LECTURE T

ATTEMPTS TO RELATE THE NAVIER-STOKES

EQUATIONS TO TURBULENCE

Jerry Marsden

The present talk is designed as a survey, is slanted
to my personal tastes, but I hope it is still represent-
ative. My intention is to keep the whole discussion pretty
elementary by touching large numbers of topics and avoiding
details as well as technical difficulties in any one of
them. Subsequent talks will go deeper into some of the
subjects we discuss today.

We start with the law of motion of an incompressible

viscous fluid. This is given by the Navier-Stokes Equations

oV _
e VAv - (v*V)y = -Vp + f
div v = 0
0 or
v = on af

prescribed



where 0 is a region containing the fluid, v the velocity
field of the fluid, p the pressure and f the external
forces. v represents here the kinematic viscosity, or, in
the way we wrote our equations 1/Re , where Re 1is the
Reynolds number. The derivation of these equations can be
found in any book on hydrodynamics, such as Landau and
Lifschitz [1], K. 0. Friedrichs and R. von Mises 1], and
Hughes and Marsden [1]. We note here that the relevance

of the incompressibility condition div v = 0 for turbu-
lence is a matter for debate, but the general agreement
today seems to be that compressible phenomena are not a
necessary factor in turbulence; they start to be necessary
only at very high speeds of the fluid.

Turbulence is the chaotic motion of a fluid. Our goal
in this talk is to try to relate this universally accepted
physical definition to the dynamics of the Navier-Stokes
equations. There have been at least three attempts to
explain the nature of turbulence, each attempt offering a
model which will be briefly discussed below:

(a) The Leray picture (1934). Since the existence
theorems for the solutions of the Navier-Stokes equations
in three dimensions give only local semiflows (i.e.,
existence and uniqueness only for small intervals of time),
this picture assumes that turbulence corresponds to a break-
down of the equations after a certain interval of time; in

other words, one assumes that the time of existence of the



solutions is really finite. Schaffer [1] looked at those

t for which the equations break down and found that this
set is of Hausdorff measure < 1/2 . It is hard to

imagine realistic physical situations for which the Navier-
Stokes equations break down.

(b) The E. Hopf-lLandau-Lifschitz picture. This is
extensively discussed in Landau-Lifschitz [1] and consists
of the idea that the solutions exist even for large t , but
that they become quasi-periodic. Loosely speaking, this
means that as time goes by, the solutions pick up more and
more secondary oscillations so that their form becomes,

eventually,
v(t) = f(wlt,...,mkt)

with the frequencies irrationally related. For k big,
such a solution is supposed to be so complicated that it
gives rise to chaotic movement of the fluid.

(c) The Ruelle-Takens picture (1971) assumes that the
dynamics are inherently chaotic.

In the usual engineering peint of view, the "nature"
of turbulence is not speculated upon, but rather its sta-
tistical or random nature is merely assumed and studied.

Having this picture, a main goal would be to link up
the statistics, entropy, correlation functions, etc., in
the engineering side with a "nice" mathematical model of

turbulence. More than that, such a model must be born out



of the Navier-Stokes equations. Note that in this model
we believe, but do not assume, that the solutions of the
Navier-Stokes equations exist for large t and that the
information on the chaoticness of the fluid motion is
already in the flow. Needless to say, today we are very
far away from this goal. This last picture is interesting
and has some experimental support (J. P. Gollub, H. L.
Swinney, R. Fenstermacher [1], (21) which seems to contra-
dict the Landau picture. There are "nice" mathematical
models intrinsically chaotic strongly related to the
Navier-Stokes equations. These are the Lorentz equations
obtained as a truncation of the Navier-Stokes equations
for the Benard problem and whose dynamics are chaotic.

The rest of the talk is devoted to a survey of the
pros and cons of these models. All the details on these

will be made by means of a series of remarks.

Remark 1. In two dimensions the Navier-Stokes equations
and alsc the Euler equations (set v=0 in the Navier-Stokes
equations, which corresponds to a non-viscous fluid) have
global t-solutions. Hence, the Leray picture cannot happen
in two dimensions! (Leray [1], Wolibner (1], Xato (11,
Judovich [11).

