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INTRODUCTION

This paper analyzes recent gqualitative methods for partial
differential eguations which are suitable for the analysis of complex
bifurcations which may occur in nonlinear engineering systems. We
are particularly concerned with flow induced oscillations which occur
in, for example, galloping transmission lines or panel flutter and
related vibration problems.

We shall present a general framework for the analysis of these
problems with the aim of extracting qualitative information, such as
the existence and number of periodic orbits or rest points and their

stability. This analysis is meant to complement existing techniques
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1 as asymptotic or numerical methods.
The present method uses intrinsically qualitative techniques,
h as those of blowing up a singularity and of invariant manifolds.
se approaches are particularly powerful for multiparameter problems.
After some dynamical preliminaries, we illustrate the technique

blowing up a singularity for bifurcation of fixed points and then

s to dynamic bifurcations. The last section discusses applications

various engineering systems exhibiting flutter, and in particular

: problem of panel flutter.

SOME PRELIMINARIES

In many problems concerning the bifurcation of equilibrium states,
is important to keep the full dynamical problem in mind. For m
mple, stability is often best understood in the dynamical sense; A
30 it may be useful to know that the bifurcated equilibria lie on
jnvariant manifold of low dimension for the full dynamical problem.
course, if the bifurcations include oscillations {(periodic orbits),

is impossible to ignore the dynamics,

we shall be interested in methods which are applicable to

altiparameter systems. Indeed, this is often necessary to produce
ifurcation diagrams which are insensitive to small perturbations in
he equations, (In the literature this is variously studied under
he headings "Perturbed Bifurcation Theory" - cf. Keener and Keller
26) or “"catastrophe Theory" - cf. Arnold [2] and Thom [55). The
ost famous example of this is Euler buckling. Viewed as a one

arameter system with parameter the beam tension, one gets the
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raditional picture shown in figure 1.

, deflection of beam
o at its center

stable buckled
states
AA

unstable
unbuckled state

Pigure 1
However, this bifurcation diagram is "unstable"., It can be

tablized by adding a second parameter ¢ , which describes the

.symmetry of the force A\ .T Now we get the more comprehensive

ifurcation diagram shown in Figure 2, That in figure 1 is obtained

w taking the slice ¢ = 0 ., This new two-parameter bifurcation

liagram is now qualitatively insensitive to further perturbations,

since the cusp singularity is "structurally stable” (551,

*Big?rcations og the fixed points of puffing’'s equation % + a% +
yx¢x - Ax + 6x° + ¢ = 0 provide a model for this system. See
Holmes and Rand [21] for a complete account.
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The reader can find full discussions of this kind of phenomenon
from both the engineering and the mathematical point of view in
Zeeman [59], Chow, Hale and Mallet-Paret (8], Thompson and Hunt [56)

ind Roorda [41-43), and references therein.

{l.1 THE MATHEMATICAL FRAMEWORK

The dynamical framework in which we operate is described as

follows., lLet X < Y be Banach spaces (or manifolds) and let

f:xx RP » ¢

be a given ck mapping (k 2 2) . Here RP is the parameter
space and £ may be defined only on an open subset of X X Izp .

The dynamics is given by

ax

at = £(x.)
which defines a semi-flow

P:‘::X"X

by letting Ft(xo) be the solution of % = f£(x,\) with initial
condition x(0) = Xy »
semi-flow on X ; i.e. it has, at least locally in time, unique

We assume that this equation defines a local

solutions.
A fixed point is point (xb.x) such that f(xo,x) =0 .

Therefore, Ft(xo) = x; i.e, X is an equilibrium point of the
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\amics,

A fixed point (xo.x) is called stable if there is a neighbor-
d UO of xO on which Pt(x) is defined for all t 2 0 and if
: any neighborhood U< Uy - there is a neighborhood V C Uo such
1t Ft(x) €U if x €V and t2 0 . The fixed point is called

mptotically stable if, in addition, Fy(x) + X, as €+ +e , for

in a neighborhcod of Xy o
Many nonlinear partial differential equations of evolution type
11 into this framework, as we shall see in §4 . Also, many semi-
near-hyperbolic and most parabolic type equations satisfy an
ditional smoothness condition; we say Fi is a smooth semi-flow
for each t , A , Fl s+ X * X (where defined) is a ck map and
s derivatives are strongly continuous in t , A .

For general conditions under which a semi-flow is smooth, see

:sden and McCracken [32]. One especially simple case occurs when

£(x,)\) =A\x + B(x.1) ,

ere A X + Y is a linear generator depending continuously on

and B : Y X RP 4y isa Ck map. This result is readily

soved by the variation of constants formula

ta t (t-s)Aa
x(t) = e 7‘xo + I e xf(x(s).x)ds

see Segal [48] for details).

Standard estimates and the prcof for ordinary differential

fW%
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tquations now prove the following (see Marsden and McCracken [{32) for

jetails):

. A
LIAPUNOV'S THEOREM. Suppose Ft is a smooth flow, (xo.k) is a

fixed point and the spectrum of the linear semi-group

A A

= . -»
Ut Dth(xo) : X X

(The Fréchet derivative with respect to x € X ) is eto where ©

lies in the left half plane a distance > 6 > 0 from the imaginary

axis. Then x. is asymptotically stable and for x sufficiently

0

close to x.0 we have an estimate

A -té
IFe(x) = %0l = Ce .

If we are interested in the location of fixed points, we solve

the equation
£(x.2) = 0 ,

and the stability of a fixed point x w{ll be determined by the

(o]

spectrum ¢ of the linearization at xo :

A, = D E(xg,A) .

