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ABSTRACT

The existence, uniqueness, differentiability and data dependence of solutions of initial-boundary value
problems in classical elastodynamics are treated by applying the theory of first-order symmetric hyper-
bolic systems. Sharp results on the differentiability of solutions are obtained in terms of body force, initial
data and boundary conditions.

L’existence, 'unicité, la differentiabilité et la dépendence aux données de la solution de problemes aux
conditions initiales aux limites dans le cas de I'elastodynamique classique est traitée en utilisant la theorie
des systemes symmétrique hyperbolique de premier ordre. Des résultats finis sont obtenus pour la
differentiabilité des solutions, ces resultats dependent des forces de volume, des données initiales et des
conditions aux limites.

Introduction

We treat the existence, uniqueness and differentiability of solutions of initial-
boundary value problems in classical elastodynamics by applying the theory of
first-order symmetric hyperbolic systems.

The possibility that such a program was workable has been alluded to by
Brockway [2]. A thorough treatment of uniqueness in linear elastodynamics and
some discussion of existence can be found in Knops-Payne [14], which contains
many references to relevant works. More recent contributions are Duvaut-Lions [5],
Fichera [6], Gurtin [11], Knops-Payne [15], [16], Murray [20] and Wang-Truesdell
[23].

Here we consider the Cauchy problem on all of R™ and the displacement and
traction initial-boundary value problems on a bounded region contained in R™.

* Assistant Professor.
** Professor.
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In Scciion 1 we discuss the existing theorems on linear symmetric byperbolic
systean following Ericdrichs {9, 10}, Kato [12, 13), Lax-Phillips [17), Massey f19)
und Rauch-Massey [22]

In Scction 2 we review the cquations of classical clastodynamics and appropriate
initiud and boundary data. We show how the eyuations can be put in symmetric
hypeibolic form in Sceion 3. Finally, in Section 4 we drsw the conclusions about
cxivlence, unituencsa ud continuous dependeave. We are able to get sharp results
un the ditferentishitity propesties of solutions in terms of body force, initial data and
boundary conditions.

‘The authurs thamk Peofessors T, Kato, P. Chernoff and F, Masacy for their helpful
COMNCIs.

1. Uocar Symmetsic yperbolic Systeny
These have the form

S5 B0 40, 5) : a.n
where . R X2-+R", {1 is & region in B™, A® A', sud B aro NXN matsix valued
functions, A" and A* awc symmenric and A® iy pusitive definite.

We wie interested in the initial-buutulary value problem, Le., given a suitsble
function of u on o}, the boundary of 0, und u ai £-0, find u(s, x) for all teR.

The bibliography un such systems is extensive. Sce, for instance, the references in
Couran Hilbert [4) and Fischer-Marsden (7).

Let (8, R) denoite the C* functions with domain 9 and range R and let C} be
the €* lunctions with derivatives of order <k uniformly bounded. Let H(w, %),
§3=0, denote the Suboley space of maps whose (distributional) derivatives of order
s are in L(9, %), The nonms on H*(9, ) and LD, ) are deaoted i1 and
¥-f,. sespectively (sec, for cxample, Fricdman [8] or Marsden [18] for a discussion of
Sobolev spaces and dheic busic propertics).

105 is o function of ¢ and x, fet h{1) denvte the function of x obtained by freczing
L, bU)(x)=htt, 5). L

%X 9'.‘_ ' .
A1, x) ar ..2. Alls )

G- (A" ‘(llli A'(uﬁﬁ um] ad  F={A")'f,
1-1
Let us fisst consider the case of ()= R*,

Turonem LA Consider (1.1) on 8™ and assume
i) A%, A, and 8 are in C(0, T)x 0™, @™).
W) AY and A* ase sysameric.
(i) A" is uniformdy positive definite, ie., A°(t,x)3 81 for all xcR™, 1 € fo, T},

where 8 is some fixed positive real number and Id is the N X N ideniity matrix.
Giv) fe HqO, TIxn™ qv),
V) u, ¢ 1= n").