In three dimensions, the problem is open. There are
no theorems and no counterexamples. However, there is some

very inconclusive numerical evidence which indicates that



(a) for many turbulent or near turbulent flows, the
Navier-Stokes equations do not break down.

(b) for the Euler equations with specific initial

data on T3 (the Taylor - Green vortex):
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the equations might break down after a finite time. Specif-
ically, after T = 3 , the algorithm used breaks down. This
may be due to truncation errors or to the actual equations
breaking down, quite probably the former. We only mention
that this whole analysis requires the examination of con-
vergence of the algorithms as well as their relation to the
exact equations; see the numerical studies of Chorin [1,2)],
Orszag [1] and Herring, Orszag, Kraichnan and Fox [1], Chorin

etal [1], and references therein.

Remark 2. The Landau picture predicts Gaussian statis-
ties. This is not verified in practice. The model with
chaotic dynamics does not predict such a statistic (see

Ruelle [2]1, Gollub and Swinney [1]).

Remark 3. The Landau picture is unstable with respect

to small pertﬁrbations of the equations. The Ruelle-Takens



picture is, in some sense, a stabilization of the Hopf-Landau-
Lifschitz picture. However, as Arnold has pointed out, strange
attractors may form a small open Set and still the quasi-pericdic
motions may be observed with higher probability,

Remark 4, Chaotic dynamics is not necessarily born from
complicated equations. The Navier-Stokes equations are compli-
cated enough to give rise to very complicated dynamics, eventually
leading to a chaotic flow. The reason for this is that simple
ordinary differential equations lead to chaotic dynamics (see
below) and "any" bifurcation theorem for ordinary differential
equations can work for Navier-Stokes equations, c¢f. Marsden-
McCracken [1]. We do not want to go into the details here of
this statement and we merely say that we look at the Navier-Stokes
equations as giving rise to a vector field on a certain function
space, we prove the local smoothness of the semi-flow and verify
all conditions required for a bifurcation theorem; in this way we
are able to discuss how a fixed point of this vector field splits
into two other fixed points, or a closed orbit, and discuss via
a certain algorithm their stability. Later talks with elarify
and give exact statements of the theorems involved; we have in
mind here the Hopf bifurcation theorem and its extension to
semi-flows (see Marsden [2], Marsden and McCracken [1] and the

appendix following).

Remark 5. As we mentioned earlier, the global t- existence

theorem for the solutions of the Navier-Stokes



equations is completely open in three dimensions. It is
not necessary in the Ruelle-Takens picture of turbulence
to assume this global t-existence. If one gets an

attractor which is bounded, global t-solutions will follow.

Remark 6. There are other "simpler" partial differ-
ential equations where complex bifurcations have been
classified:
(a) Chow, Hale, Malet-Paret [1] discuss the von
Karmen equations. (This seems to be a highly nontrivial
application of ideas of catastrophe theory.)
(b) P. Holmes [1] fits the bifurcation problem for a flutter-

ing pipe into Taken's normal form.

Remark 7. There are at least two physically inter-
acting real mathematical models with chaotic dynamices:

(a) Lorentz equations

x = -gx + gy (Note the symmetry
. X = -x,
y = X - ¥y - %z
y » =¥,
z = -bz + Xy . oz oz,)

They represent a modal truncation of the Navier-Stokes
equations in the Benard problem. It is customary to set
=10, b=28/3; r is a parameter and represents the

Rayleigh number. We shall come back to these equations



in Remark 9.

(b) Rikitake dynamo. This model consists of two
dynamos which are both viewed as generators, and as motors
in interaction; it is a model for the Earth's magnetohydro-
dynamic dynamo. It has also chaotic dynamics. See Cook

and Roberts [1]. The equations are:

®
o

-ux + zy

Yy = =gy -~ ax + xz

l-xy .

(e¢) A model of mixing salt with fresh water in the
presence of temperature gradients. This was communicated

to me personally by H. Huppert at Cambridge.

Remark 8. 1In many cases, existence of center manifolds
of dimension k Jjustify a modal or other truncation to give
a k-dimensional system, i.e., all the complexity really
takes place in a finite dimensional invariant manifold.

(Exact statements will be given in one of the next talks.)