{We assume the operator is non-pathological --- eg has discrete

to
spectrum =--- SO o(etAl = e (AX) «) In critical cases where the

)

spectrum lies on the imaginary axis, stability has to be determined
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sther means. It is at criticality where, for example, a curve of

»d points xo(x) changes from stable to unstable, that a

ircation can occur, as we shall see in §2 .
The second major point we wish to make is that within the

text of smooth semi-flows, the usual invariant manifold theorems

m ordinary differential equations carry over.

In bifurcation theory it is often useful to apply the invariant

ifold theorems to the suspended flow

Ft:XX:Rp"XxZRp

(x:2) * (F) (%).4)

» invariant manifold theorem states that if the spectrum of the

i1earization AA at a fixed point (xo.R) splits into os U oc .

are © lies in the left half plane and oc is on the imaginary

s
is, then the flow Ft leaves invariant manifolds MS and Mc
ngent to the eigenspaces corresponding to 9 and % respective-

is the center manifold. (One can

s M is the stable and Mc

s
R .
low an unstable manifold too if that part of the spectrum is

nite). By Liapunov's theorem, orbits on MS converge to (xo.x)

;ponentially., For suspended systems, note that we always have
€ ac .
The idea of the proof is this: we apply invariant manifold

ijeorems for smooth maps with a fixed point to each Ft separately.
ince Ft and FS commute (Ft e Fs = Ft+s = Fs ° Ft) , it follows

nat these invariant manifolds can be chosen in common for all the
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?t .
For bifurcation problems the center manifold theorem is the most
relevant, so we summarize the situation. (See Marsden and McCracken

23271 for details).

CENTER MANIFOLD THEOREM FOR FLOWS. Let 2 be a Banach space admitting

a ¢® norm away from 0 and let Fe be a cO semi-flow defined on a

neighborhood of 0 for 0 s t € T . Assume Ft(O) = 0 and for each

e ® Z2+2 is a Ck+l map whose derivatives are strongly con-

tinuous in t . Assume that the spectrum of the linear semigroup
t{oglac)

t>0,F

DFt(O) : 2 +2 is of the form e where etoc lies on the

tog

unit circle (i.e. o, lies on the imaginary axis) and e lies

inside the unit circle a nonzero distance from it, for ¢t > 0 ; i.e.

og is in the left half plane. Let Y be the generalized eigenspace

corresponding to the part of the spectrum on the unit circle. Assume
dimy=d < e,

Then there exists a neigyhborhood Vv of 0 in 2 2and a c®  sub-

manifold Mc c v of dimension d _passing through 0 and tangent to
Y at 0 such that

(a) If x € Mc , £t >0 and Ft(x) € Vv, then Ft(x) € MC’

(b) Xf t >0 and F:(x) remains defined and in V for

all n=0,1, 2, ..., then Fg(x) + M, as n+= .’

See Figure 3 for a sketch of the situation.
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Figure 3

For example, suppose we have a curve of fixed points xo(x) .

crosses Ao and two stable

Then all three points will

. on the center manifold for the suspended system. Taking )\ = ’“ﬁ
Mé for the parametrized

€ R which become unstable as )

xed points branch off, as in figure 1.

mstant slices yields an invariant manifold

rstem; see figure 4.

X
A

— M_ = invariant center manifold
¢ through (xo,xo) for the

‘xo'*o) suspended system

L
i s ( v 52
2 3/(‘ 4
X

Figure 4 {also, see p. 170)
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X M_ : )\ = constant slice above criticality

sink

invariant manifold
(A, = constant) N M_ containing
3 fixed point

Figure 4 (cont‘'d)

Although the center manifold is only known implicity., it can
greatly simplify the problem gualitatively by reducing an initially
inifinite dimensional problem to a finite dimensional one. Likewise,
questions of stability become questions on the center manifold
itself., For example, it becomes clear, at least under a non-degneracy
condition, that in the context of figure 4, supercritical branches
are stable and subcritical branches are unstable. (For center
manifolds of higher dimension, however, this is not true in general -
see McLeod and Sattinger [30] for instance and the discussion in

§3).

§2. BIFURCATION OF FIXED POINTS

Most of the literature on bifurcation theory deals with
bifurcation of fixed points. For example, see Cesari [7], Sather

(45, 46]), crandall and Rabinowitz [9, 10), Nirenberg [35], sattinger
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'], articles in Keller and Antman [(25]), and the references therein.
the applications side, many of the papers grew out of work of
-ter (see Thompson and Hunt [56) for references).

Here we shall give a relatively simple geometrical framework for
1ling with bifurcations at multiple eigenvalues for multiparameter
stems, The approach follows Buchner, Marsden and Schecter [6] ana
nbines some ideas in Nirenberg [35] with the method of blowing up
singularity. A general stability analysis is complex, as indicated
McLeod and Sattinger [30). In specific problems this can sometimes
reduced to that for single parameter systems or an eigenvalue
alysis can be done numerically, as we shall indicate in §4 .
arefore, we shall not discuss stability at this point any further.

As above, fixed points are determined by the zeros of a ck map Aﬁ%
£:xx RP 4y

Let xo(A) be a given p -parameter manifold of solutions of

0 for A in an open set in =RY .

X.,2) =0 i,e. f(xo(k).x)

t xo(xo) =X e Following standard terminology. we say that

is a bifurcation point if every neighborhood of (xo,xo)

0.10)
ntains a solution (x,A) of £(x,A) =0 with x ¥ xo(x) e The set

all solutions near (xo.xo) . including (xo(x).l) . constitute

e bifurcation set. From a more general point of view, it seems

sirable to define a bifurcation point as one near which the set of

lutions changes topological type as A varies.

If (x5¢29) is a bifurcation point, then Dxf(xo,xo) : XY,
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che Fréchet derivative of f with respect to x at (Xgrg) o is
wot a surjection., This is a trivial consequence of the implicit
unction theorem. Nevertheless, this criterion is effective in

iingling out condidates for bifurcation points.
Let X, = ker Dxf(xo,xo) and assume
{i) Xy splits; i.e. X = X, & x2 for a closed subspace xzc X

and (ii) Xl is finite dimensional.

