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Some contemporary ideas from differential geometry are applied to continuum mechanics.
The Lie derivative is used to clarify the notion of “objective rates”, an intrinsic treatment
of Piola transformations is described, a simplified proof of Vainberg’s theorem for potential
operators is given by way of the Poincaré lemma on infinite dimensional manifolds, and
a new derivation of the basic equations of continuum mechanics is presented which is valid
in a general Riemannian manifold setting.

atroduction

A few ycars ago we undertook the project of systematically examining the mathematical
foundations of continuum mechanics, with the aim of applying differential geometry,
global and nonlinear analysis in a unified fashion. Some of our results on the analytical
end appear elsewhere ([2], [3]), and others on topics including bifurcation theory, finite
element analysis and elasticity as a Hamiltonian system will appear in [1] and in other
references in preparation.

Our aim here is to discuss some of the applications of purely geometrical ideas to
continuum mechanics. Although geometry is used to some extent in several recent ref-
erences, there remains much room for systematic application of geometrical concepts.
We give some of these in this note.

1. Notation

Everything is assumed C® for convenience. Let N be a Riemannian manifold with
metric denoted by g or { , ). Let M = N be a submanifold which, for simplicity, we
take to be open, and let the metric tensor G on M be that induced from N.

A configuration of M is a (smooth) map

¢: M- N
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and a motion of M in N is a curve g, of configurations. We shall assume here that g, is
regular; i.e., ¢,: M — (M) is a diffeomorphism.
The material velocity of a motion is the map which, at each ¢, is given by
_ dg,
Vi=r
Explicitly, if X e M, then

ViX) = 57 (X)) € TN,

the tangent space to N at ¢,(X). We shall often write g(X) = @(t, X) = x. Thus V; is
a vector field covering the map ¢,:

M-LTN
o\ N / projection

The vector field o, = V,o ¢! is called the spatial velocity.
The material and spatial accelerations A,, a, = 4,0 ¢;* are defined analogously. An
easy calculation (as in [4]) shows that

a, = o +V,20 =9,
ot pm\
the material time derivative.
The tangent of ¢, F = Tp: TM — TN, is called the deformation gradient, and may
be regarded as a fwo point tensor over ¢. (Two point tensors are sections of a bundle

THM)R¢*Ts.(N) where T;(M) is the bundle of tensors over M of type (;) and ¢* denotes

the pull-back bundle; these objects may be covariantly differentiated, etc. The reader can
relate the formulas obtained to those in the continuum mechanics textbooks, as [5]; see
[1] for details.)

Let C = ¢¥(g), the metric g pulled back to M, classically known as the (Green) de-
Sformation tensor. Other classical deformation tensors can be obtained in an analogous
invariant manner.

The rate of deformation tensor d is given by

1 1 d
d"’_z‘Lug =5 P (}?C)

where L, denotes Lie differentiation (including, in general, 37367 term, since tensorial
quantities below may depend explicitly on time) and ¢, is the push-forward.

Here is a simple example of the insight geometry provides: let N = R" and let K be
the curvature tensor formed by pretending C is the metric. Then K = 0. (These are called
the compatibility conditions.)

a



APPLICATIONS OF GEOMETRY IN CONTINUUM MECHANICS 37

The proof does nor require computation; it follows from these two facts: the curvature
of R is zero, and the curvature of a pulled-back metric is the pull-back of the curvature.

2. Objective rates; an application of Lie derivatives

The subjects of objectivity and objective rates have been controversial in mechanics.
Here we consider them as an application of Lie derivatives. Let o, as above, be a given
spatial velocity field and let ¢ be a given symmetric contravariant two tensor (the stress
tensor, say). Let ¢,, £,, ¢; be the three associated tensors with indices raised by the metric
g and let ¢, = £. In coordinates {x°} on N,

4 = (’cb)’ t, = (tab)s 1, = (tab » = (tnb)-
Noting that the Lie derivative does not commute with raising or lowering indices, we get
four different formulas:
(L, tx)nb ;ab_ tcbvalc_ tac,vblc,
g (Lots) = t°—1t “vbw‘l' 104",
(Lo ‘3)a¢g¢b = t. bt nbvnld +t ad”dlba
£ (Lota)cag™ = 1%+ 1%+ 10",
and for the density ¢, ®dv, where dv is the volume element for the metric g,
-~ (Lo (1, @d0))™® = ((Lot)*®+1%divo)do.
~ We shall show shortly that it is not an accident that the so-called “objective fluxes” (the
right-hand sides above) turn out to be Lie derivatives with respect to the velocity.
The tensor L,¢, has been associated with the name Oldroyd and L,(t;®dv) with the
name Truesdell. We see that all of these tensors are different manifestations of the Lie
derivative of ¢. Therefore, preference of one over the other is mostly a matter of taste

and convenience; see, however, the proviso below. (Workers in continuum mechanics are
quite insistent on their tastes!)