Remark 9. For the actual Navier-Stokes equations we
do not know any solutions which are turbulent, or even that
they exist. In any specific turbulent flow we don't know
what the chaotic attractor might look like, or how one might

form. However, we do know how this works (or think we do)



for the Lorenz medel. It is true that there are many
objections to my drawing conclusions about the turbulence
stemming from the Navier-Stokes equations by working with

a truncation; it is argued that truncation throws turbu-

lence away, too. However, I think that the model of

Lorenz equations, though a truncation, can give some

insight on what may happen in the much more complicated
situation of the Navier-Stckes equations. I want to pre-.

sent here briefly the bifurcation for the Lorenz model

when »r (the Rayleigh number) varies. The picture presented
below is due to J. Yorke, J. Guckenheimer, and 0. Lanford. I am
indebted to them and to N. Kopell for explaining the results.
(See Kaplan and Yorke [1] and Guckenheimer's article in Marsden
and MeCracken [1] as well as William's lecture below.)

r <1 : Then the origin is a global sink:

\\\\ ‘(//, (all eigenvalues are

. real and negative for
///’ ‘\‘\~ 1> > (40-(a+1)2/u0

ie, 1> »> -2,025).
r =1 and 1l+e : At this value the first bifurcation

occurs. One real eigenvalue for the linearization at zero
crosses the imaginary axis travelling at nonzero speed on

the real axis, for the origin a fixed point. Two stable fixed

points branch off. They are at (£/o(r-1) ,:/A(r-1), r-1).

This is a standard
and elementary bifur-
cation resulting in a
loss of stability by
the origin.
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As r increases the two stahle fixed points develop two
complex conjugate and one negative real eigenvalues. The
Picture now looks like (z-axis is oriented upwards and the

Plane is the x 0 z Plane):

¥ r'd
2)

unstable manifold of the origin

stable manifold of the origin

As r increases, the "snails" become more and more

inflated.

r ®13,926: At around this value (found only by numerical
methods) the "snails" are so big that they will enter
the stable manifold of the origin. Stable and unstable
manifold become identical;.the origin is a homoclinie
point. Another bifurcation now takes place. The

picture is, looking in along the x-axis.

homoclinic orbit

(The pair of fixed
points do not lie
in the yz-plane;
they are stable)
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r > 13.826: The two orbits with infinite period "starting"
and "ending" in the origin "cross over". The "snails"
still inflate and by doing this, the homoclinic orbits
leave behind unstable closed periodic orbits. The

picture of the right hand side is:

unstable closed orbit left
behind by the homoclinic orbit

unstable
manifold o
the origin

N/
Ox
;part of the stable manifold of the origin

The unstable manifold of the origin gets attracted to the

(’W\ opposite fixed point for these values of p.
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At this stage, which Yorke calls "preturbulent," there
is a horseshoe strung out between the attracting fixed points.
There are infinitely many periodic orbits, but eventually most
orbits go to one of the attracting fixed points, There is no
Strange attractor, but rather a "meta-stable" invariant set;
points near it eventually leave it in a sort of probabilistic
way to one of the attracting fixed points.

To study this situation, one loocks at the plane 2z = p-l1
and the Poincar€, or once return map ¢ for the plane., On
this plane one draws L, the stable manifold of the origin

intersected with the plane.

¥(B
¢(C)

Pa)
@(D)
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The images of the four regions A, B, C, D are shown.
If one compares this picture with Smale's horseshoe example
(Smale [1]) one sees that a horseshoe must be present. As
r increases, eventually the images of the rectangles above
will be inside themselves and ;n attractor will be born,
This is the bifurcation to the Lorenz attractor. Viewing
the dynamical system as a whole, we see the following (only

one half is drawn for clarity).

r = 24,06

r > 24,06
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Now, between the two periodic orbits a "strange" attractor,

called Lorenz attractor, is appearing. This attractor traps

all the orbits that cross over the small piece of the stable
manifold of the origin and throws them on the other side.
Imagine we put a plane somewhere not far away from the origin,
perpendicular to the drawn stable manifold and we would like
to find out the points through which a spécific orbit is
going, travelling from one unstable closed orbit to another,
and repelled by these each time; the result would be a random
distribution of points in this "transveral cut" through the
Lorenz attractor. For the nature of this attractor, see the
talk of R. Williams in these notes, and the paper by J.
Guckenheimer forming Seetion 12 of Marsden-McCracken [1].

