) by means of thc Duhamel formula
(variation of constants formula):

u(t)=Uuo + [, U,_ B(u(s))ds (12)

where U, =exp(1A4) is the scmigroup generated by
A. Since B is locally Lipschitz and ||U[x<
M exp(¢tf) for constants (M,f), the Picard iter-
ation of ordinary differential equations shows
that (12) defines a unique local semiflow F,(ug). If
B has a local Lipschitz constant K, then clearly

[|Fo(tt) = F uz)|| x S Mexp((B+K )t Wy — o] x-
(13)

Thus, F,(ue) is continuous in t,u, and is locally
Lipschitz in u,.

We next show that for fixed t, F, is a C*
mapping. For xeX, let 6,(x)e B(X) (the bounded
operators from X to X) satisfy the linearized
equations:

0,(x)=U,+ [, U, ,DB(F (x))-0,(x)ds. (14)

O(x) is defined as long as F,(x) is defined. 1t is
easy to check that #—0,(x) is continuous in the
strong operator topology and that (for fixed ¢),
x—0,(x) is norm continuous. We claim that
DF,(x)=8,(x) which will thus prove F, is C'. Let

Ilx, ) =||F (x+h)~ F (x) = 0,(x) - h|
Then
i, 1) =||fb Uy~ { B(F (x + h))— B(F,(x))
— DB(F,(x))-0,(x) - h} ds]|
< Mexp(Blt)){f5 [|B(F,(x +h))— B(F,(x))
— DB(F,(x)) - [F,{x+h)—Fy(x)]||ds
+[o||DB(F,(x)) - [F(x +h)
— F(x)—0,(x)- h]|| ds}

Thus, given £>0, there is a §>0 such that ||h||<é
implies

Jo(x, h) < (Const) - {||h]je + % A,(x, h)ds}
Hence (by Gronwall’s inequality),
/4(x, h) £ (Const)||h]e.

Hence, by definition of the dcrivative,. DF,(x)
=0,(x). It is now a simple induction argument to
show F, is C*.

Now we prove that F, maps D(A4) to D(A) and
El—F(u )=G(F,(1g))
d‘ 1\H0/)— 1\to

is continuous in t. Let uye D(A). Then, setting
u(t)=F,(up), (12) gives

LT+ ) = )] =1 (U, st~ U]

i .
+Eﬂ) (U1+h—s
—U,-,)B(us))ds

IR, Bl ds
1
=,-1[U;.(u(t))-u(t)]
+lllj'§”'U,+,,_,B(u(s))ds(15)
The second term — B(u(t)) as h—0. Indeed,

“%j:“’ U, +p-Blu(s))ds - B(u(t))l

1
<31 Ues - ) - B s
1
S5 M IUs a- B()) = Upen- B2} s

1
+3 57U+ p- Bu() - Bu())ds
1
<5 (Const) - fi**||B(u(s))— B(u(?))||ds
e
+5, 57 Uien- Blu() — Blu(e))||ds

and each term —0 as -0.

It follows that F,(u,) is right differentiable at ¢
=0 and has derivative G(u,). To establish the
formula at t+#0 we first prove that u(t)e D(A).
But

1 1
T F, s ytto — Fig) == (F,Fyug — Fup)
h h

has a limit as h—0 since F, is of class C'. Hence,
from (15),

1
,_'(Uh(““))—“(t))

has a limit as h—0. Thus, u{t)e D(A4). It follows
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that

d
5 Filo)= G(F (o)) = DF (ut0) G o).

Since this right derivative is continuous, the
ordinary derivative exists as well. The proof of
Proposition 2.5 is now complete. : |

For results of Dorroh and Marsden on the
smoothness of nonlinear semiflows applicable to
more delicate situations, see Marsden and
McCracken[4].

There are some additional results of interest in
connection with Proposition 2.5. The first con-
cerns the regularity of solutions. For example, in
equation (1), we wish to know that C* initial
data propagates to a C™ solution. In the abstract
context, we show that solutions u(t) of (11) which
are initially in D(A") are actually in D(4") and
not merely in D(A); this implies the regularity of
solutions of (1).

Let [D(A)] denote the domain of A with the
graph norm:

Mlixlll=Ml<fl+ [l

Since generators are necessarily closed operators,
[D(A)] is a Banach space and inclusion [D(A)]
<X is continuous, Similarly,

(DA< [D(A" )] =X

Proposition 2.6. Let the conditions of Theorem
2.5. hold. Then,

(1) if uge D(A), the map t—F (uy) € [D(A)] is
continuous, and generally,

(i1) if B:[D(AN]-{D(A")] and is C*, I=1,..,n
—1, then F,: [D(A')]-[D(A"] and is of class C¥,
I=1,...,n=1 and F,: [D(A")]-[D(A")] s
continuous.

Proof. To prove (i), we note that for uge D(A4),
d
AF.(uo)=aF.(“o)—B(F.(uo))-

The right side is continuous in t, so
t—F (ug)e[D(A4)]

is continuous.

One proves (ii) by induction on n. Consider the
case n=2; let uye D(A%) and u(t)=F,(up). Then,
u(t)e D(A) and u'(t)=Au(t)+ B(u(r)). As in the
proof of 2.5, it follows that u”(0) exists, and since

F, is C2, u"(t) exists. Then, using the identity

| 1
,—l[u'(t+h)—u’(r)] =A p LU (u(t))—u(t)]

1.
+307" Uysp- Bluts))ds

+% [B(u(t+h))—Bu(1))]
it follows that

lim A l [UL(u(t))—u()]
h-0 h

exists, so u(t)e D(A%). This result, together with
2.5, gives (i) by induction. ||

The following global existence result is also of
interest, since it guarantees that solutions con-
tinue to exist for all 20.

Proposition 2.7. Let the conditions of
Proposition 2.5. hold. Furthermore, assume that
|DB(x)||x is bounded for x in an X-bounded set.
Let x(t)e D(A) be a maximal integral curve of G
defined for 1€[0,b). Suppose that for any finite T
<b, there is a constant M such that ||x t)]| xS M,
0Zt<T Then b=oc and x(t) is defined for all t
20. (Hence, if this is true for all integral curves,
F, is defined on all X for all 1 20).