J

1
. -H{R™ “N».
ists a unique solution u of (1.1) bclonglngso(?ﬂo_. TL H'(R™,
0‘1 :':ns:h:l:; :ha': u(ll)2 ug. The solution varics continuously with the initial data in
yynpe . ) ,
"g‘na'ﬂ‘;. :he cquations are hyperbolic in the sense that If ug and f have compact
suppors then 3o does u(¢, x) for each &

The case of C* data and the conclsion concerning the wppén of u(eax) is a

standard result found in Courant-Hitbert {4). The sharper H* version here may bo

found in Kato {12, 33). (Chenoff {3] also contains a uscful exposition lewm.ol

mcvsl‘;':::‘:l‘:t now the case of bounded regians. Let L and M be glven operators

that are defincd on functions on £} and 22, respectively. ;

Desumion. Given [ € L,40, TIxQ, 8Y) and o, € L;(Q, R™), a funciion v €
1,00, T1<0,R™) is & strong solution w

() Lu={ on [0,T}xD, a2
() Mu=0 on [0, TIxaN, , AR . '
3 u®=u, on 0, L 2

‘if thete exists a sequence ()= G0, TIXN,BY) with u,—u Li,—f in

L,(0, T1X0,R™), Mu, =0 on [0, T]xaD and &,(0)— u, in Ly(,B").

Mumla‘ry
1.2. Consider (1.2) on a bounded open se1 R with compact

aﬁ.l:fwco;:u C™ such that 0 lies on ane side of 3. Let N(x)<R™ be a linear subspace
varying in a C* manner with x€30° and let M(x) be the onhogmml&mjmllan :n
N(x)*. Let n={(y,..., ) be the unit ourward normal of 30, A, =2isy Ay, the

. boundary marrix, and

a ]
=A% —— A"—_B. P
L=4A a S5

Assume’ .

@) A® A, and B are in C3{0, T)X &, R™).

(i) A° and A’ are symmetric.

(i) A® is uniformly positive definite on (0, T)x 0.

(iv) A, has constant rank in a neighborhood of 3).% . - s
) (A u)<0 if Mu=0 and N(x) is maximal am:us su spac:s with

property. (Flere <,> is the usual inner product in RY and ueR®)
(i) feL,(0, TIx02,RY).
(vii} no€ L2, R™).

® Acoilicr way of saylng this da that N(z) pusscsses & basks (#,(x)]f, p=din N(x), where ¢ b & c
unction N, 1<) . .
‘tlndcu:'t::hypu:hubzumlhclonoﬁwﬁnxwﬁ&gﬂyduewmwe‘;:e.:t:amum:
Iineduousbdhndx.lclihctbelnkmphadwﬁm:whhﬂlml:wo’mmw
2, ni{x)= atf). In this way we dofine n(x), and hencs A, (a), in & peighbosl N
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Then there exists a unique strong solution u of (1.2) belonging to C(0, T),
L(ILRY)) in which

Doy Ce ke Wfhospend 3)
for Vs 4T whese C and @ are constants.

Fioof. Since A? is smooth, symmetsic and uniformly positive definite, it hos a
square soot T which abso possesses these propertics. Chonging the unknown to
v = Tu, we have (using the sunymation convention)

Ef.;"" 1 20 [‘ 13"‘.‘.‘ --2!' NS '] o
P T AT a‘,O TA a;‘“anT tTET o+ T ¥f

which is of the form
PO TELI W
l.u-'," A an Bu={ )
where A%, B, and [ satisfy hypotheses (-(vi) with A°=Id. Thus this change of
vasiables (Courant-Hilbert [4]) reduces ihe problem to A®= Kl The estimate
Hotnlly= Ce** u(sif + Roll, o)y —0<ssif<o,

can be cstablished for all ve C3(fs, (]x0,RY) such that Mv=MTy=0 op
[s, t}xafL.¥ From the results of Ruuch-Massey [22, of. Proposition 2.1) the praof will
fullow if yhe existence of & strong solution can be cstablished fog

Lw=f on [0,T]xA,
AMw=0 ou [0, T]}xa,
wit}-=) on {3,

wheie f'e CU(0, T]x41). The technique for cusying this out can be found in-
Lax-Phillips [17)1 0O

Remark 1), Friedrichs [10] has previously established this result under the
hypotheses fe £ (Ju, T]x 0, R™) and u,=0.