Any linear combination of the preceding formulas will also qualify as an “objective
flux”, e.g.,

'}-((L, ts)ntgd"'g“(Ln tz)cb) = t'ab-i- t 'dwab-ldbwad»
where w? are associated components of the spin 2w, = Vap—¥piq; this tensor is associated
with the name Jaumann.

We note in passing that, like the Lie derivative in general, the right-hand sides may
be expressed without using covariant derivatives. For example,

atab atab &° avb
ab _ c__ gcb _ ¢ac
(Lot))™ = 31 + ax‘.‘v t e t axe
and if 1°* = %, then
a‘ab atab . . a‘vb
(Lot)® = 5+ 3= ¥ —wice symmetric part of (t"‘ ]
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One seems never to see this in practice, but it could yield savings in numerical computa-
tions.
We conclude this section with a general discussion of what we mean by objective.

DEFINITION. Let ¢ be a tensor field (or tensor density) on a manifold N and y a dif-
feomorphism of N to N’. We say that the push-forward ' = y,t is the objective trans-
Jformation of t, ie., t transforms in the usual way under the map .

PROPOSITION 1. Let ¢, be a regular motion of M in N with velocity field v, (spatial
velocity). Let y, be a motion of N in N' and let @} = v, o @, be the superposed motion of
M in N'.

Let t be a given time-dependent tensor field on N and let

t = 1})* t

Le., transform t objectively.
Let ©' be the velocity field of ¢;. Then

Lyt = pe(Lyt),
i.e., “objective tensors (or tensor densities) have objective Lie derivatives”.

Proof: We first note that
‘ T = WP, m\

where w, is the spatial velocity of y,. This follows by differentiating @{(X) = y,(p.(X))
in . (As can be seen @ is nof objective.)

ee 0 .
Now we compute, writing L, = —a—t+2v, and letting ¥, = yp,ops! be the time

dependent flow of w:

‘ d
Lot = Lysyo(¥xt) = Lurpo(pa )+ ot (we?)
d
= Pe(Lo)+ Lu(pet)+ B (Ye8) = Yu(Lot)+ Ly(ye t)
—— L4 d * g d — 1Y%
= pu(ZLo)+ E."I’r. (Yra tr)l,=, = pu(Lpt) + ar Cpropi ' )*(prs tr)l,.,,

d d
= P Lo+ put_, = w.(z’,,t+ A t,|,=,) = pa(Lo?). O

As a corollary, the “objective fluxes” discussed earlier are objective tensors with this
proviso: if the expressions involving g, or g explicitly are to transform like tensors
with the same g, resulting after the transformation,  must be an isometry at the point
of interest. (If we also transform the metric tensor, this proviso is unnccessary.)
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3. The Piola transform: an application of differential forms

The Piola transformation is a fundamental operation relating the material and spatial
descriptions in continuum mechanics. Here we show how it may be given an intrinsic
and simple treatment using operations on differential forms.

We begin by defining the Piola transform of vector fields.

DEerFINITION. Let y be a vector field on N and @: M — N an orientation preserving
diffeomorphism. The Piola transform of y is the vector field ¥ on M given by

Y = Jo*y
where J is the Jacobian of ¢. (In coordinates, {x*} on N and {X*} on M,
YA = J(F-l)dbyb
1 a
where J(r, x) = Y318 0@ 0 ) oy pe, - g;’—,,.)

]/detG a(X!’ ---:Xﬂ)
We can phrase this in another useful way:

PROPOSITION 2. Y is the Piola transform of y if and only if
@*(iydv) = iydV,
where i,dv is the interior product, dv is the volume element on N and dV that on M.’

/™ Proof: Notice that n—1 forms and vector fields are in one-to-one correspondence
.a Y iydV = *Y. But

‘P*(iydv) = i@'y¢*dv = i¢‘deV= iJlP.de
so the assertion follows. O
ProrosiTioN 3 (Piola Identity). If Y is the Piola transform of y, then
DIVY = J(divy) o g,
where DIV is the divergence on M dnd div is the divergence on N.
Proof: Let U c M be an open set with smooth boundary 8U. By the change of
variables theorem, and the above proposition,
{ivav={ iyav.
24 pi(U)
By Gauss’ theorem, noting iydV = (¥, N)dA4 (N is the unit out ard normal and d4 is
the area element on 0U),

{DIvyar= § divydv = (sdivy) o pdv.
U PR)) U
Since U is arbitrary, the assertion follows. O
Another way of expressing the Piola transformation is as follows:

(Y, N>dd =y, n)da.