Proof. The proof of Proposition 2.5 shows that
for any baill B<X, there is an £>0 such that any
initial condition in B has an integral curve exist-
ing for time & If b< oo, we can choose T=b to
conclude that |ju(t)]| xS M for 0L¢<b. Thus if ¢
—b<¢& we can extend u(t) beyond b, contradict-
ing maximality of b. y |

Propositions 2.2, 2.3, and 2.4 show that the
hypotheses of Propositions 2.5, 2.6, and 2.7 hold
and we thus obtain our first main result:

Theorem 2.8. EXISTENCE, UNIQUENESS,
SMOOTHNESS. Equation (1), (i.e. (3)), defines a
unique global semiflow F* on X=HixI. If
xo€ D(A,), then F/(xy)=x(t) € D(A,) is X-
differentiable in t and satisfies (3) in the strong
sense. Moreover, F¥:X—-X is C* for each t and u
and is jointly continuous in (t,u,x), from R x R?
xX to X.

An existence theorem using weak methods was
obtained for a related beam equation by
Ball[10]. Since we require the stated differentia-
bility results on F* which are not directly obtain-
able from Ball's results, it seems simpler for this
example to proceed directly with strong solutions
as we have done. However, note that Ball re-
quires weak topologies for the more delicate
Liapunov results he is concerned with.
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In interpreting the qualitative behavior of the
nonlinear semigroup F*:X —X, the following ex-
tension of the classical Liapunov linearization
theorem is useful:

Proposition 2.9. Suppose xo€ D(A) is a fixed
point of (11), i.e.,
G(xo)=A(xo)+ B(xo)=0

so F(xo)=xo for all t20. Suppose that the
spectrum of exp(DG({x,)) lies inside the unit circle,
a positive distance from it. Then xq is locally
exponentially stable; i.e., there is a neighborhood
U of xo and a 8>0 such that if xe U,

" ||Fex —xof| £ Cexp(—t)
Proof. (This relies only on the smoothness of
F,.)f From
d
El—fF‘(u)=G(F'("))
we see that

adj DF,(u)=DG(F (u)) - DF (u)

and, in particular, the generator of the linear
semigroup is

DG(xo)=A+ DB(xo)

a bounded perturbation of the generator A. By
the hypothesis on the spectrum, there is an £¢>0
and a suitable norm [||-||| such that

(| DF (x0)||| S exp(—et) for £20
Thus, if 0<¢' <¢,
IDF (x)|l| Sexp(—&'t) for 0<r<1

and x in a neighborhood of x,, say U={x||llx
—Xol||<r}. This is because F, is C' with de-
rivative continuous in .

We claim that if xeU, 0£1£1, then FxeU
and

WE. ()= xoll] S exp(— &) lx = ol

Indeed, it is cnough 1o prove this for small t
since exp(—¢t)<1. But it follows from this

+This theorem has been found in a number of special
contexts by various authors, such as Prodi., Judovich,
Sattinger, Gurtin, and McCamy. The version here is sketched
in Marsden and McCracken[4].

estimate:

[IF ) = x|
=|lIF,(x)= F.(xoll
=|If& DF (sx + (1 —s)xq) - (x—xo)ds}|
< JAlIDF fsx + (1 =s)xo )| flGx = xo)llds
<exp(—&'1)|[lx = xof|

This result now holds for large ¢ by using the
facts that F,=F7, and exp(—¢'t)=[exp(—¢'t/n)]".
Changing back to the original norm, the pro-
position is proved. |

A similar proposition holds for the case in
which part of the spectrum of DG, (x,) lies in the
right hand half plane. Here the lincarization
induces a (local) splitting of X into stable and
unstable manifolds W®x,, W¥x, which are tan-
gent at x, to the generalized eigenspaces as-
sociated with those parts of the spectrum in the
left hand and right half planes. Intuitively W<x,
and W"x, contain those ‘directions’ in which
solutions flow ‘towards’ and ‘away from’ x, as
—oc. A similar set-up can be applied to more
general critical elements such as closed
orbits[4, 11].

We have now outlined some of the basic
machinery for dealing with the qualitative ana-
lysis of a class of PDEs such as (1) with the
parameter u fixed. We now go on to study the
case in which p varies and the behavior of F¥
varies under its action. For the associated study
of bifurcations we require the additional results
discussed in Section 3.

3. CENTER MANIFOLD THEORY AND
BIFURCATIONS

In this section we state the center manifold
theorem for flows and an important associated
result, and indicate their use in the panel flutter
problem. In many bifurcation theorems, such as
that of Hopi[4, 13], the nonlinear terms play a
crucial role in providing (weak) attracting or
repelling motions on the center manifold near the
degenerate critical point, and hence the stability
of the bifurcated orbits. This is often easy to
guess, but not so simple to prove, as we shall
discuss.

Theorem 3.1. Center Manifold Theorem for
flows ([4]). Let X be a Banach space admitting a
C*® norm away from O and let F, be a semiflow
defined in a neighborhood of 0 for 0StsT
Assume F,(0)=0 and that F,(x) is C**' in x with
derivatives continuous in 1. Assume that the spect-
rum of the linear semigroup DF(0):X—X is of
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the form exp(t(c, u 0,)) where expl(tc,) lies on the
unit circle (i.e. Re(g,)=0) and exp(tc,) lies inside
the unit circle a nonzero distance from it, for 1>0
(i.e. Re(o;)<0). Let Y be the generalised eigen-
space corresponding to exp(to,) and assume dimY
=d <.

Then, there exists a neighborhood V of 0 in X
and a C* submanifold McV of dimension d
passing through 0 and tangent to Y at 0 such that

(@) If xeM, t>0 and F/(x)eV, then F,(x)e M
(local invariance)

(b) If t>0 and F,(x) remains defined and in V
for all t, then F,x)-»M as t—-x (local
attractivity).