Durinmon. The functivas f, g, and u, accurring in equations (1.2) are said to
satisfy the comparibility conditions it

‘g.(‘;)((‘%)lnl)(ﬂ)uudw=((3)’8)((') on ) for Ospss—1,

where

e -\ '
— )_(",. )a.«n)-«.,, . *((;") F)w). Moo=l Uo=G

=0

*Ihis 1 o sunple cacigy mequatity | 1 ax in Cousani-tfithen |4), p. 652,
1 Untentunately, the details of this 1cchaigque are lengthby sl ool amensble W & concise exposition. We
sefur the inlerested reades do the wsiginal source.

- o . .
N .
. wa‘iu-n.? v et e sabebadehdiaciteas st 8 Pidoarevs & & dillm
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{0 s defined above Theorem 1.1.)

The compatibility conditions arc clearly necessary for the solution & of (1.2),
with Mu = g, to be in C([0, T), H*"(.RM), 0<r<s

Tuzoness 1.3. Let the hypotheses be the same a3 ln Theorem 1.2 through (ii).
Assume o ) . :

(ivy A, is nonsingular on [0, TIx30).

() fe Hq0, TIxN,R™).

™) we HY(O,R™).

(viiy' f and u, satlsfy the compatibllity conditions with g =0,

Then there exisis a unigue strong solution w of (1.2) belonging 1o C*'(0, TL
H(0,AMY) for Osrss, which varies continuously with the initlal data in
H*(§), k™). In addition, there exists a constant C,, independent of f and u,, such that

fu(fl.ns Qﬂ%l.a*lﬂam-n*l!(ﬂ)l--.n) (1.4)
for V&< T, where

un‘u)mr!g, |((§)'h)(t)|:-m‘

The proof of this theorem can be found in Rauch-Massey [22]. Uanfor{unatcly the
condition that A, is nonsingular is not met in the applications we have in mind. One
can circumvent shis condition in variaus situatiuns by appealing to special propestics
of the system of cquatiops under consideration.

Bricfly, one employs Theorem 1.2 in place of Rauch-Massey’s Proposition 2.1.
Then Wie proof goes through if one can establish the following two lemmas:

Lesua 1.1, (1.4) holds for all u € H**'({0, TIx M, R™) satislying (1.2).

Lusma 1.2, There exist sequences {ug,) = H(, RY), {£) & B0, T]x N, &Y),
r> 5 +2 with ue, — Mo in H*(Q,RY), [~ f in H'(0, T}, R™) such that u,, £,
satisfy the compatibility conditions with g =0 for 0Sp<s+1 lor cuch n.

These are Rauch-Massey's Lemmas 3.2 and 3.3, respectively, which they establish
with the uid of (iv). The way these conditions can be proved for a particular
symnictric hyperbolic system without (iv is illustrated for the wave equation in the
example below,

Remark 1.2. h suffices to prove Lemna 1.2 in the weaker form where {ug.) and
{f.) are required only to satisfy the compatibility condition for 0<p=ts. ll.a\_viflg
done this, one approximates w,, and f, by sequences satisfying the compatibility
condition for 0 pss+ 1.