We note that this attractor is nonstandard since it has two
fixed points replaced by closed orbits in the "standard"
Lorenz attractor. As r increases, this nonstandard Lorenz
attractor grows from its initial shape and the unstable closed

orbits shrink.



r = 24.74 = %é%gg%%l: It is proved (Marsden and MecCracken
[1]) that a subcritical Hopf bifurcation occurs. The
two closed '"ghost" orbits shrink down to the fixed points

which become in this way unstable.

r > 24.74: We now have a "standard" Lorenz attractor. The

picture is:

r > 50. The situation for larger r is somewhat complicated

and not totally settled. According to some calculations of
Lanford, the following seems to happen. If we look at the once
return map @ on the plane 2 = r-l, as above, then the unstable
manifold of the two symmetrical fixed points develop a fold. See
the following figure. When this happens, stable large amplitude
closed orbits seem to bifurcate off. This folding is probably

because these two fixed points are becoming stronger repellers



16

and tend to push away the other unstable manifold.

L = stable manifold y;l

of the origin

Y
®

-

—r]

The situation is analogous to the bifurecations for
the map y = ax(l-x) which occurs in population dynamics.

One can, of course vary the other parameters in the
Lorenz model, or vary more than one. For example, Lorenz
himself in recent numerical work has looked at bifurcations

for small b (which is supposed to resemble large ).
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Research projects: 1) Figure out the qualitative dynamics
and bifurcation of the Rikitake two-disc dynamoj'
2) Real "pure" fluid models are needed; one might try
getting a model for:
a) Couette Flow; see Coles [1] for many good remarks
on this flow, and Stuart [].

b) Flow behind a cylinder:
Hopf bifurcation

:<>‘7H

secondary
bifurcation

%/@_@/@\,

Here the symmetry will play a central role. Note that the
third picture still represents a periodic solution in the
space of divergence-free vector fields. My conjecture would

be that the secondary Hopf bifurcation is illusory and what

happens is that the original closed orbit produced by

the Hopf bifurcation gets twisted somehow in the appro-

priate function space.

As A. Chorin has suggested, one should remember that the

Lorenz model is global in some sense. The choas is associated

+ Some progress gas been made on this problem recently by
P. Holmes and D. Rand.
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with large scale motions. One would like a model with chaotic
dynamics which is made up of a few interacting vortices and

a mechanism for vortex production. "Real turbulence" seems

to be more like this.
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APPENDIX TO LECTURE I: BIFURCATIONS,

SEMIFLOWS, AND NAVIER-STOKES EQUATIONS
Tudor Ratiu

As was pointed out in J. Marsden's talk, the Ruelle-~Takens
picture for turbulence assumes that the motion of the fluid is
inherentlyAchaotic, that the flow obtained for Re = 0 (solu-
tions of the Stokes equations) gets more and more complicated as
the Reynolds number Re increases, due to bifurcation phenomena
until it eventually gets trapped into a "strange" attractor
which has chaoticness as one of its main features. In this talk
I shall summarize the mathematical results involved in this
machinery, trying to back up with exact statements of theorems
many exciting ideas presented in Marsden's exposition. The main
source of this talk is Marsden-McCracken [1].

The leading idea is to obtain a model born out of the
Navier-Stokes equations for homogeneous, incompressible, viscous

fluids:

%% + (veW)v = VvAv = ~grad p+ £, v = 1/Re
div v = 0

v = prescribed on 3M , possibly depending en v
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Everything takes place in a compact Riemannian manifold M with
smooth boundary oM , v representing the velocity field of the
fluid, p the pressure and f the external force exercised on
the moving fluid. As already mentioned, Euler's equations for
an ideal fluid are obtained by setting Vv = 0 in the above equa-
tions; it is a theorem that the solutions to the Euler equations
are obtained as a strong limit in the Hs-topology for
§ > (dim M)/2+1 (see Ebin-Marsden [1]). Also notice that in
Euler's equations we have to change the boundary conditions to
vilaM . The intuitive reason why this is so is that our fluid,
being ideal, has no friction at all on the walls; however, a
much more subtle mathematical analysis of the above described
limit process yields formally the same result, cf, Marsden [2],
Ebin-Marsden [1].