Remarks. If F, is C* then M can be chosen to
be C' for any !<oc. For the semigroup F¥(x)
with control parameter g € R™, if F¥(x) is only
assumed to be C**' in x and its x-derivatives
depend continuously on t and x and at pu=y,
part of the spectrum of DF,uy(0) is on the unit
circle, as in 3.1, then for p near y, we can choose
a family of C* invariant manifolds M, depending
continuously on u. This family completely cap-
tures the bifurcational behaviour locally. Note
that in view of the Chernoff-Marsden results on
separate and joint continuity, the ‘continuity’ in ¢
and p is in fact C**! smoothness [4, Thm
8A.7]. .

We note that D. Henry[15] has a version of
the theorem to cover the case where the spectrum
of DF,(0) has a component exp(t63) comprising a
finite number of eigenvalues outside the unit
circle (i.e. Re(g;)>0). Thus in addition to M we
also have invariant stable and unstable manifold
W, W the dimensions of which are determined
by the number of eigenvalues within and outside
the unit circle; here dim W*<co. The theorem
now provides a full infinite dimensional analogue
of that for ODEs in %"[3,16,17]. However, in
the present case we need a further result, derived
from the generalised Bochner—-Montgomery
Theorem:

Proposition 3.2. [4). Let F, be a local C*
semiflow on a Banach manifold M, k=2 and sup-
pose that F, leaves invariant a finite dimensional
submanifold McM. Then on M, F, is locally
reversible, jointly C* in t and x and is generated
by a C*~! vector field on M.

Provided F* satisfies the assumptions of 3.1
plus additional conditions related to specific bi-
furcations outlined below, 3.1 and 3.2 imply that
we can find a d+m dimensional subsystem M
x U, where U is a neighborhood of the critical
parameter value u =y, such that M x U provides
a local, finite dimensional, essential model. More
details on the concept of essential models can be
found in [18].

In the linear case the splitting into stable,
center and unstable manifolds is closely related to
the familiar concept of ‘normal modes’. In finite
dimensional problems such uncoupled modes are
obtained by a suitable change of coordinates and
the eigenspace associated with ecach mode is
planar and isomorphic to R2. Each mode be-
haves in a sense ‘independently’ and superpo-
sitional techniques may be used. The concept
naturally generalizes to the infinite dimensional
case and normal modes for the system

could easily be defined by choosing a suitable (u-
dependent) basis for X (the basis of H} x IZ given
by {sin jrx} x {sin jrx} applies for the case p=0).
In the nonlinear case, then, it is natural to
suppose that, at least locally, one can ‘bend’ the
eigenspaces in such a manner that the nonlinear
terms are also decoupled. This is exactly what the
center manifold theorem allows us to do. See
[18] for more discussion of this point.

Essentially we can say that locally, behavior on
the stable and unstable manifolds does not cha-
nge qualitatively as p passes through its critical
value and therefore that the bifurcations occur-
ring in F* are restricted to the center manifold
M. We need only study F*=(F* restricted to M)
to obtain a complete local characterization of
bifurcational behavior, including information on
the creation of new attracting and repelling so-
lutions. In view of Proposition 3.2, F* is gene-
rated by a C* vector field on M and we are thus
reduced to the study of a finite dimensional ODE
on M:

i=G(X);%eM

Since M is locally equivalent to RY we can make
use of results on finite dimensional vector fields.
In many examples, including that discussed here,
dim(M)=d<2 and we are thus able to use the
special results relating to two dimensional vector
fields[20-23]. Bifurcation theory for vector fields
is not as well developed as that for mappings
(elementary catastrophe theory[24]) but there are
a number of very useful results. There is not
space 1o discuss these in detail and here we
merely outline two simple codimension one bi-
furcations: in a sense the most important since
they occur most frequently in the absence of
special symmetries or other non-generic con-
ditions when a single parameter changes. For
background see [5, 20-25].
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Saddle-node. A single eigenvalue exp(ta,) of
DF¥{0) passes through 1 (4, passes through 0)
‘with non-zero speed’:

do, (#)/d}‘lpo#()-

Here the situation is shown in Fig. 2a. In view of

# O"mctor\\
I—_ﬁ ---- g \\"59“[3%
mpe"or-—v-,_.-.«- degenera
. L
_ A |
F N-.

F1G. 2. Saddle-node bifurcations. {(a) A ‘simple’ saddle node.
(b) n-rotational symmetry. (c) A small imperfection.

3.1 our 2 dimensional picture is justifiable. Note
that the two fixed points annihilate one another.
When special symmetries are present as in the
example (reated in this paper (equation (1) con-
tains only ‘cubic’ terms) a ‘symmetric’ bifurcation
can occur (Fig. 2b). A small perturbation or
imperfection causes this to unfold into a simple
non-bifurcating path and an isolated saddle-node
(Fig. 2c), cf. [26] for an application to buckling.
Thus the saddle node occurs in models of
divergence.

Hopf. A complex conjugate pair of eigenvalues
passes through the unit circle away from =1
with non-zero speed (¢,, &, pass through +ic: ¢
>0). Then there exists in the neighborhood of 0
a one parameter family of closed orbits ‘sur-
rounding’ 0 and lying in a 3 dimensional sub-
system. The ‘type’ of the orbits, attracting or
repelling in M, depends upon the nonlinear part
of F#(0); Fig. 3 depicts the attracting case. The
two situations are sometimes referred to as super-
and sub-critical. See [4] for more details.

The two bifurcations outlined here are local in
the sense that they can be analysed in terms of a
linearised vector field, operator or semigroup.
Bifurcations involving limit cycles must generally
be treated in terms of their Poincaré maps[4,19]
and the center manifold theorem for maps can be
used[4]. However, other condimension one bifur-
cations are considerably more difficult to detect

family of ottracting closed orbits

- ottractors (sinks) repellors
lj\ , \ Az

F1G. 3. The supercritical Hopf bifurcation (for the subcritical
case reverse time, so that the attracting orbils become
repelling).

since they involve the global bechavior of trajec-
tories joining saddle points. An example, iin
which a limit cycle is annihilated in a saddle
connection is shown in Fig. 4[5, 22]. Recent

F1G. 4. A saddle connection (homoclinic orbit).
work of Takens[5], developing ideas of
Andronov et al.[23] enables such bifurcations to
be detected when they occur on two-manifolds.
We make use of this in Section 5 (see also
Kopell-Howard[17]).