I WAL
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‘The case Mu =g can be reduced 1o the case Au =0 by & standard procedure, as
follows,

Tutoxem 1.4, let the hypotheses be the same as in Theorem 1.3 through (vi)'.
Assume g€ H* V30, T)xafll,R™)* and [, g and u, satisfy the compauibility con-

ditions. Then there exisis a unique solution y of (1.2),,, with Mu =g, belonging o

Cfo, T HULRYY), Osrs g,

Praof. There cxists a (unction §e H*''(0, T}xQ,R*)< C°([0, 1], H'(O,R%N)
such that & Ly g (sce, e.g., Palais [20]). The functions £ = f- 1§ and uf = u,— §(0)
satisty the compatibility conditions with g = 0. The solution w of (1.2) with /" and u§
teplacing f and uy, respectively, is in €0, T) H° (), R")), 067 % 5, by Theorem
1.3 Vs 6= g+ w niso has these propenies. O

Remark 1.3, M the requirements of Theorem 1.3 are met for sll s> 0, then the
sulution we C[0, T), Coi0,8%). .

Rematk 1.4. Assume that (G vad Af are s-indcpendent ond f=0. Then the
compatibility conditions become simply MG'u, =0, 0<r < s- 1. Then Theorem 1.3
says that the Joswe of G in K, G: P(GYN H{D,BY)— L(0,8") s the
gencralor of u strongly continuvus eac-paramcicr group. Conscqucutly, by the
gencral theory of semigroups (see, c.g., Yosida [25]), if 4, is in the domain of G, so
is uls) tor cach ¢ Ofhicn onc can shuw that the domain of G consists of smvother
funciions; the following example illustrates the point.

Examne. Consider the wave cyuation $=A4¢ on lCR™ with boundury
conditiugis é =0 on afd, Assume (3 and af) satisly the hypotheses of Theorem 1.2
Let b, =apion’, u=($, dru---s ds $). A®= Il and

0 - - - u
0 - .- |
N KU o) e

O e -0
bl | TR Sctnitiuna ol factinasl Soholcy specea, sll of which are cquivalent. Pertups the
leat defiuntion ) ded by ik Foutiss trenfoun. Fut cxmmple, f € H** 'R R)il f & 1(R°, nf,e

an inugu and 1% (lhe sth geacralized doswvative of f) ta in M0 ll) A function g & said w be in
Y%, 0D o e function Ak~ (D ¢ (K1) §Lk) 1 in 10" K), wheie © indi the Fouries tramfuim
A-thy, ...k )l«.zu‘ the senslosm variable.

fea npr.u egitn 507 R, 12D N) can be dehued us (oBows. A function fe 1t 'P(9,R) i
fo 200,00 and D°f b w6 eatemsun to o Quaction aa $10'240%, 0.

T cane 10 which 9 is @ ouspact mandobd, sh o oll, cen L sediced 10 88 open scgiun in 0°, &
}c, by ctnning un open covering of 8 by coucdinate chasts,

N . . . .
WP NDUTR R [ R G LY TS 97 TRV IR PUN S WU £ 2TV X A . Sdan P

R I T L “H PSPPI PR ~ e 8

..

ol .
By <, 4 . . e

.
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tese,
0 . 0
o . . . u l
0 - T 1y .
A=l . .

(1] [T PR o
which hos rank 2 and N={u}$ =0 on 30}). Thus (A.u.u)-o for ueN and this
form is definite on no lasger subspace.

Lemma 1.1 can be established by induction an 3 a3 follows: ‘When 320 wo have
(1.3). Thus assume the estimate (1.4) has been obtalned with Ju(nf),,, replacing
thic lefe-hand side of (1.4). By a standard calculation we can also obtain (1.4) with
Bitawan}(nf, ., o in place of tho lefi-hand side. Thys it remains (o establish @ similar
estimate for  [{awax YD) ll,-s.q- Since

"a(éo ¢l."'.¢nl4)’ .
'aa_':'“(“t é.l"‘léﬂl é)n

and
du

_| “hélb" t¢nﬂ‘l)-
where ¢, = *¢lax‘ax!, it suffices to cstublish the estimate for §o, (M, 0, 1S4
jsm. Since (Ad)(#)= (e H*-*(Q1,R) and the boundary conditions hold, we get
Sle H* (L R) and Jo(, 0 S cBEOF, 4 a. (This is a stundard elliptic estimate
for the Laplace operatar; sce Agmon [1]). Thus B, (0 -0 cEOwWD (O, - 0
1<, j& m, which gives us (§.4).