We refer to Buchner, Marsden and Schecter (6] for the case

in which xl is allowed to be infinite dimensional.

Likewise, assume
(iii) Range Dxf(xo,yo) = Yl is closed and has a closed comp-

lement ng Y=Yl®Y2. dlmg<w .

Let P Dbe the projection of Y to Yl and let x, = u(xl,;)

be the unique solution of

f(xl + Xy A) =0
for X3 € xl, X, € x2 near (xo,xo) . This is guaranteed by the im-
plicit function theorem. Thus, the equation £(x,)) = 0 is equiva-

lent to the bifurcation equation:

s (I - P)f(xl + u(xl:)\), 1, = 0

The reduction to the bifurcation equation, called the Liapunov-
Schmidt procedure, is analogous to the reduction to the center mani-
fold. 1In fact, as described above, the bifurcation of fixed points
takes place within a center manifold for the dynamical systems.

Usually, but not always, Dxf is a Fredholm map and so the
bifurcation equation is a finite dimensional problem. (An exception
occurs in general relativity: see Fischer, Marsden and Moncrief {13].)

The methods of Buchner, Marsden and Schecter [6] do not require

this assumption.
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Now we give the main result on bifurcation at simple eigenvalues.
2 hypotheses are stated in a form convenient for verification and
weakened below with no change in the proof). The result is essen-
lly the same as in Crandall and Rabinowitz [9] , to which the read-
is referred for examples. The proof, however, is more geometri-
ly satisfying. If is due to Nirenberg (35] , based on a suggestion

Duistermaat .

ZOREM (BIFURCATION AT SIMPLE EIGENVALUES). Assume
p=1, dimx, = dim Y, = 1,

2

af _ 3" f
H (xo.xo) =0, _a 2 (xoo).o) € Yl
A
and 22 (XneXo) ¢ X, £ X, where X, = span (x,}) ., ||x,)] =1
and  3Fax Yorto 158% 1 L A

en the bifurcation set near (xo,xo) consists of two intersecting,

ansversal, Ck-z curves.

WF. Let & be a linear functional orthogonal to ¥,y and let

@ xl x R IR,

O(x).0) = L(E(xX) + Ulxy,0), )

that, m—l(O) is the bifurcation set near (xo,xo) . Basy calcula-

ms show that

m(xoalo) =0
dm(xo,xo) = 0
1
dzw(xol)‘o) = * 2(B_2f(x0,)‘°) 3 xl)
drdX
2

2f 37 £(x,4.24) ¢ X) 0
(axax 0*"0 1
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Thus (xo,xo) is a non-degenerate critical point for ® of index 1 .

Thus by a ck-2 change of coordinates, o{y,u) = ls(y2 - pz) by the

Morse lemma. Hence m'l(O) is two K2 curves. (J

With this point of view, we can now turn to the general case. We

shall need a preliminary definition.

DEFINITION. Let 2y Y2 be Banach spaces and B : Zy x2) Y2 be a
continuous symmetric bilinea; form. Let Q(v) = kB(v,v) be the asso-
ciated quadratic form. Let C = Q-l(O) ; i.e. C is the cone of zeros
of Q . We say Q is in general position at v €C , v # 0 if the

linear map w w B(v,w) of z1 to Y, is surjective. If we say Q is in

general position on C we mean it is so at each non-zero point of C .

THEOREM (THE GENERAL CASE), Let £ : X «x RP 4y be as above., Assume

(i), (ii) and (iii) hold, and that

[

£ =
"")“(xooko) =0 .

Let B = (I - p)sz(XO')‘O) restricted to X, x rP = Z, and Q be
the associated guadratic form. Assume that Q is in general position
on C.

Then the bifurcation set near (xo,xo) is homeomorphic to

Cc= Q'l(O) via a homeomorphism that takes (xo,xo) to 0 and is a c*
diffeomorphism away from (xge2g)

If v e Q'l(O) , there is a ck=2 curve (x(s),)(s)) of solu-

tions to £(x,)) = 0 tangent to v at (xo,xo) and the union of these

curves constitutes the bifurcation set. .

=—=~==_tOoustitutes the bifurcation set

REMARKS. l., If one only knows Q is in general position at a par-
k-2

ticular v € ¢, then v is still tangent to a ¢ curve in the

bifurcation set.



2. The proof may enable one to determine the structure of
the bifurcation set even if the hypotheses fail. One may have to
rescale the variables by different amounts in different direc-

tions and follow the method outlined in the blowing up lemma

below,
3, If p-1 + dim X, = dim Y, =m, the bifurcation set

k-2

consists on 2s curves of class C through (xo,xo) where

lss =z zm-l (This follows by using Bezout's theorem from alge-

braic geometry todetermine the number of rays in 0-1(0) ).

The theorem is proved by appeal to a rather general result. The
:erest in this approach is that the techniques are completely

raightforward and applicable to a wide variety of situations. We

:» the following lemma:

WING-UP LEMMA. Let H Dbe Euclidean n-space, V Euclidean m-space

1 g:H+Y a Ck map, k 2 3 . Assume
Q is in general position on C = Q-l(O)

Then there is a neighborhood U of © in H such that
-1

l'(0) N U is homeomorphic to Q “(0) via a homeomorphism that takes

to 0 and is a Ck diffeomorphism away from O . Moreover, if

€ Q-l(O) , there is a c*"? curve a(s) € g-l(O), -6 £ 8 <8 with

N=0,c’0)=v .
Here is how the lemma yields the theorem. Let

dH = X np*vz = V be defined by

lxgn) = (I = PYE(xy + %y, 0}, )

early g is of class Ck . Also, noting that Du(xo,xol = 0 (from

e definition of u and %{(xo,xo) = 0 ), one calculates that

™
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wnd  (b) ng(xlo,xo) = (I - P) sz(xo,xo) . restricted to X, x RP .