Now we would like to write our Euler and Navier-Stokes
equations in the form of a system of evolution equations

%% = X,(v) , v(0) = given ,

where X, is a densely defined nonlinear operator on a function
space picked in such a way that our boundary conditions and
div v = 0 should be automatically satisfied. The answer to this
question is given by the Hodge Decomposition Theorem.

Denote by w3P  the completion of the normed vector space

of vector-valued C -functions on M under the norm



T
s z
"ﬂsm "Dﬂu

0<t<s P’

here DUf denotes the differential of f , s > 0 and
l<pcew, w3 P(M) is the set of vector fields of class WS P
on M . Note that a function is of class W P if and only if

all its derivatives up to order s are in LP

Hodge Decomposition Theorem. Let M be a compact Riemannian
manifold with boundary and X € w5 P() , 820, 1« P<=.

Then X has a unique decomposition
X =Y+ grad £

where div¥ =10, YlaM, Y €W 'P(M) and f is of class
wS*1l,P
S sP - S ,P : -
Denote W F(M) = {X € WP(M)|div X = 0,XIi3M} . Apply now
the Hodge Theorem and get a map P: Wo'P(M) + WP via XeY
Let us now reformulate the Euler equations: suppose s > n/p

find v: (a,b) + WS*1sP(M) such that

dv(t)

gt T PUv(t) - Mv(t)) = 0

(plus initial data). We need to assume s > n/p in order to
insure that the product of two elements of W-°*P is in WS»°P

(see Adams [1], page 115). In this way, if v € WP R
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(v-")v € W$P(M) and we can apply the Hodge Theorem. In doing

this we tacitly assume that the external foree is a gradient.
In order to be able to write in a similar way the Navier-

Stokes equations, we change the funetion space to

ﬁg’P = (X € W$P(M)|div X = 0,X|3M = 0} . Then the Navier-

Stokes equations can be reformulated: find v: (a,b) » ﬁ3+l,p

such that

dt;?) - VP(AV(t)) + P((v(t) WIv(t)) = 0 .,

The following theorem is proved in Section 9 of Marsden-McCracken.

Theorem. The Navier-Stokes equations in dimenasions 2 op 3
define a omooth local semiflow on ﬁg,z » t.e., we have a
collection of maps {F:} for t > 0 satiafying:

(a) F, is defined on an open subset of [0,0) x ﬁg’z ;

t
Voo gV ooV
(b) Ft+s = Ft°ys ;
)
(e} FY is se arately (hence, jointly) econtinuous;
t P

(d) for each fized t,v , F: is a C -map, i.e., {Pz} )

a gmooth semigroup. More, our semiflow {F:} satis fies

the a0 called gontinugtion assumption, namely, if Pt(x)

lies in a bounded set of ﬁg'z

for aach fixed x and
for all t for which Fz(x) i8 defined, then Ft(x)
is defined for all t > 0 .

Also, F:(x) t8 jointly amooth in t,x,v for >0

*See Chernoff-Marsden [1], Chapter 3, or Marsden-McCracken f1l,
Section 8A, for the proof of the fact that separate continuity
= joint continuity.
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This result which goes back to Ladyzhenskaya [1] encourages
us to not work with the Navier-Stokes equations under their
classical form, but rather with the evolution equations in
ﬁg’z which they define and to analyze more closely their semi-
flow which has such pleasant ‘properties.