In the present circumstances, the compatihility conditions are simply MG'u, on
M, 0sr<ss—1. Thus lo establish Lemma 1.2, we require 8 sequence {uy}<
HY(0,1) such that MG'uy,=0 on af), i»1l, 0<rss+l, and ug—ru, in
H*(0), R). In more explicit notation, we have that A*$, =0, 1 €k < 52 snd A'$, =0,
Vs l<(s—-1)2, on a}, where k and J arc integers, and we must establish the
existence of sequences {¢y), ($u) < H** (1, R) such that the compatibility comli-
tiuns are satisficd for cach is 1, 1<k <<(s+1)/2, 0< [ g2, and which converge to
Su» be 1Espectively, in H*((, R). Because of Remark 1.2, it suflices 1o carry out the
construction for 1€ k<(s+1)f2, O0si<s(s-1)/2, il 5 ix odd, or for 1 <kSg2,
0siasy2, if s is even. Let us pursue the case in which s is odd.

Fisst, note that u,€ H (3, R implies $,€ H**'(),N). Let ™™= 4%, where k is
any  aonncgative  integer.  For  1<k<g2,  hMe ' (LR)w
{h|he (), R) and h=0 on 3f}) whercas for k=(s+1)/2, A"’ e L (N, R).
Take o sequence (AP < 130, 8) such that A— A in L,(),R). Thea j
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L * by the clliptic boundary value problem AR =4 in £}, K*""=00n 3. It
foltows  that A Me HADLR).  The diflerence A "-hK%"Y)  satisties
A V- Bt W= e p iy 02, B V- 20 on 0. Thus we have the esti-
mate it V- s - A%, where ¢ i a constunt, which implics
B s k™8 g0 J23(0),R). We repeat this process until k = 1. In this case we have
W= AP, € 83 ), 1) and therefore get u sequence (AiV} e Hy ' (), R) which con-
verges 10 A" in H) UL R). The solution of AR{™ = h{* in (), k{™ =y, on 3}, where
{eyc H LR, v g, in HE* VYL, 0) is in FH°*°(£2, B) and the ditference b - @,
satibfies AR - @)= A"~ h" in 0, B —P,= v -, on ML Therclore [h{¥—
sl - 5 o tle — @l 0l where ¢ is a constant, from which it
fullows  that  h$™-e, in  HOWLR).  Since (A¥}c H(LR)  and
A'hiMe 143 PULR), it I S ks(s+1)2, ("} satisfics the required conditions,
ie oy = hiY, G ).

The constiuction of {,} is entirely analogous, be., there exists 8 sequence
(R 1L R), AR e ' (UL R), i 1, 0 isi(s~1)/2, such that A" ¢,
in H UL, R).

The case s bs even proceeds analogously. .
Thus, fom  Pheorem 1.3, one obtains the facs that il (dy, do)
HAUALR) X HASE R und satisfies the compatibility conditions, then there exists @

unique solotion of § = A¢ such that $€ C'{[0, 6], F**' " ((}xR)), O<r€s5+1,

2. Clussical Etastodynumibcy

We begin by summarizing our notations and the equations we will be studying.

We ruler vectors amd tensors to o fixcd systemy of carlesian coordinates and let
indices son fiom ¥ 10 m. The summation convention is employed.

A body () is an upen connected set in ™ (we allow 1 =1"). lis motion is given
by the displacements (), ), where 1€[t, T) and x = (x, ..., x™)el™

The cquations of the classical theory are

T =T,
A (2.1)
b = Citan

du, N
2e <t %
YAt !
where 1, is the Caachy siress tensor, ¢, is the infinitesimal strain tensor, ¢, are the
clastiviues, b, is the eaternal body force and p is the mass density. We assume g,
Cacl- 0, p>0and b0, T]x (2.0 are assigned functions, The elasticitics satisfy
the symmetrics

Cat = G = Chne

‘g

e,

Combining the equutions in (2.1) results in the displaccment form of the equations
of motion:

a? ) an,

An initio) value problem consists of cquation (2.2) on [0, f)xR and initial
conditions

wO=a, SO=p, @3)

on 0, where o, and B, are assigned functions. It (} has a boundary, we append to
(2.2) and (2.3) boundary conditions. In the sequel we consider Iwo cases:

u=y on [0,4xan, ' 24)
the displacement problem and

T,-n,cw—;i;—}=8, on ([0,¢)xaN, ' (2.5}

the'tmctlan' prablem, where n, is the unit outward normal and v, 4 are assigned
funclions.