‘herefore, by our assumptions in the main theorem, the blowing-up
.emma applies to g . Since the zeros of £(x,)) are the graph of
sver the zeros of g , the conclusions of the theorem follow.

Here is the idea of the proof of the blowing-up lemma. Let §

e the unit sphere in H . Set

g :5x RaV,

g(x,r) =1 g(rx)
2

3y Taylor's theorem,

g(x) = Q(x) + R(x)

k-2
50 where R is ¢ ., SO
~ _ 1
g(x,r) = 0(x) + —:R(tx)
T
and since R vanishes like r3 . § - is ck'2 . Away from r =0 ,

the zeros of g and g are in 1l-l correspondence. If we identify
5 x {0} and s, we have thus blown up the singularity of g at 0
to the unit sphere S . Near S , the structure of the set of zeros
9f g can be analyzed easily since 0 is a regular value of g on
S (by hypothesis) and 3_1(0) intersects § transversally. By
pushing this structure down to X, by the map (x,r) » rx, we get

the result.
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{x,r) » x -1(0)

3

Figure 5.

. DYNAMIC BIFURCATION THEORY

Bifurcation theory for dynamical systems is much less developed
.an that for fixed points. 1Indeed the variety of bifurcatioa possible
«d their structure is much more complex. We shall briefly outline
:re some examples of dynamic bifurcations and then state a general
.an for attacking a complex bifurcation problem.

We begin by describing the simplest bifurcations for pne paré-
tter systems. In a sense these bifurcations are the generic local

1es. (See Sotomayor [50) and Takens [53) for details) . If one

iposes a symmetry, however, what is generic may change, as we shall

tplain.

\DDLE NODE. This is a bifurcation of fixed points; a saddle aand a
tnk come together and annihilate one another, as shown in Figure 6 .
simple real eigenvalue of the sink crosses the imaginary axis at
se moment of bifurcation; one for the saddle crosses in the oppo-
ite direction. The suspended center manifold is 2-dimeansional .

ae symmetric situation of a saddle-source is also possible.
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)

x [ ]
| saddle o
> '
saddle-node sink
bifurcation eigenvalue
evolution saddle

Figure 6.

If an axis of symmetry is present, as will be the case in the
example of panel flutter treated in §4 , then a symmetric bifurcation
san occur, as in Figure 7 . As in our discussion of Euler buckling, a
small asymmetric perturbation or imperfection 'uafolds' this into a
simple non bifurcation path and a saddle node. In Figures 6 and 7

we also indicate the vector field flow directions schematically.

4
X a X
non
ifucating
sink
sink J "
y . ( + saddle node
> A
symmetric a small imperfection

saddle node

Figure 7,

HOPF BIFURCATION. This is a bifurcation to a periodic orbit; here

a sink becomes a saddle by two complex conjugate non-real eigenvalues
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18ssing the imaginary axis. As with the symmetric saddle ncde, the
lurcation can be sub-(unstable closed orbits) or super-(stable closed
’its) critical. (See Marsden and McCracken [32] for calculations
determine which is which) . Figure 8 depicts the supercritical

:racting case. Here the suspended center manifold is 3-dimensional.

attracting
f,,f”””‘ [/::::;;—;rbit saddle
X attractor - ——— — — - (repeller in
the center
manifold)

lew = 3

ee @ .

Figure 8 The Hopf Bifurcation.

These two bifurcations are local in the sense that they can be

alyzed by linearization about a fixed point. There are however,

me global bifurcations which are more difficult to detect. A

«ddle connection is shown in Figure 9: cf Takens [54) , Arnold [2] .
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stable
closed orbi
growing

in
mplitude

of

infinite JD
period
after
the o
increasing ) ifurcatior

Figure 9. A Saddle Connection

Here the stable and unstable seperatrices of the saddle point pass
through a state of tangency (when they are identical)-and thus
cause the annihilation of the attracting closed orbit.

These global bifurcations can occur as part of local bifurca-
tions of systems with additional pérameters. This approach has been
developed by Takens [54] who has classified generic or ‘stable’ bifur-
cations of two parameter families of vector fields on the plane. This
is an outgrowth of extensive work of the Russian school led by
Andronov (1) . An example of one of Taken's bifurcations with a

symmetry imposed is shown in Figure 10. (The labels are for later

use.)
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) IIIa 111 A
1Ib on OSl .
ITI (figure 8 saddle
¢ connection)
H \
sl
C

Figure 10. Takens' (2,-) normal form showing the
—_. ‘local phase portrait in each region on parameter space (Takens' [(s541))

Some of the phenomena captured by the bifurcations outlined
bove have been known to engineers for many years. In particular
e might mention the jump phenomenon of Duffings equation (see
imoshenko [57), Holmes and Rand [21])} and the more complex bifurca-
ional behavior of the forced van der Pol oscillator (Hayashi [15] ,
‘olmes and Rand [22] ; [22] contains a proof that the planar varia-
:ional equation of the latter oscillator undergoes a saddle connection

vifurcation as in Figure 9 .

™

e
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Now we can outline an approach to bifurcation problems (cf.
:olmes and Rand [20]) . First of all, the analysis is for two para-
leter systems which posess, near a fixed point (xo,xo). a three 4di-
iensional suspended center manifold (i.e. for each ) , a two dimen-
tional invariant manifold for the dynamics). Typically, a fixed point
7111 have a real double zero eigenvalue at a certain parameter value
ind we are interested in bifurcations near this organizing center.
ne first fills in as much of the bifurcation diagram as possible,
1sing linearization to detect Hopf and saddle node bifurcation. Second,
one assumes (taking any symmetry into account) that the bifurcation
liagram itself is stable to small perturbations.This is justified since
one is presumably working with a model which only approximates some
physical situation [20] . Finally, the correct bifurcation diagram
is obtained by looking through Takens' list for a diagram(s)* con-
sistent with the information obtained.