We close this section with a discussion of
stability criteria. In the Hopl bifurcation, for
example, it is important to be able to compute
whether the periodic orbit is stable or not, since
computing the spectrum associated with the
Poincaré map is generally impossible.

First consider the energy function H, of equa-
tion (4). We have seen that H, and associated
Liapunov functions such as H, do provide inner
estimates of the size of stability regions. However,
although improved choices of such functions mi-
ght allow us to estimate the ‘true’ stability boun-
dary reasonably well, they will not in general be
able to determine stability exactly at the bifur-
cation point, unless the bifurcation set can be
found analytically. As we see below the Hopf
bifurcation set in the panel problem must be
estimated from a finite dimensional numerical
computation and it is in principle impossible to
determine the sign of dH/dt on or very close to
this set since we do not exactly know where it
lies.

For determining the stability or ‘direction’ of
the Hopl bifurcations we therefore turn to a
criterion first discussed explicitly by Marsden and
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McCracken{4] but implicit in Hopfs original
finite dimensional theorem[13]. Details of this
V*'(+) criterion are given in [4], chapter 4 and
the criterion has since been extended and sim-
plified by Hassard and Wan[14]. The method
essentially consists in the computation of the
nonlinear part of the vector field obtained by
projection of the ‘complete’ vector field restricted
to M onto the eigenspace to which M is tangent
at the degenerate critical point. Although this is
in theory possible when the vector field is infinite
dimensional, the calculations seem formidable. In
Section 5 we make use of two and four mode
approximations and are therefore only dealing
with vector fields on R* or RE.

However, the energy expressions and con-
sequent knowledge of global attractivity are of
use in the following manner. Consider the evol-
ution equation (3) for p, I' ‘small’ and increasing.
The Liapunov estimates ensure that for

pr <(/p & +an*}(I +7?)

there is a single sink at {0,0}eX. We shall see
below that as I" or p increases, the linear oper-
ator A, eventually fails to generate a contraction
semigroup, {0,0} becomes non-hyperbolic and a
bifurcation occurs. The nonlinear term B(x) does
not contain u and the above bifurcation is thus
the first to occur. If the origin is globally attract-
ing below criticality and a Hopf bifurcation oc-
curs first, it cannot be subcritical. 1t is thus likely
that it is supercritical and hence the bifurcating
closed orbits are stable. (The possibility that the
closed orbits all occur at criticality, as in the
undamped oscillator, seems unlikely because the
vector field is strongly attracting for Ilarge
amplitudes.)

In regions where other bifurcations or fixed
points occur, Hopf bifurcations can be either
sub- or super-critical. The V"(xq) criterion is
useful in such cases.

4. FINITE DIMENSIONAL APPROXIMATIONS
AND CONVERGENCE

In order to obtain bifurcation results, it is first
necessary to study the behavior of the spectrum
of the equations linearized about a fixed point as
u=(p,I') varies. We shall discuss how this is
done for the point {0,0}eX in the simply sup-
ported case. Other boundary conditions could be
treated similarly.

We use the Galerkin averaging technique to
obtain an n-mode approximate system. This sys-
tem is on 9R2" and is given as follows (see [3]):

dx/dr =Ajx +B"(x),

where Aj is the 2n x 2n matrix given by

A,=(0 'L 0 O O 0 0 0.
a by ¢ 0 0 0 ¢4 O.
0o 0 0 t O O 0 O0.
¢y 0 ay by ¢35 0 0 0.
6 0 0 0 O 1 0 O.
0 0 ¢, 0 ay by ¢34 0.
o 0 0 0 0 O O 1.
¢y, 0 0 O ¢35 0 ay b,..
0 0 0 0 0 O O O-.

(16a)
where

¢ =2ij(1 = (= 1) Np/(* = i*)

a;=—n*j*(=**+T) and bj=—(an“j“‘+\/;($)

and where
x=[x,"]and B"(x)=[" 0 ]
.\_‘l nut " 2 2 .
%2 —7 & Pk rox)pxy
i=1
%5 0
. 7[4 n
_7{ Y iz(kx,z+a'x,)3;)}xz
: i=1
X, 0

(16b)

The solution " we seek is

=) x(t)e(z),
i=1

where e;=sininz are a suitable set of orthonor-
mal basis vectors. Proposition 2.13 (see the
Appendix) shows that the Galerkin solution con-
verges to the ‘true’ solution as n— co.

Engineers frequently use techniques such as
Galerkin’s for the solution of nonlinear PDEs. In
previous studies of equations such as (1) Dowell
uses the method to obtain a finite set of ODEs
such as (16) which are then solved by numerical
integration for specific initial conditions and
parameter values[1,2]. In that case convergence
is checked simply by carrying out the com-
putations for systems with increasing numbers of
modes and checking that solutions v"(x,t) con-
verge as n increases (cf. [1], Figs 5 and 6). Here
we are primarily concerned with qualitative pro-
perties of the system and hence with confirming
that the bifurcations of the finite dimensional
system (16), which we must use in eigenvalue
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estimations, do not differ from those of the full
system in some parameter range of interest.

We consider the fixed point {0,0}. Here the
linearised operator is simply A, and its approxi-
mation the 2n x 2n matrix Aj. If p=0 the spect-
rum is easy to determine since the matrix be-
comes block diagonal (ie. the modes decouple),
and one gets

= —(j*r*e/2){1 £ /1 -4(°r + T )%} (17)

In this case A% for n=oo is identical to A, and
the eigenvalues given by (17) are exact. In parti-
cular for p=I=0, A? is identical to Ao of
Proposition2.4.Forj < \/i/n\/a_z theeigenvaluesare
complex conjugate with real parts = —j*z*a/2 and
as j—oc the (purely real) eigenvalues — — oo and
—1/a. This yields an estimate of

A
£= mm(;, j‘n"a/2)

and hence an estimate for the decay of the
semigroup gencrated by A4,: see the remarks
following Proposition 2.4.