3, Symnsctric Hyperballe Form ¢l the Equations

We now cxhibit the way in which (2.1) can be wrilten ip symmetric hyperbolic form. .
We give the formulation for m =3; the sctup for arhitsary m is similar,

Let u“(ﬂ, 1‘. U) where “=(u” uy, “)). T E‘T". Tz;. T,g. Tga. Tn. Tu) and
v=(v,, ¥3, ), the velocity. Let €=(eyy, €320 €330 Ya2e Tize ¥23) Where vy =26, The
constitutive equation Ty = 6w cun be put In the matrix form T= Ee. We will necd
the condition that B is symmetric and uniformly positive definite. Translated in
terms of the ¢,u's these requiremeants become €y ™ 6y and ¢ (x)d,du > 59,8,
for all symmetric ¢, 8 fixed §>0 and all x€f). Define

o - . .
Av=1. E .}, A‘;27= -« DY,
pld - p
where M is the 3x3 identity matrix,
afax' - .
afax* -
» afax?

ajax®  ajax"
ax* - apax!
afax® afox?

“%m‘.m .- . R -‘;—.&wa*n.a.un‘yzn;«w.c-@..h.;.—n -l o . s ﬁu-‘-ﬁ-‘ :
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and dats denate zeros. Let

] .
llr-(~ . -). and Iﬂ(').
e pb

whoie §=(b,, b,, b)).
With the preceding definitions, (3.1) is 8 symmetric hyperbolic system equivateat
to (2.1). This formulation was suggested by Wilcox (24]).

4. Esbicace, Unlqucaess apd Differcailabllity Theorems ta Claslcal
Elaatvdynamics

We aow combine the develupments of Sections § 10 3 to obtain existence, unique-
ncas uid dilferentiability theorems for classical elustodynamics. Our assumplions are
as follows:

() p and ¢y, vre in Coif),R).
G0 €=t = Cn = €4y
(i) cpu{xdp i = By, Tor all symmetric ¢,

@ fixed 850 g all xefd. ‘ Ay

{iv) b 10, T)x 4, n).
(V) a 1" (L R), € L', N).

Fiest consider the cose of =R". let a={a,,...,a.), B={B, ..., 0.) etc.

Tuconem 4.1, Consider (2.2) on )=R™ with initial conditions given dby (2.3).
Let ussumptions A, hold.

Then there existy a unique solution u, of (2.2) such thas

) neC(o, 1], B @R, O r<s+1.
(i) i) = a, (0afat)(0)= B, on 1,
Gil) (ca, PIr-o (0, dfde) is @ C° mapping from
H UL R™ )R (§2, R™) into itself, '

Proof. First note thut E '€ CRUY, '™t "VI¥%) and pbe H*({0, T]x N, R™), hence
30 e AY and f of Section 3. Putting (2.2) into the symmetric hyperbolic form of
Scction 3 and applying Thearem 1.1 yickds thas u, Ty, and v, arc in C*'({0, T),
w gL, Oar s The additional differentiability for o, can be obtained in
several  ways.  For exumple, 1 (0c HU(),R) implies ¢, (r)e HP(,R) and
ae Jax')(o) = (du, ta'ufan'na)n)e HY (O, R), which is an clliptic operatar on
(g, - nL) Theschme adne HE (1L R). (This can be proved exactly as Ahe
HYUL WD ke He IR is proved, ie., by means of the Fourier transform; of.
Yosia [250) 12

(8]

Remurk 4.1, ‘These is wo nonuniqueness due 1o rigid body motions because all
quaniities involved are in function spaces whose members — ag fxj—s<o,

)

P ERY - S A

T ‘....:;“,
e eve AR e vt vt mah e m b e § A P tdBn s - s a® 048t s seas et % st i b
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We now consider the case In which f) has a boundary, We assumeo:

01 is a bounded open sct contained in R
with compact boundary 30} of class £~ (A)
such that 0 lics on onc side of af).