We shall illustrate how this procedure works in a concrete

problem in §4 .
§4. FLUTTER IN ENGINEERING SYSTEMS

Before giving a particular example analyzed by the methods of

§3 , we discuss some ideas and examples of flutter in general.

.

TSee Takens [54] . Here, in §§5,6, Takens lists generic bifurcations
of 2 parameter vectorfields on the plane (or on two-manifolds) having
singularities with double zero eigenvalues. He allows the vector-
fields to have rotational symmetry but assumes that there is no
"higher" degeneracy in the nonlinear terms. See Takens [51] for an
example where the latter does occur. It is not strictly correct to
speak of a "list" of two-parameter bifurcation, since the various
analyses has not been conveniently gathered in one article.
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All too often, engineers are content with only & linear ana-
sis. For example, flutter is often viewed as the presence of two
nplex conjugate eigenvalues with positive real part. (cf. Zeigler
)] ). The non-linear system may be fluttering (i.e. have a closed
2it) or not, as shown in Figure 11 . Mathematically, the develop-
at of spontaneous flutter is best detected through the Hopf bifurca-
on, remembering that the periodic orbits could be unstable and the
furcation suberitical.

A d= displacement

g) t phase non-linear flutter (limit
portrait cycle)
ase Mmﬁ
ortrait displacement
curve :
?0R?
linear flutter aa

an example of linear, but not

nonlinear flutter (no limit
cycle).

Figure 11.

Similar remarks may be made about divergence (a saddle point

¢ source) as shown in Figure 12 .
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Displacement

N

Disturbance

Time —>

Divergence

AN

(a) linear theory

- - = o~

Divergence

(b) a nonlinear possibility
Figure.lz.

. There are, in broad terms, three kirnds of flutter of interest
to the engineer. Here we briefly discuss these types. Our biblio-
graphy is not intended to be exhaustive, but merely to provide a
starting point for the interested reader.
(a) AIRFOIL OR WHOLE WING FLUTTER ON AIRCRAFT

Here linear stability methods do seem appropriate since vir-
tually any oscillations are catastrophic. Control surface flutter

probably comes under this heading also. See Bisplinghoff and Ashley

(3] and Fung [14] for examples and discussion.



CROSS FLOW OSCILLATIONS

The familiar flutter of sun-blinds in a light wind comes under
.8 heading. The "galloping" of power transmission lines and of tall
-ldings and suspension bridges provide examples which are of more
‘ect concern to engineers: the famous Tacoma Narrows bridge disaster
3 caused by cross flow oscillations. In such cases (small) limit
zle oscillations are acceptable (indeed, they are inevitable), and
a nonlinear analysis is appropriate.

Cross-flow flutter is due to the oscillating force caused by

on-Karman" vortex shedding behind the body, Figure 13 .

Figure 1l3. Cross flow oscillations

e alternating stream of vortices leads to an almost periodic force
t) transverse to the flow in addition to the in-line force G(t) :
t) varies less strongly than F(t) . The flexible body responds fo
t) and, when the shedding frequency (a funetion of fluid velocity,
and the body's dimensions) and the body's natural or resonance

‘equency are close, then "lock in" or entrainment can occur and large
iplitude oscillations are observed. Experiments strongly suggest a
.mit cycle mechanism and engineers have traditionally modelled the
-tuation by a van der Pol oscillator or perhaps a pair of coupled
icillators. See the symposium edited by Naudascher {34] for a num-
:r of good survey articles: the review by Parkinson is especially
:levant. In a typical treatment, Novak [36] discusses a specific
<ample in which the behaviour is modelled by a free van der Pol type

scillator with nonlinear damping terms of the form

™
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] s 2 +3
alx + azx + a3x + e

and

ch eguations possess a fixed point at the origin x = x =0
n also possess multiple stable and unstable limit cycles. These
cles are created in bifurcations as the parameters 810 850 eees
ich contain windspeed terms, vary. Bifurcations involving the
xed point and global bifurcations in which pairs of limit cycles are
eated both occur (cf. Novak [36] figures 3,8,9). Parkinson also
scusses the phenomenon of entrainment which can be modelled by the
«xced van der Pol oscillator.

In a more recent study, Landl [28] discusses such an example
iich displays both "hard" and "soft" excitation, or, in Arnold's

irm [2) , strong and weak bifurcations:

55+6:'c+x=a02CL

o 2 4, s 2 _
CL+(a.—5CL+ycL)cL+ncL—bx.

are -E%Eand e, B, vy. 8, a, b

are generally positive constants
>r a given problem (they‘depend upon structural dimensions, £fluid
coperties, etc.). Q0 is the vortex shedding frequency. As (1 varies
ae system can develop limit cycles leading to a periodic variation
nC_, the 1lift coefficient. The term anch then acts as a periodic

L
riving force for the first equation, which represents one mode of

ibration of the structure. This model, and that of Novak, appear to
isplay generalised Hopf bifurcations (see Takens [51]) .