Following the idea of chaotic dynamics, we may try to show
that turbulence occurs after successive bifurcations of the
solutions of the Navier-Stokes equations. Hence a first question
is how much of the classical bifurcation theory can be obtained
for semiflows. The work of Marsden shows that almost everything
works, if one mimics the conditions on the semiflow from those,
one usually has for vector fields. We shall summarize these
results below,

Hence we have to cope with a system of evolution equations
of the general form

%% = Xu(x) , ¥(0) = given ,

where Xu is a nonlinear densely defined operator on an approp-
riate Banach space E , usually -- as we already saw -- a function
space and u is a parameter. We assume that our system defines
unique local solutions generating a semiflow F: for t >0,

The assumptions made on the semiflow are (a), (b}, (c) and (d)
above., We also ask for the continuation assumption described
before. It may seem that we force our assumptions on the semiflow

such as to suit our particular problem. In reality it is exactly
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the other way around: one usually has these conditions satisfied
and checks them for the Navier-Stokes equations -- and this is
hard work involving a serious mathematical machinery (see Section
8 of Marsden-McCracken). It is true that the continuation
assumption might seem strong; but it merely says that we have
at our disposal a "good" local existence theorem, so "good" as
to insure the fact that an orbit fails to be defined only if it
tends to infinity in a finite tinme, That makes sense pPhysically,
looking at expected solutions of the governing equations of the
law of motion of a fluid (Navier-Stokes): a solution fails to
exist only if it "blows up". Another remark is of mathematical
character and concerns the generator Xu s this is not a smooth
map from E to E , hence we cannot expect smoothness of
P:(x) ?n t . The fact is that the trouble is actually only at
t = 0 , as can be seen from the theorem on the Navier-Stokes
semiflow from before, and exactly the derivative at t = 0
gives the generator. The next group of assumptions regards the spectrum
of the linearized semiflow relevant for the Hopf bifurcation.
Spectrum Hypotheses. Let P:(x) be jointly continuous in
t,esx for t >0 and p in an interval arcund O0E€ R .
Suppose in addition that:
(i) 0 is a fixed point of Fg , 1.e., Fg(O) =0, Vu,t
(ii) for p <o s the spectrum of Gg z DF%(O) is contained
inside the unit dise D = {z € ¢ [z} <1} ;
(iii) for u = 0 (resp. py < 0) the spectrum of Gr at the

origin has two isolated simple eigenvalues a(y) and
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Alu) with A(u)-= 1 (resp. A(u) > 1) and the rest
of the spectrum is in D and remains bounded away

from the unit circle;

tiv) ¢ Aﬂ?) Iu=0 >0 , i.e., the eigenvalues move steadily

across the unit circle.

Sometimes we look at these hypotheses but with (iii) changed

to:

(iii') for u = 0 (resp. u < 0) the spectrum of G; at the
origin has one isolated simple real eigenvalue
Alu) = 1 (resp. A(u) > 1) and the rest of the spectrum
is in D and remains bounded away from the unit circle;

(v) for u = 0 the origin is asymptotically stable.

We won't go into the technical details of this last hypothe-
sis here and say only that it involves an algorithm of checking
if a certain displacement function obtained via Poincaré map has

strictly negative third derivative.

Bifurcation to Periodic Orbits: Under the above hypotheses

(i)-(v) there ig a fized neighborhood V of 0 in E and an
€ > 0 such that F:(x) is defined for all t >0 for

u € [-e,e] and x € V., There is a one-parameter family of
elosed orbits for F: for u >0 , one for each u > 0 vary-

ing continuously with u . They are locally attracting and
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hence stable. Solutions near them are defined for all t 20,
There is a neighborhood U of the origin sueh that any closed

orbit in U i3 one of the above orbits.

Bifurcation to Fixed Points: Same hypothesis with (iii) aqnd

(£i2') interchanged. Then the same result holde, replacing

the words "closed orbit” with "two fized pointst,

I shall not go into the proof of these theorems but will
give the two crucial facts behind the formal proof. One is the
Center Manifold Theorem and the other is a theorem of Chernoff-
Marsden regarding smooth semiflows on finite-dimensional mani-
folds. Coupling these two results reduces the whole problem to
the classical Hopf Bifurcation Theorem in 2 dimensions, which
is relatively simple and goes back to Poincaré. Here are the

statements:

Center Manifold Theorem for Semiflows: Let Z be a Banach

space admitting q C -norm avay from zerc, and let F, bea

eontinuous semiflow defined in a neighborhood of zero for

0 <t <z . Asaume Ft(O) = 0 and that for t >0 , Ft(x)

k+1

i8 jointly C in t and x . Assume that the 8pectrum of

the linear semigroup DF . (0): Z + Z <8 of the form etlowo2)

to
where e 1 lies on the unit eirele (i.e., ay lies on the

toy

imaginary axris) and e lies in the unit cirele at non-zero

distance from it for t > 0 (i.e., G, 8 in the left half
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plane). Let Y be the generalized eigenspace corresponding to
the spectrum on the unit circle; assume dim Y = d < += | Then
there axists a neighborhood of 0 <tn 2 and a Ck—submanifbld
MC V of dimension d passing through 0 and tangent to Y
at 0 sueh that:
(a) Loecal Invariance: if €M, t > 0 and Pt(x) €V,
then Ft(X) €M ;
(b) Loeal Attractivity: ¢f t > 0 and Fﬂ(x) remains
defined and in V for all n = 0,1,2,... , then

F:(x) + M g8 n-+=

This is applied to P: after suspending u to obtain the semi-

flow Ft(x,u) = (Fg(x),u) on the original space x the parameter space

k+l map is well known;

The version of this theorem for a ¢
however, this statement regarding semiflows -- although believable --
wasn't present in the literature before; the first time it
appears is in Section 2 of Marsden-McCracken. Note that every-
thing works out nicely in the theorem, even though the generator

X of the semiflow is unbounded.

Theorem (Chernoff-Marsden): Let F. be a local semiflow on a

Banach manifold N jointly continuous end & inxeEN Suppose that F.

leaves invariant a finite dimensional submanifolf MCN . Themon M, Et
is locally reversible, is jointly & in t ad x and ie genegrated by a
&t vector fleld on M.

Some remarks are in order. Besides being one key factor
in the proof of the bifurcation theorem, the center manifold

theorem might justify some modal truncations of the Navier-Stokes
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equations to give a d-dimensional system (see Remark 8 of
Lecture I by J. Marsden). Also, in Marsden-McCracken, Section
YA, an algorithm is described which.enables us to check on the
stability of the new born fixed points or closed orbits after
bifuracations. Remark 4 of Lecture I hints toward that. The
reduction to two dimensions appears as a corollary of the

proof of the Bifurcation Theorem. The conclusion is that all
the complexity in this case takes place only in a plane, even
though we started off with an evolution equation on an infinite
dimensional function space. This ocecurrence is characteristic
when we work with semiflows; trying to prove a bifurcation,

we reduce everything to a finite dimensional theorem for flows
and this gives us then two things: the theorem itself and the
reduction!

That's the way one approaches the next bifurcation to
invariant tori. Here the Hopf Bifurcation Theorem for Diffeo-
morphisms will be needed and the idea of the proof is the same
as before; one has to replace the argument of the Hopf Bifurca-
tion Theorem in R2 with a similar argument using now the Hopf
Bifurcation Thecrem for Diffeomorphisms. I won't g0 into any
technical details.

That would roughly solve the approach to the first twe
bifurcations. How about higher ones? The only leading idea
is the Poincard map, and the fact that something invariant for

it)yields an invariant manifold of one higher dimension for



the semiflow with the preservation of the attracting or repel-
ling character: a fixed paint -- attracting or repelling --
gave a closed orbit -- attracting or repelling -- a circle,

an invariant torus, etec.

Let me mention that all these geometrical methods presented
here are by no means the only ones with which one could attack
bifurcation problems for the Navier-Stokes equations. An excel-
lent reference is J. Sattinger [1], who in Chapters u4-7 does
roughly the same thing, but using methods of eigenvalue problems,
energy methods and Leray-Schauder degree theory. I prefer the
above methods because I think they appeal more to one's
geometrical intuition.

As a concluding remark, let me say that even if it seems
that the first bifurcations can be attacked successfully with
the above methods, the difficulties one faces might be very
big. One has to start off with something known, namely a
particular stationary solution, regard this as a fixed point
of the generator of the semiflow and work his way through the
conditions in the Bifurcation Theorem. In many cases we do
not have even a stationary solution! In the research problem
suggested in Lecture I about the flow behind a cylinder, the
difficulty is exactly this one: there is no explicitly solu-

tion known (for Re > 0 ) of the laminar flow

in 2 or 3 dimensions, let alone of more complicated situations.
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