Turning to the case p>0 we first note that a
single mode approximation v=x, sinnz does not
exhibit flutter, as can be seen from the ODE

d /x
ale)
X4
(.—1:2(11:2 +IMx; — (am“-l-\/;é))&,

3
n 5 ]
-—?(;cxi+ax,x, )x,)

although a symmetric saddle-node as in Fig. 2(b)
does occur at I'= —n?. However, the two mode
model, which was discussed in detail in [3], does
exhibit flutter and moreover appears to exhibit
the qualitative behavior of four, six and higher
mode models and of the full infinite dimensional
system (3). In particular, the dimension of the
center manifold M appears not to increase and
thus the essential model should remain (quali-
tatively) identical. To check this we must check
that the behavior of the eigenvalues given by (17)
does not differ qualitatively from that of the
eigenvalues in the full system. As shown in
previous studies[3] and in Section 5 below, we
are particularly interested in a parameter range
in the neighborhood of p=pe; (T,p)=~(—2.37%
108) for which A" has a double zero eigenvalue
when §=0.1 and «=0.005. We wish to confirm

that A, has a double zero eigenvalue close to y,
and that the remaining eigenvalues are in the
negative half plane, as is the case for Aj.

To illustrate the delicacy of the estimates, we
first compare the finite dimensional two and four
mode models. In the latter case the eigenvalues of
A} are the eight roots of the polynomial

my My +rem=0,
where
my,=(A2=bi—a, ) (A*—byi— )+c3
12 d 14— 2A—a; 12

Miy = (}"2 - b3).—a3 )(;.2 - b4/~> ’"a4)+ Cg,;,
and

rem= ()»2 —b]}s —a )(/‘.2 -b4}.—a4)C§3

+ ().2 —bz).—az)(}.z —b3i‘03)0%4+(3%4cg3 =0

Here m,, and m,, are the quartics obtained from
two mode models taking modes (1 and 2) and (3
and 4) in pairs. It is not immediately clear that
rem is small in comparison with this product but
lengthy estimates and numerical work indicates
that for u near y, the eigenvalue evolutions as u
varies are qualitatively identical. The double zero
occurs in the two mode case for ([,p)=
(—2.237%, 107.8) (remaining eigenvalues =~ —5.18
+23.59i) and in the four mode case for (I, p)=
(—2.2972, 112.5) (remaining eigenvalues =~ —5.01
+24.02i; —20.32+73.82i; —62.99+131.80i).
Increasing to six or eight modes appears to make
little further difference to the top 4 eigenvalues,
as Dowell’s results suggest[1]. Studies of the
operator DG(+x}) (G} linearised at the two
fixed points +x} which bifurcate from {0} as g
crosses a curve in the neighborhood of g,) in-
dicate that its convergence properties are similar.
We now return to the infinite dimensional case.

Strictly we should consider the general con-
vergence situation for the operator

DG,(x0): G,(*)=A4,  +B(")

linearised at a general fixed point x,%{0,0}.
However, since our analyses are local and we are
primarily concerned with the behavior and stabi-
lity of solutions splitting off {0,0}, the component
DB(x,) of DG, (x,) will be small compared to A4,
since x, is close to {0}. Hence we must first
establish that the eigenvalue behavior of an ap-
proximate operator 4\ (defined below) provides
an acceptable estimate for that of A,. Then we
can use DG (x,) (where xo=x3), the fixed point
of the Galerkin system on 9%", with all other
coordinates set to zero, and DGY'(-) is defined
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similarly to A4Y") to provide estimates for
DG, (Xo).
This prompts us to consider the linear
operator

Ay O
A‘°’=( “ r):X—-»X
"o 4

where A} is n-mode approximation (for example,
the four mode one studied above) and A} is
obtained by setting all the ¢;;s in (4.1) to zero for
iorj=n,ie., the ‘(c0 —2n) x (oo —2n)” matrix

O t 0 O0
as bs 0 0

A=(0 0 0 1 (18)
0 0 a

6 be

We now consider the full operator A, as a
perturbation of A!Y. Note that the eigenvalues of
A can be determined exactly: the first 2n by
numerical computation of detlA;—}JI and the
remaining (infinite) spectrum from (17) with j=n
+1. It is easy to check that the c¢;: i,j=n+1
terms ignored in A} become increasingly neglig-
ible as n increases, even for large p. Thus for a
given x and with n chosen sufficiently large, 4, is
a small perturbation of A4'”. Lengthy algebraic
estimates then ensure that as n increases so the
accuracy of the eigenvalues estimated from A{”
increases for pu fixed. The general case of con-
vergence of qualitative behavior as pu varies is
discussed in {6].

In particular for u=p, and for 4,6,8,... modes
the eigenvalues approximate the top 4,6,8,...
eigenvalues of the exact system well. (We work in
even numbers of modes so the ¢;'s appear re-
gularly). The location of the bifurcation curves
for a 2-mode model may be inaccurate (near the
bifurcation point of concern to us, the error in I
is of the order of 0.5 and in p about 5). This
phenomenon is also borne out in the work of
Dowell[1], where he notes that a two mode
model exhibits flutter at a value of p appro-
ximately 209, lower than that for the four, six
and higher mode models, when I'=0. His
numerical convergence studies support our con-
tention that the four and six mode models pro-
vide good approximations. However, the quali-
tative behavior of the eigenvalues scems to be the
same for the 2 and 4 mode model near the point
of concern to us (F'=2.3xn%; p=~108). Our de-
ductions are based primarily on this qualitative
behavior, so for simplicity we describe the 2-
mode model in some detail in Scction 5.

In addition to the estimates obtained from
Galerkin’s method, it is also possible to estimate
the spectrum numerically by considering the eigen-
value equation A,x=Ax directly. Specifically,
the eigenvalues of A, are those A for which the
quartic equation

(1 +an)a* —Ta* +pa+ (22 +/po:)=0 (19)

has four distinct non-zero roots a,,...,ds, such
that
1 1 t 1
2 2 2 2
det] 4 az as g -0 (20)
e a“: %3 et ‘

aje’s aje" ale™ ale™

Expressing the a; as functions of A, equation (20)
yields a transcendental equation for 4.