In related treatments allowance has been made for the effects
f (broad band) turbulence in the fluid stream by including stochas-
ic excitations. Vacaitis et. al [58] proposed such a model for the
«scillations of a two degree of freedom structure and carried out some

umerical and analogue computer studies. Recently Holmes and Lin {17]
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applied qualitative dynamical techniques to a deterministic version
>f this model prior to stochastic stability studies of the full
nodel (Lin and Holmes {29]). The Vacaitis model assumes that the

von Karman vortex excitation can be replaced by a term
F(t) = Fcos(Qit + Y(t))

#here Q1 1is the (approximate) vortex shedding frequency and ¥ (t)
is a random phase term. In common with all the treatments cited
above the actual mechanism of vortex generation is ignored and
"dummy" drag and lift coefficients are introduced. These provide
discrete analogues of the actual fluid forces on the body. Iwan and
Blevins [24) and St. Hilaire [49] have gone a little further in
attempting to relate such force coefficients to the f£luid motion
but the problem appears so difficult that a rigorous treatment is )
still impossible. The major problem is, of course, our present in-ﬂaw
ability to solve the Navier-Stokes equations for viscous flow a-
round a body. Potential flow solutions are of no help here, but
recent advances in numerical techniques may be useful. Ideally a
rigorous analysis of the fluid motion should be coupled with a con-
tinuum mechanical analysis of the structurg. For the latter, see
tLe elegant Hamiltonian formulation of Marietta {31] for example.
The common feature of all these treatments (with the excep-
tion of Marietta's) is the implicit reduction of an infinite dimen-
sional problem to one of finite dimensions, generally to a simple
nonlinear oscillator. The use of center manifold theory and the
concepts of genericity and structural stability suggests a way in
which this reduction might be rigorously justified. To illustrate
this we turn to the third broad class of flutter, which we discuss

in more detail.
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:) AXIAL FLOW INDUCED OSCILLATIONS

In this class of problems, oscillations are set up directly
1irough the interaction between a fluid and a surface across which
: is moving. Examples are oscillations in pipes and (supersonic)
inel flutter. Experimental measurements (vibration records from nu-
lear reactor fuel pins, for example) indicate that axial flow induced
scillations present a problem just as severe as the more obvious one
€ cross flow oscillations., See the monograph by Dowell [11] for an
scount of panel flutter and for a wealth of further references.
scillations of beams in axial flow and of pipes conveying fluid have
een studied by Paidoussis [37,38) and Brooke-Benjamin [4,5) ; see

aidoussis [38) for a good survey. Figure 14 shows the three situ-

tions.

k-
&

vix,t 1;(Z.t) T
- ,

cantilever %/I %
xed
nds z2=0 1
=1 v ¢ ®) b _ (c) panel flutter

eam in

) pipes conveying fluid axial flow

Figure 14, Axial flow-induced oscillations.
n addition to the effects of the fluid flow velocity p, the struc-

cural element might also be subject to mechanical tensile or compress-
.ve forces T which can lead to buckling instabilities even in the
1bsence of fluid forces.

The equations of motion of such systems, written in one dimen-
tional form and with all coefficients suitably nondimensionalised,

:an be shown to be of the type
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. 1 2 h . .
Qutrree yrins o ["Jo(v' (g))ag + °.aro(v‘<g)v' (8))dgiv'' + v +

(*) .
+ [linear fluid and mechanical loading terms in v".v',v'sy] = 0

ere a, g >0 are structural viscoelastic damping coefficients and
> 0 is a (nonlinear) measure of membrane stiffness; v = v (z,t) and

L4

= a/3t; = 3/3z (cf. Holmes [16] ). Brooke-Benjamin (4] ,
alidoussis [37,38) and Dowell [11,12] , for example, provide deriva-
ions of specific equations of this type. The fluid forces are again
pproximated, but in a more respectable manner.

In the case of panel flutter, if a static pressure differen-
dial exists across the panel, the right hand side carries an addi-
donal parameter P . Similarly, if mechanical imperfections exist £7H
hat compressive loads are not symmetric, then the “cubic" symmetry
£ (%) is destroyed (cf. §1, figures 1 and 2, above) .

Problems such as those of figure 14 have been widely studied
oth theoretically and@ experimentally, although, with the notable
%ception of Dowell and a number of other workers in the panel flutter
rea, engineers have concentrated on linear stability analyses. Such
nalyses can give misleading results, as we shall see. 1In many of
hese problems, engineers have also used low dimensional models, even
-hough the full problem has infinitely many degrees of freedom. Such
« procedure can actually be justified if careful use is made of the
renter manifold theorem.

Often the location of fixed points and the evolution of spectra -
wbout them has to be computed by making a Galerkin or other approxi-
1ation and then using numerical techniques. There are obvious con-
‘ergence problems (see Holmes and Marsden [18,19]), but once this is

lone, the organizing centers and dimension of the center manifolds

W’}'ﬁ
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:an be determined relatively simply.

4.1 PIPES CONVEYING FLUID AND SUPPORTED AT BOTH ENDS

Pipe flutter is an excellent illustration of the difference
>etween the linear prediction of flutter and what actually happens in
the PDE model. The phase portrait on the center manifold in the non-
linear case is shown in figure 15, at parameter values for which the

linear theory predicts “coupled mode" flutter. (cf. Paidoussis-Issid

{38] and Plaut-Huseyin [40]) .

saddle

STk 10 | 3l fdivergence
¢ Sink
0 ————-=—
‘ttransient flutter
. saddle .
—— (a) vectorfield (b) time evolution of a
solution starting near
{0}
Figure 15.

In fact, we see that the pipe merely settles to one of the stable
buckled rest points with no non-linear flutter. (See Holmes [16] for

details.) The presence of imperfections should not substantially change
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is situation (see Zeeman [59) for a global analysis of a similar
d-mode buckling problem).