e
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Since Y4 = J(F~")“,y", the Piola identity can be written this way: DIV(JF-!) = 0,
1 F; _—
where DIV(JF-Y), = ——_ 9% (yYdetG J(F-1)4,).
(JF-Y) e =z (V (F-14,)
We can also make a Piola transformation on any index of a tensor. For example, let
% be a given two tensor, the Cauchy stress tensor. If we make a Piola transformation
on the last index, we get the Piola-Kirchhoff stress tensor: T°° = J(F~')%,1®®, a two-point
tensor. The Piola identity, then, tells us that
DIVT = Jdivt)o g,
ie.,
TaB|B = Jt”blb-

4, Vainberg’s theorem: an application of the Poincaré lemma
In [6], Vainberg has given a well-known criterion for when equations are derivable
from a variational principle, i.c., are Euler-Lagrange equations. We give here a simple
proof of the abstract form of this result using the Poincaré lemma for differential forms.
Let E be a Banach space, { , ) be a continuous bilinear form on Eand let A: E— E
be a given (nonlinear) operator. The Fréchet d?rivative of A at x is denoted DA(x).

DEFINITION. We say A is a potential operator if there is a function L: E — R such
that o
dL(x)- v = (A(¥), o) ™
for all x in E and v e E.
The equation A(x) = O represents the Euler-Lagrange equations for x € E, in abstract
form,

PROPOSITION 4. A given operator A is a potential operator if and only if for each
x€E, vy, and v, € E,

(DA(X)* v,,v2) = (DA(X)* v3, v,).

If {, > is symmetric, this is equivalent to saying DA(x) is @ symmetric linear operator
on E.

Proof: Consider the one form a(x)- v = (A(x),v). Then A4 is a potential operator
if and only if « is exact. By the Poincaré lemma, this is the case if and only if dx = 0.
But by the coordinate formula for exterior derivative (the “curl” in this case),

do(x) * (9,, ;) = (DA(X): vy, 92> —(DA(X) - 02, v;)
so the result follows immediately. O
S. Balance of energy and the basic equations of continuum mechanics: an application
of differential geometry

In this section we want to derive the equations of continuum mechanics in a Riemannian
manifold setting, not for the sake of generality, but to reexamine the fundamental ideas
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<
involved in this process. In an R® setting the basic equations are often derived from scalar
and vector integral balance hypotheses. This approach cannot be used in the manifold
case since there is no way to give invariant meaning to the integration of vector fields.
Another approach used in R? is to employ an energy balance as the basic postulate and
assume the energy balance is form invariant under all time-dependent isometries of R®.
This approach also cannot be directly extended since a general manifold may not admit
any isometries. However, manifolds do admit lots of “local” isometries and by way of
these we may generalize the energy balance argument to manifolds. Since, to the best of
our knowledge, the universe is not R® and does not admit isometries, our new derivation
represents to us a significant philosophical improvement.
We shall need the following standard results. First, the transport theorem: Let f(t, X)
be a given real-valued function of ¢ and x € ¢,(M), and let U be a (nice) open set in M.
Then

4 S fdv = S (f+/fdivo)do.

o) #i(U)

Of course, this follows easily on manifolds by changing variables.

We shall secondly need the following (for some technical points), whose proof is
found in basic texts, Cauchy’s theorem. Let a(t, x), b(t, x) and c(¢, x, n) be scalar func-
" ns defined for # € R, x € (M) and unit vectors » at x. Assume that 4, b, c satisfy the

.ster balance law in the sense that for any nice open set U = M, we have

.%‘_ S adv = S bdv+ S C(t,XQ")dav

@:(U) elU) epl)

where # is the unit outward normal to dp,(U). Then there exists a unique vector field
¢(t, x) on ¢,(M) such that

c(t, x, n) = e(t, x), n).
Let o(z, x), b(¢, x), h(t, x, n), ;(t, x,n), e(t, x) and r(¢, p) be given functions on N;

h and t depend on a unit vector n.

These functions are said to satisfy the balance of energy principle if, for all (nice)
Uc M,

4 eerswanw= | osoy+ndor | (Goy+naa
a(U) d(U) Sp(U)

where ¢ and 4 are evaluated on the unit outward normal n of d¢,(U).
The next definition localizes this idea:

DEeFINITION.  The balance of energy principle holds at x € N at time t if for every sequence
of nice open sets U, converging to X = ¢;!(x) (e.g.: diameter U, — 0) we have

™
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?

.. 1 d
I’I'T:lg {W @ S )g(e-i—i(v, v)))d"}

o(Un
=ljﬂt{;m( S 0(<b, o) +r)dv+ S ((?,o>+h)da)}.

?:(Un) Sgr(Un)

DEeFINITION. Let ,: N - N be a regular motion and define primed quantities (de-
pending on y,) by:
¥ o= p(x),
't xX)=o(t,x), r'@t,x)=r@,x),
n'(x’) = Ty, (x)n,
i, x'\n')y =ht, x,n), ;’(1, X, 1) = Ty(x) tA(t, x,nm,
e'(t, x') = e(t, x),
P = Yo,
o, = velocity of ¢,
a; = acceleration of ¢4,
o'V’ —g'a’ = Ty, (¢b—pa).
We speak of v, as a superposed motion.