5. AN EXAMPLE BASED ON A
TWO MODE MODEL OF
PANEL FLUTTER

We now make use of results obtained in the
previous finite dimensional study{3]. It was
shown there that the operator A2: R*~R* had a
double zero eigenvalue at u=(I,p)=(—2291,
107.8), the remaining two eigenvalues being in
the left hand plane. A2 is a finite dimensional
approximation to A,:X—X and in view of the
convergence results of Section 4 we therefore
assert that in the ODE on a Banach space (3) the
origin {0} is a degenerate critical point with a
double zero eigenvalue at y=pq,~(—22.91, 107.8)
and that all other eigenvalues have strictly ne-
gative real parts. In terms of Theorem 3.1, then,
the spectrum of DF¥(0); p=p,, splits into two
parts: |exp(ta, )| <1 and exp(t6;)=1 and the dim-
ension of the latter’s eigenspace is iwo. In view of
the global existence, uniquess and smoothness
results from §2, we can therefore apply 3.1 and
extract a 2-dimensional center manifold M.

In a neighborhood U of poe%R?, the control
space, all eigenvalues but two remain within the
unit circle. From [3] the structure of the bifur-
cation set is as shown in Fig. 5. We thus assert
the existence of a 4-dimensional local essential
model M x U <X x R? which completely captures
the bifurcational behavior near 0. In particular,
referring to the eigenvalue evolutions of Fig. 6, M
x U contains a Hopf bifurcation occurring on B,
and a symmetrical saddle node occurring on B,,.
Moreover, finite dimensional computations for
the two fixed points { +x,} appearing on B, and
existing in region I1I shows that they are sinks, i.c.

[spectrum(DF#(+x,))| <1
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Fi1G. 5. Partial bifurcation set for the two mode panel (2
=0.005, 6=0.1).

c | [
H’oof Hopt
/saule-mde
unit circle
(@I=0 (o) ['=-16
[4 [4
saddle-node

codimension two
bifurcation
{e}=-21.91 {(d) T'=-24

Fig. 6. Eigenvalue evolutions for DF#(0):X—X, I fixed, p
increasing, estimated from 2 mode model. (a) I'=0. (b) =
—16. () '=~=2191. (d) I'=-24.

below a curve Bj originating at 0 which we also
show on Fig. 5. As u crosses Bj transversely
{+xo} undergo simultaneous Hopf bifurcations
before coalescing with {0} on B,,. Weindicate below
how all this behavior is captured by M x U. A fuller
description of the bifurcations, including those
occurring on B,, and B,;, is provided in [3].

First consider the case where u cross B, from
region I to region lII, not at 0. Here the eigen-
values indicate that a saddle-node bifurcation
occurs. In [3] we derive exact expressions for the
new fixed points {+x,} in the two mode case.
This then approximates the behavior of the full
evolution equation and the associated semiflow
F#:X->X and we can thus assert that a sym-
metric saddle-node bifurcation occurs on a one-
dimensional manifold M, as shown in Fig. 2b
and that the ‘new’ fixed points {4 x,} are sinks
in region I11. Next consider u crossing B,\0. Here
the eigenvalue evolution shows that a Hopf bifur-
cation occurs on a two-manifold M, and use of
the stability arguments outlined in Section 3
indicate that the family of closed orbits existing
in region 1l are attracting.

Now let u cross B,,\0 from region II to region
IMla. Here the closed orbits presumably persist,
since they lie at a finite distance from the bifur-
cating fixed point {0}. In fact the new points
{+xo} appearing on B,, arec saddles in region
I1Ia, with two eigenvalues of spectrum DF*(+x,)
outside the unit circle and all others within it ((A
>1)=2). As this bifurcation occurs, one of the
eigenvalues of spectrum DF¥(0) passes into the
unit circle so that throughout regions IIla and
III (A>1)=1 for {0}. Finally consider what hap-
pens when u crosses B, from region IIla to III.
Here {+x,} undergo simultaneous Hopf bifur-
cations and the stability calculations show that
the resultant sinks in region III are surrounded
by a family of repelling (unstable) closed orbits.t
We do not yet know how the multiple closed
orbits of region 41 interact or whether any other
bifurcations occur. However, the stability crite-
rion of Section 2 and Proposition 2.1 imply that
if p=0 and ||x||>0 then dH,/dt<0 and thus
oscillatory motions must decay and no closed
orbits can exist in X. We are thus led to posit the
existence of further bifurcation curves in region
III for p>0 on which closed orbits are created.

We now have a partial picture of the behavior
near 0 derived from the two-mode approximation
and from use of the stability criterion. The key to
completing the analysis lies in the point 0, the
‘organising centre’ of the bifurcation set at which
B,,, B, and B; meet and in the subsystem M x U
which must somehow contain the individual be-
haviors noted above. Thus M x U contains all the
relevant information and in the neighborhood
V2{0}, M is a union of the individual sub-
manifolds M,, M, etc. In particular, the de-
generate singularity occurring at {0} x yoe M x U
contains our information in its versal unfold-
ing[22]. In view of corollary 3.2 we can regard
F¥ restricted to M as generated by a C' vector
field (for any I<oc). Now Takens has analysed
the singularities of such two parameter vector
fields on two-manifolds[5]. (In fact Takens’ ana-
lysis is for the C* planar case but he informs us
that his theorems go through with minor changes
for our present situation, since although we work
in a two-manifold we are only interested in a
local analysis). We thereforc make use of his
results to pick the unique generic two parameter
family of vector fields which fits our case, taking
into account the symmetry; i.c. we demand that
this family shares the behavior already detected
and that it provides a coherent completion of our
partial picture. This leads us to

tA calculation of Brian Hassard shows that these con-
clusions are also valid for the four mode (8-dimensional)
model.

»’
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Conjecture 5.1. Flutter and divergence near {0}
X po€X x R* can be modeled by a two parameter
vector field X, on a two manifold M, where X, is
differentiably equivalent to Takens’ m=2; —normal

SJorm[5].

Thus the m=2; —normal form provides our
essential model, see Fig. 7. Note that this allows
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F1G. 7. A local model for bifurcations of the panel near 0, (p,[")
~(107.8, —21.91); x=0.005,5 =0.1. (a) Takens"m=2; —normal
form{5], with associated vector ficlds. (b) The modified panel
bifurcation set.

us to complete the partial bifurcation set of Fig.
S. We show a schematic evolution of attractors in
Fig. 8, where the hysteresis effect associated with
the coexistence of multiple attracting regimes and
the resultant ‘strong’ bifurcations[22] should be
noted.