The absence of flutter in the nonlinear case can be seen by
Eferentiating a suitable Liapunov function along solution curves of

2 PDE . 1In the pipe flutter case the PDE is

Qu'ttrayrier ir - pz + y(1-2) + K!v'lz + o(v‘,\.:')lv" +
+2-/—Bp:1' + yv' +6;/+'\'r=0 R

see Paidoussis-Issid [38], Holmes [16])) . Here |*| ana (-, *)

note the usual L2 norm and inner product and solutions x= Iv.:l}

e in a Hilbert space X = Hg([o,l]) x L2(£0,1]) (see Holmes and Marsden

8,19] and §4.2 below for more details of the specific analytic

amework for such a problem). For our Liapunov function we choose

~

e energy: in this case given by
.2 2 r-p? 2 K, .4 ¥ '
H(x(t)) = ¥|v| + %|v'* | + I‘_2.°_ [v' ] 4 v+ 2{[1-z]v',v) ,

f. Paidoussis-Issid [38], appendix I). Differentiating H(x(t))

ong solution curves yields

i g%=-6|§'|2-°l;r"l2-O(V'.;")z-2~/_59(:1'-;')

nce (;I',;I)E 0 and 6, ¢, 0 >0, dH/Adt is negative for all v>0

4 thus all solutions must approach rest points xi € X . In partic-
.ar, for l‘>1“o . the first Euler buckling load, all solutions
proach Xy = {0}l €x and the pipe remains straight. Thus a term

I the type pvV' cannot lead to nonlinear flutter. 1In the case of
beam in axial flow terms of this type and of the type pzv‘ both

rcur and nonlinear flutter evidently can take Place (see Paidoussis

-
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7] for a linear analysis) . Experimental observations actually in-

cate that fluttering motions more complex than limit cycle can occur.
We should note, however, that gantilevered pipes can flutter:

ooke-Benjamin [5] has some excellent photographs of a two-link

.del. Here flutter is caused by the so-called follower force at the

‘ee end which introduces an additional term into the energy equation

iee Brooke-Benjamin [4]).

ko2 PANEL FLUTTER

Now we turn to an analysis of panel flutter. We consider the
are-dimensional” panel shown in Figure 14(c)T and we shall be inter-
sted in bifurcations near the trivial zero solution. The equation
f motion of such a thin panel, fixed at both ends and undergoing

cylindrical" bending (so spanwise bending) can be written as

1 .1 .
vttt avir o T 4 K (vt (8 2aE + ol (v )V (g agivet +
0 0
+pv't +SPEVE V=0, (1)

jee Dowell [12], Holmes [16] . Here < 2 3/at , ' =-3/3z and we have
included viscoelastic structural damping terms @ , ¢ as well as
aerodynamic damping 46 . K represents nonlinear (membrane)
stiffness, ¢ the dynamic pressure and I' an in-plane tensile load.

all quantities are nondimensionalised and associated with (1) we

have boundary conditions at 2z = 0,1 which might typically be simply

' A two dimensional or von-Karmen panel is presumably a good deal more
complicated. For the bifurcation of fixed points, see Chow, Hale

and Mallet-Paret [8].
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pported (v = v'' = 0) or clamped (v =v' = 0) . In the following
: make the physically reasonable assumption that &, o, §, K are
xed >0 and let the control parameter u = {p, ['|p2 0} wvary. 1In
mtrast to previous studies (Dowell [11,12)) in which (1) and
milar equations were analyzed for specific parameter values and ini-
ial conditions by numerical integration of a finite dimensional
ilerkin approximation, here we study the gualitative behavior of (1)
ider the action of G .

To proceed with the methods of &3 , we first redefine (1) as
n ODE on a Banach space, choosing as our basic space

=H§([0,1])XL2([0.1]) . where liz denotes Hz functions* in

0
0,1] which vanish at 0,1 . Set [Hv.;rl"x = (|;7|2 + |v' "2)!5 ¢
here |*| denotes the usual L2 norm and define the linear operat: )
o I Cvs==v''"4lv'' =pv' (2)
A = : "
L c D DVv=-av''' =.p v .
) u ]
‘he basic domain of Au.D(A ) consists of {v,v}l €X such that
u

rg H2 and v + Qv € H4 ; particular boundary conditions necessitate

’

o]
*urther restrictions. After defining the nonlinear operator

s(v,;r) = (0, [Klv'l2 +0(v',v')]v'') , where ( , ) denotes the L2

inner product, (1) can be rewritten as

ax

dt

Aux + B(x) Gu (x) : ..

»
0

{v,v}; x(t) € D(Ah) . (3)

' 2 consists of functions which, together with their first and

H “ .
™
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#e next define an energy function H:X * R Dby

vyl = 5v1% s mlve 2 s Bie? 2 Ky (4)

and compute

. - . 2 - 2
Bow v -vselv? - v -o v, n?

Using the methods of Segal [48] one shows that (3) and hence
(1) defines a unique smooth local semi-flow Ft“ on X . Using the
energy function (4) and some arguments of Parks [39], one shows that
H(x(t)) is bounded and hence that Ftu is in fact globally defined
for all t 2 0.

By making 2-mode and 4-mode approximations, one finds that for
¢ = 0.0005, & = 0,1, the operator Ah has a double zero eigenvalue
at y = (p, ') =~ (110, -22.6) , (the point O in figure 16) the re-
maining eigenvalues being in the left half plane. (See Holmes [16]
and Holmes-Marsden (18, 19].) Thus around the zero solution we obtain
a four dimensionalf suspended center manifold. Referring to the
éigenvalue evolution at the zero solution’in Figure 17, which is

obtained numerically, we are able to fill in the portions of the bi-

furcation diagram shown in Figure 16.

t . . .
Note that the control parameter | is now two dimensional.