DEFINITION. Let w; denote the spatial velocity of y,. We say w, is an infinitesimal
isometry at x at time ¢ if (L,,g)(x) = 0, i.., wap+wp, = O at x at time ¢.

DEFINITION. We say that our original system ¢, b, o, ... is mechanically covariant it
it satisfies balance of energy and, for every superposed motion ¢, which is an infinitesimal
isometry at x, the primed system satisfies balance of energy (all at time ?).

The original system is fully covariant if ¢y, @, ... satisfies balance of energy and for
every superposed motion ¥,, the primed system satisfies balance of energy.

PROPOSITION 5. Assume ¢, 0, b, ... is mechanically covariant. Then

(i) h(t, x, n) = (—q(r, x), n) for some vector g,

(i1) tA(I, x, n) = {t,x), n) for a (}) tensor 1.

Moreover,

(A) Conservation of mass holds: o+ odivo = 0,
(B) The equations of motion hold:
oa = pb+divye,
(©) Local energy balance holds:
pe+divg = t:d+or
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and
(D) tab = lpa.
Conversely, if these conditions hold, then the system is mechanically covariant.

PROPOSITION 6. Assume @,, @, b, ... is fully covariant. Then it is mechanically covariant
and tg, = 0) (The converse is true as well.)

The proof of Propositions 5 and 6 requires some preparatory lemmas.
LeMMA 1. 75 = w,+ 9,4 7,.
This follows by differentiating ¢@;(X) = w(@(X)).

LEMMA 2. Let x €N and t be fixed. Let u be a given vector at x. Then there exists
a superposed motion y, which is an infinitesimal isometry at x, u = v vi(x) and at this ¢,
v, = identity.

Proof: This merely amounts to showing that w, can be freely specified at x at a value
z while maintaining w,5+ws. = 0 at x; e.g., in normal coordinates at x, set wi(x) = 2+
+ Alx! where A} is an arbitrary skew matrix. Extend w (arbitrarily) to have compact
support and let y, = F,_,, where F, is the flow of w. []

LemMmA 3. h(t, x,n) = (—q(t, x), n) for a vector field q.

(™ Proof: Choose 4, in Lemma 2 so 2; = 0 at x. Balance of energy in primed quantities
... x shows that #’(¢, x’, n’) satisfies the conditions of Cauchy’s theorem. Thus A’(¢, X', n')
= {~¢q'(t, '), n") for some ¢'. Since we have v, =id, ¢ = ¢. O

LEMMA 4. tzt, x,nm) = t(t,x)n for a ({) tensor t.

Proof: In view of Lemma 3, for any 1, which is an infinitesimal isometry at x, (t',d")

satisfies the conditions of Cauchy’s theorem at x, i.e., (th', ?2') = {t'?’, n") for some tensor
t-, (Here we again use Lemma 2; since y, = id, ¢t = ¢’ at x.) O

Now we have (i) and (ii) and are ready to start the actual proof.
The transport theorem and localization as usual prove the following.

LEMMA 5. Balance of energy at x is equivalent to the following at x:
o(e+<o, a))+ (0 +odivo)(e+1{v, 9)) = gr+o(b,v)—divg+div(to). 1)

By hypothesis, this holds for the primed quantities if v, is an infinitesimal isometry
at x.

Write
div(t'?’) = (dive)o' +t:d'+t": @'
where wyy = $(Vop—%he). By Lemma 1 and y, = id,

dip = }(0o+h0) = $(Oaip+Vs0) = das-
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Thus, (1) for the primed quantities reads:
0 = @'(¢'—r)+divg' — £':d'+(0', ¢'(' —b) —dived+
+(@' +o'dive') (e + 7', o))+ o', @
Keep working at ¢, x, use g, = id and (1) together with the observation (e’)’ = ¢ and
9’ = w+o to write (2) as

0 = {{w, p(a—b)—dive+(o+odivo) 2D} +
+ {1 +odivow, w}+t: o, €)}

where @ = (Wap—Wsja)/2. Since (Lemma 2), we can choose w and @ as an arbitrary
vector and skew matrix at x, respectively, we get £:@ = 0, so ¢ is symmetric, g+pdivo =0
and g(a—b)—divei = 0. This proves Proposition 5.

For Proposition 6, we observe that if we use the same derivation for general 1, we have

d::b = dab+%(wa|b+wb|a) = dab+kab

and (3) has an extra term ?:k. But we know Proposition 5 holds, and so ¢:k = 0. Thus
since k is an arbitrary symmetric matrix at x, in the fully covariant case, ¢ must vanish
identically. O
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