One of the deeper and more significant features
of bifurcation diagrams obtained this way is their
structural stability, i.c., a slight perturbation of
the equations governing the system, taking any
imposed symmetries into account, will perturb
the bifurcation diagram but will not alter its
qualitative features.

The genericity and structural stability argu-
ments behind Takens' classification make our
conjecture a strong one. To verify it conclusively
one would have to compute the vector field X, or
at least the Kk-jet of that field, k=3, generating
the flow F#*=(F* restricted to M). In the finite
dimensional case the original ‘complete’ vector
field X on ®?" is known and the computation
reduces to that of a vector field X% on the
eigenspace R? associated with the part of the
spectrum of DX’(0) with zero real part (cf. [27].)
It is then possible to show that X} is equivalent
to X % the vector field on M" and an analysis of
X%, using Takens’ Hamilton Bifurcation theory[5)
would thus provide a conclusive result. Note that
Takens’ theory only applies to two-dimensional
vector fields and that restriction to the center
manifold is thus essential. In particular, detection
of the ‘Figure 8 global saddle-connection on B,
and the bifurcation of closed orbits on B, relies
on the computation of certain integrals on curves
and domains in R2,

In the infinite dimensional case a correspond-
ing computation seems much more difficult, but
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F1G. 8. Evolution of attractors for the panel, '~ — 24, p increasing.
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computation and analysis of f:" and the con-
vergence results discussed in Section 4 should
suffice. However, we leave these computations for
later study.

Remark. As shown in [18], the Takens m=2:
—normal form can be written as an ODE as
follows

X =X,

O

Xp=—V X, =V3X,—XIx,—X1:  (21)
as the nonlinear oscillator
K+v% +vx+x28+x3=0 (22)

Here (x,,x;) can be regarded as a local coor-
dinate system on M. Thus the essential model
can be viewed as a ‘nonlinear normal mode'. The
parameters v, and v, of (21-22) and Fig. 7(a) are
(nonlinear) functions of ' and p. We should
stress that (x,,x;) are not obtained by taking the
natural basis of X as in the Galerkin work of
Section 4, but that they are related to M and
hence to the eigenspace associated with the dou-
ble zero eigenvalue occurring at 0 for u=pu,.
However, the above remark does indicate that
simple nonlinear oscillators are indeed justifiable
as local models for flutter and divergence.

If the symmetry inherent in equation (1) is
broken by, for example, the addition of a static
pressure differential Py on the panel (cf.[1]), then
it is not clear how the symmetry of the normal
form of equations (21)-(22) will break. The bifur-
cation to divergence is easy to understand, since
it will be governed by the cusp catastrophe and
will break as indicated in Figs 2b and 2c: cf.
[25]- However, Takens has suggested that the
resultant dynamic bifurcations may involve de-
generate singularities of codimension =3 and
that perhaps a four parameter unfolding may be
necessary. In a numerical study of a similar
equation related to chemical reactions [28],
Sel'’kov has some interesting numerical results
which indicate that asymmetrical saddle con-
nections still take place, although the ‘Figure &
symmetry is broken.

We close with some comments on further
globalization. The essential model obtained
above is only valid locally near the point 0.
Similar models can be obtained in the neigh-
borhoods of other organising centers in the bifur-
cation set; see [3]. It is not immediately clear
how to piece these organising centers together or
if they require the four or higher mode model for
their accurate detection. Our procedure near 0
was to piece together codimension one bifur-
cations using Takens’ classification. If one adds a

third parameter, such as 2z, it appears that the
various organising centers coalesce for a certain
value of a. Thus piecing together the organising
centers appears to be a problem of ar least a
codimension three bifurcation on a two-manifold.
(The most obvious puess would be an organi-
sation of Takens’ normal forms in pairs about
five fixed points.)t ‘

If the center manifold has dimension =3 eg. if
the ‘grand’ organising center alluded to above
had a triple zero eigenvalue, then the picture may
be much more complicated. Indeed, one might
expect strange or chaotic motions. See [4,25].
Moreover, the fact that codimension =3 bifur-
cations on two, let alone three, manifolds have
not been classified makes these problems of fur-
ther globalization very difficult.

6. CONCLUSIONS

In this paper we have outlined a new approach
to the analysis of continuum mechanical or distri-
buted parameter problems governed by nonlinear
PDEs. We have taken the specific example of
panel flutter to illustrate our thesis, but the
techniques are clearly applicable to a wide range
of similar problems and studies of hydrodynamic
instability[4] and nonlinear buckling{26] have
already appeared. The method stresses the qualit-
ative aspects of behavior and relies on the extrac-
tion of an essential model which captures the
local bifurcational behavior. In addition to per-
mitting the analysis of complicated dynamic be-
havior, this drastic reduction in dimension sug-
gests that models previously derived heuristically
by cengineers may be rigorously justifiable and
also provides insight into their limitations. The
great difficulty of globalization, beyond codimen-
ston 2, or fitting the local models together, is
important here.

In this present work the main existence and
uniqueness Theorems 2.5, 2.6 and 2.7 are quite
general and in many applications the major part
of the work would be in checking propositions
similar to 2.1-4 and in estimating the spectra of
suitably linearised operators. Note that global
existence is not necessary for use of center ma-
nifold theory: in [4] an analysis of the Navier—
Stokes equations is carried out, and only local
existence has been proven for the three dimen-
sional case.

In this short account it has not been possible
to discuss our analysis in detail and in particular
we have abbreviated the bifurcation theoretic
aspects. The present study is also incomplete in
some respects: the major conjecture 5.1 remains

+T. Poston has conjectured that the codimension here is at
least 8 (personal communication).
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to be established with rigour and additional
convergence estimates may be needed. However,
this paper should provide an introduction to a
number of new techniques and an indication of
how they can be used in a coherent scheme of
analysis. We stress that this approach should be
seen as complementary to existing techniques for
solving nonlinear PDEs, such as asymptotic me-
thods and the numerical integration of the finite
dimensional evolution equation employed by
Dowell[1,2]. Knowledge of the qualitative struc-
ture of solutions in X or " and in particular of
the attracting sets is essential if numerical so-
lutions are to be interpreted to maximum
advantage.
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APPENDIX TO SECTION 2

In this appendix we give a few supplementary remarks
which may be useful in studying equations of the type (11).
We begin by abstracting the essence of the energy argument
in 2.1.