198

p
B
100 - 83 ) ...
symm, B
saddle ./ 52
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Figure 16. Partial bifurcation set for the two mode panel (a=0.005,
= 0.1).
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saddle
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{(¢) T' » -21.91 (d) T = =24

Figure 17. Eigenvalue evolutions for DF:(O) s X 24X,
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199

‘n particular a supercritical Hopf bifurcation occurs crossing Bh and
|‘symmetrica1 saddle node on le , as shown. These are the flutter
ind buckling or divergence instabilities detected in previous studies
such as Dowell's. Moreover, finite dimensional computations for the
:wo fixed points txo] appearing on Bgy and existing in region III
show that they are sinks (|spectrum (DFt“(*xo))l < 1) below a

surve Bﬁ originating at 0 which we also show on figure 16. As

J crosses Bﬁ transversally, {ixO] undergo simultaneous Hopf bifur-
cations before coalescing with (0]} on Bg; - A fuller description
of the bifurcations, including those occurring on Bgy and Bgg o is
provided by Holmes ([16] . First consider the case where u crosses

B from region I to region III, not at O . Here the eigenvalues

g2
indicate that a saddle-node bifurcation occurs. In Holmes [16] exact
expressions are derived for the new fixed points {*xo} in the two
mode case. This then approximates the behaviour of the full evolution
equation and the associated semiflow Ftu :+ X+ X and we can thus
assert that a symmetric saddle-node bifurcation occurs on a one dimen-
sional manifold as shown in figure 1 and that the “"new” fixed points
are sinks in region III . Next consider u crossing Bh \O . Here
the eigenvalue evolution shows that a Hopf bifurcation occurs on a
two-manifold and use of the stability calculations from Marsden and
MScracken [32]+ indicate that the family of closed ;rbits existing
in region II are attracting.

Now let W cross Bsz \ O from region II to region IIIa .
Here the closed orbits presumably persist, since they lie at a finite
distance from the bifurcating fixed point {0} . In fact the new

points (ix appearing on B,, are saddles in region IIIa, with

0!
two eigenvalues of spectrum DGu(txo) outside the unit circle and all
others within it ((A > 1) = 2) . As this bifurcation occurs one of

* This has been confirmed for eight and twelve mode models by B.Hassard
““=tw~ Wi~ anA Wan's stability formula (to appear in J. Math. An. Appl.)
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e eigenvalues of spectrum DFtu(O) passes into the unit circle so

at throughout regions IIIa and II¥ (A>1)=1 for {0}. Finally con-

der what happens when u crosses Bé from region IIIa to III .

re [ixo} undergo simultaneous Hopf bifurcations and the stability
lculations show that the resultant sinks in region III are surround-
by a family of repelling closed orbits. We do not yet know how

e multiple closed orbits of region III interact or whether any other
furcations occur but we now have a partial picture of behaviour near
derived from the two-mode approximation and from use of the sta-
lity criterion. The key to completing this analysis lies in the
int 0, the "organizing centre® of the bifurcation set at which

2+ By, and Bé meet. '

According to our general scheme, we now postulate that our
furcation diagram near 0 is stable to small perturbations in our
pproximate) equations. We look in Takens' classification and find )Ams
at exactly one of them is consistent with the information found in
gure 16, namely the one shown in Figure 10 . Thus we are led to the

mplete bifurcation diagram shown in Figure 18 with the oscillations

various regions as shown in Figure 10 .

|
B B
110p s3
L I

S T mteme e by e o)

Tteel. IlIc Bee

-
Sere cenean,,

1e modified
panel 5
ifurcation
set,

“C er taosem

B

(o]

100 A 1 2 N

-20 T =25 30

Figure 18. A local model for bifurcations of the panel near 0,
(p,T)=(110, -22.6); a=0.005, $=0.1 ., (Numerical values
derived from two mode model}. For vectorfields in Regions I~
IIIc, see Figure 10.
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In principle one could check this out rigorously by proving that
ur vector field on the center manifold has the appropriate normal form.
uch a calculation is probably rather long, but possible. See Holmes
16] and Marsden [18,19]) for additional comments. Also, it is not
lear how the presence of a small imperfection or static pressure
ifferential would affect the symmetric vectorfields of Figure 10 .

Although the eigenvalue computations used in this analysis were
erived from two and four models (in which Au of eqn (2) is replaced
Yya 4 x4 or 8 x 8 matrix and X is replaced by a vector space
somorphic to nz4 or n!a) . the convergence estimates of [18,19)
ndicate that in the infinite dimensional case the behaviour remains
malitatively identical. In particular, for u € U , a neighbourhood
f 0 , all eigenvalues but two remain in the negative half-plane.

‘hus the dimension of the center manifold does not increase and our
iour dimensional "essential model" , a two parameter vectorfield on a
‘wo manifold, provides a local model for the onset of flutter and
livergence. We are therefore justified in locally replacing the in-
Iinite dimensional semi~-flow Ftu : X+ X by a finite dimensional
system. Moreover, the actual vectorfields and bifurcation set shown

-n figure 10 can be realised by the nonlinear oscillator

3

§+A¥ Ay + iy 4y’ =0 P Y, n>0
’x ¥y =¥,
. 2 3
Yo = =\¥) = A¥5 = Y3 Y, - (5)

[see Holmes and Rand [23] for a complete analysis of this system.)

In engineering terms (5) might be thought of as a "nonlinear

pormal mode" [44]) of the system of eqguation (1), with kl' kz repre-

penting equivalent linear stiffness and damping. (Note however that
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he relationship between the coordinates ¥y, ¥, and any conveniently
hosen basis in the function space X is likely to be nonlinear: in
articular, a single “natural” normal mode model of the panel flutter
roblem cannot exhibit flutter, although it can diverge (see Holmes
16]) :; flutter occurs through coupling between the natural (linear)

ormal modes.)

We have thus seen how a simple nonlinear oscillator of van der
ol-Duffing type might provide an essential model for panel flutter.
he methods outlined in this article may be useful in many other

‘omplex problems involving nonlinear oscillations.
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