Let )
[ ] - K-
L= [m c.,.;,-] ad L, [n,cw a‘,].

Trsonem 4.2. (displacement problem) Consider (2.2) on N with énitial conditions
glven by (2.3) and boundary conditions glven by (2.4), Let assumptions A, and A,
above hold and assume

@ ye I***2(0, T]xan,/").

(il) The campaiibllity condlitions hold; namely

Lat Y L pa07b(0)= plaa) 4(0),  0<r<42,
h=1

L'+ 3 L 8(0) = @™ (), 0<1S(-1I2,
&)

on 3. .
Then the conclusions C in Theorem 4.1 hold and & = v, on .

Tutosey 4.3. (raction problem) Consider (2.2) on 0 with initial conditions
given by (2.3) and boundary conditlons given by (2.5). Let assumpiions A, and A,
hold and assume: :

) Se H 20, T)x30,8"). ’

(i) The compatibility conditions hold; namely

Lat ¥ L-plafe™ 500 =p0/a)"8(0), 0<r<(-1i2,
k=t

L.(L'g+ t L' p (3o 'B(O) = p(afat! 'B(0),  O<I<(-2)2,
k=t

on af.
“Then the conclusions C in Thearem 4.1 hold and nTy =8, on 3.

Remark 4.2. 1 the requirements of Theorems 4.1-4.3 ase met for all >0, then
u,€ C~(0, T), C5(,R)) (L. Fichera (6]

Proof of Thevrems 4.2 and 4.3. In view of Theorem 1.4, it suffices to prove
Theorems 4.2 and 4.3 for the case of homogeneous boundary data. Note that the
boundary matsix A, has constant rank 2m and thal .N(x)_=(u|v.mol for the
displaccment problem whereas N(x) = (u | n,T;, =0} {or the iraction pmblcl}\. Incach
case N i a lincar suhspace of R for cach x€aft, varying smoothly with x, and
(A4, u)=20,T,n, =0 is definitc on no larger subspace.
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To establish Lemmia 1.1 we proceed as in the exumpie of the wave equation. Since
in the prescnt ciccumstsnces

u=(u, T, o),
?ya(-;“_‘ T
a \artw '37)'
and

2. (2 T o)
ax' \ax'ax"ax')

we fequice an cstimate (ur al) of 3fdx’ . Aguin we employ results of elliptic operator
theory.* The boundary value probitem La(1) = p(aw/as~ b)) e H* (D, R™), ul N=a
o aid or Lu(t)=0 on of), implics u(r)e H** (1, H™) and

Bt 100 c@tantan(of, . oo + 8O, -y it ol er.0).

Estimutes for §Owas )M, | g and BaBrar Woll. -, 5 in trms of the right hand side of
(1.4) follow immediagely.

To obiain an estimate for 3nfax’ we proceed similacdly, From the boundary value
prablem Lo(0) =div @Tad(s)e 1 {1, R™), o(6)=0 on 3} or Lo()=0 on aN,
implics o(t)e H'({},R") and fo(0)], s c fdiv O8], 24, fsom which it follows
that J@u/ax HOf, |4 % ¢ [l[@waN(D]], .. ; . Thus Lemma 1.1 is proved.