Proposition 2.10. Suppose the conditions of 2.5 and 2.7 hold
and there is a C' function H:X -9 such that

(i) there is a monotone increasing function ¢:{a, «c)—{0,c),
where [a, 90 )> Range of H, satisfying ||x|} £ $(H(x));
(ii) there is a constant K Z 0 such that if u(t) satisfies (11),

%H(u(!))gKH(u(!))-

Then F(uy) is defined for all t 20 and upeX.
If, in addition, H is bounded on bounded sets and

d
(iii) aH(u(!))go if [tz B,
then any solution of (11) remains uniformly bounded in X for

all time; i.e, given uge D(A), there is a constant C=C(up)
such that ||lu(¢)]| S C for all £20. Thus, the hypotheses of 2.7
hold.

Proof. By (ii),
H{u(t)) S H(ug)exp(Kt)
so by (i),
[l e)]| S & (H (g YexptK 1))
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Thus, global existence follows by 2.7. Let
Hyg=sup{H()|||u|| £ B}
50, by {iii),
Hu(t))Smax|H(ug), Hg}
Hence, by (i), we can take
C=¢(max}H(uo) Hg}) [ ]

We next consider Liapunov's theorem 2.9. In critical cases,
when the spectrum of exp(DG(x,)) is on the unit circle,
stability of x, may be more difficult to determine. However, it
is imporiant for it usually determines the direction of bifur-
cation (subcritical or supercritical) near the given system. A
well-known criterion for this in terms of energy functions is as
follows:

Proposition 2.11. Let H:X =R be C*, let x, be a fixed poini
of the system (11), and suppose:

@) for x in a neighborhood U of xo. H(x)20 and there is a
strictly monotone continuous functions :{0, ov)~[0, ov) such
that

[lx —xol| S ¥ (H(x));

(ii) there is a continuous monotone function f:[0,xc)
~[0, ). locally Lipschitz on (0, 3¢) such that

dH
@) 4 (FLNS = (HF,(x)) for xeU

and
(b) solutions of ¥= —f(r) tend to zero as t—+ + <.

Then xq is asymptotically stable.

Proof. Let r(t) be the solution of #=—f(r) with r(0)
=H(x), xeU, x#x,. Then, by (ii), H(F,(x))Sr({t). Hence
H(F,(x))-0 as 1 + . Thus, by (i), F,(x) remains near x,
and converges to il as t— + co. | ]

Examfxle 2.12. (A special case of a result of Ball and
Carr{12]). Consider the critical Duffing equation i+ 1+
=0. We show that the origin is asymptotically stable and that
solutions decay like C/\/t as t~+ox. We consider the
function

H(u )= (u+u)? +° +u*

and find

d
5 Hay )= =2y =22

<{"2 iftmax([u), Ja))z 1
=\ -4HE ) itmax(u, i) <1

Thus, with f(r)= —(1/6)r* we find H{u,t)gC/t as 1—x, so
fue) + it €1/t as 1— .

In some bifurcation problems and, in particular, the one we
study here, the equations have critical points whose location
is known only numerically and the parameter values at
criticality are known only numerically as well. In such
situations, the technique above cannot be used since it is
sensitive lo small perturbations. For this reason other me-
thods for examining critical cases are needed. For the Hopfl

bifurcation we can use stability formulas developed in that
theory; sece Hopf[13], Marsden and McCracken[4], Hassard
and Wan(14], and Section 3.

Now we turn to a theorem on the convergence of the
solutions for equations approximating (11). Thesc will be
Galerkin or other approximations in examples like panel
flutter.

Proposition 2.13. Let the hypotheses of 2.5. hold for G=A
+B and for G,=A,+ B, n=1, 2.... on a fixed Banach space
Xt Assume

(i) NCXP"A"’Hé Mexptf), for all 120 and n=1,2,...;
({i) (A—A,)" "= (i—A4)"" strongly, for ;> f:
(iii) B,— B locally uniformly on X; and
(iv) there is an open set U about any given point, and a
constant K 20 such that

[IB.(x)=B,(»)|sKljx~ s, n=12..5xyeU

Then Fl{uy)—F (ug) locally uniformly, where Fp is the local
semiflow of G,. Convergence holds for all 120 for which the
semiflows are defined.

Proaf. Let

u(t)=expltA)u, + [5 exp((t —s)A)B(u(s))ds
and
i, (1) =explt A, hig + [ expl(t — 5)4,)B,,(u,, (s Nds
so that
[lee(0) — 1, (0)]] S |[expleA o —exp(e A, )uo||
+ fo [lexplit — 5)A)B(u(s)) — exp((t —s5)4,)B(u(5))]|ds
x (o M exp(tB)||BG(s)) — B,(un(s))]|ds.

By the Trotter-Kato thcorem (Kato [8, p. 502]), exp(tA,)
—exp(tA) (strongly), uniformly on bounded t-intervals. Thus
the first two terms —0 as n— co. The last term is bounded by

M exp(B) {5 || Blu(s)) — B,(u(s))||ds
+ M exp(tp) 6 || B, (e(s)) — B, (uy(s))||ds.

The first term —0 by (iii) and the second is bounded by
KM exp(eB) b [|u(s)— u (s)]jds

by (iv), for ¢ sufficiently small. Thus, by Gronwall's inequality,
u,(t)—u(t) in X as n—oc uniformly in ¢ for t small. A routine
argument now establishes convergence for all ¢ for which the
semiflows are defined. [ ]

Remark. 1f (i) holds and il D(A,)>D(A), n=1.2.... and if
A i— Au for ue D(A), then (ii) will hold {from the resolvent
formula); see Kato[8, p. 429].

This result will actually show that the semiflows defined by
the Galerkin approximations to the panel problem (see [3])
converge to the semiflow of the full nonlinear partial differen-
tial equation (3) of the panel.

fIf G, is associated with a subspace X,<X and P.:X —X,
is a projection. G, o P, will be associated with X itself.