To cstablish Lemwa 1.2 for the displacement problem we need (0 exhibit
sequences lade 1,07, (B)e 1P 3ELR™), {8} < H* 20, T]x0,R™) such
that the compatibility conditions (Theorem 4.2, (i) are satisfied with y(1) = ¢{0) for
cuch ix1, 0<ra(s+1)2, 0<{<sg2, and a,—a in H'''(0,R™), B,—f in
HULR™), &, -+ B ln H*J0, T) <2, 8™). By Remurk 1.2 it sullices to carry this out
forQersiis + 12, 0=51<52, fur s Is odd and for Vs r< 52, 0% 1< 32 for 5 even.
We praceed in a similar fashion 10 the example of the wave equation,

Assume 5 i odd aml et MM=Lla. For Isrssf2, A
HS' “ULR™) sk ] e " (L0™) and b="-}1_, L *p(@/a1)}* 2b(0) on
all, wheieas for r-=(st 142, A'e N*'Y Y((LR™). Select a sequence {b,)c
o, Thxa, R such thag b—+d in H([0, T]x4,0™). Let r=(s+1)/2 and
take u scquence (A9)< LAY, 0), such dat Ry = <34, L0 *p(afan)™ 2$,(0) on
af), and 87— &' in L,(02,0™). Then define 477" by the boundary value problcm:
LAY V=AY i A2, AP M= <YL LT @0 2, (0) on i), Thus we have
b e LR, where HY= H) with 8, seplacing B, and A" kY iy
1L,R™). We repeut this procedure umil we have (A%} H2' (3, R) which
converges to &' in 1Y, ™). The solution of LA™ =84 jn ), A® =y, on ),
where (vl B ULR™), v,-vain H'ULR™), is in H*' 0, R"™) and converges
10 e in 20 'LR™). Thus o, = K™ and b, are the desited sequences.

The construction of B, proceeds anatogously, as dacs the case s is even, and thus
we umit the details. Fhis completes lemima 1.2 for the displacement problem and
thus proves ‘theorem 4.2,

* The hypaheses on the cue icicats ay tasuie that L s a sirangly clliptic operator (. Fichers (6],
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To accomplish the same end for the traction problem, we procced essentially ss
above. For (his cuso we use the set {b|heH' ' "*((LR™) ond LA=
~ 1.4, L’ p(3130)* ~24(0) on 3N)} and take B(s) =0 in the compatibility condi-
tions. The traction boucdary conditions put global constrainis upoa the sequences
4. For cxample, cach h{” may nced (o be alicred by a constant so that the
corresponding elliptic boundory value problem can be solved, This is no problem
because the differentiability class of the h{” is unaficcied and the limit 4“* must also
satisly the same constraint. O

Remask 4.3. Vasious Sobalev inequalilies are often useful, e.g., if s>mi2+k,
where m s the dimension of the dumain, then H*< C}. Thus for the important
cases m =2 and m =3, wle H* 3N, R™) implics k(1€ CYNR™).

Remark 4.4. A thcorem, analogous to the above, can clearly be proved lor the
contact problem in which '

U =% ‘EMc‘l.v'otnml

0, an.

Tt dell,...,m-p) O T
The components v, & may be referred to an asblirary curvilincar coordinate system,
as long as the sesulting subspace N(x) varies smoothly with x.

Remark 4.5, The mixed problem, in which '

W=y, on [o- Tlxmn

TI = 8‘ on [0- Tl)(an,h
where 3}, NaN, = Gand M, UMY, =20, & at present gutside the realm of applica-
bility of the existing thicorcms for symmetric hyperbalic systems (cf. Theorem 1.3).
In this case the boundary subspace fails to be smooltly varying with x. However, for
the casc of onc space dimension (in = 1), two-point nitial-boundary value problems,
in which displacement s specified on one end and traction on the other, would be
accomodated by the present theorem.

‘The existence and uniqueness of a weak solution to the mixed problem is treated
in Duvaut-Lioas [S].

Remark 4.6, ‘The present theory also does not caver the exterior problem, ie.,
when 0) is the exterior of some region. However, there should be no ebstruction to
there being a theurem (o cover this case.

Remark 4.7, We note that the hypotheses neccssary to achicve the differentiabil-
ity results presented herein are sather stringent. Thus we conclude that for a typical
elastodynamic problem arising in practice the existence of a C™ solution is the
exception rather than the rule,
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