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Existence, uniqueness and well-posedness for a general class of quasi-linear
evolution equations on a short time interval are established. These results,
generalizing those of [29], are applied to second-order quasi-linear hyperbolic
systems on RR" whose solutions (u(t), i(t)) lie in the Sobolev space H**! x H®,
Our results improve existing theorems by lowering the required value of s to
s>(n/2)+1, or s>n/2 in case the coefficients of the highest order terms do not
involve derivatives of the unknown, and by establishing continuous dependence
on the initial data for these values. As consequences we obtain well-posedness of the
equations of elastodynamics if s>2.5 and of general relativity if s>1.5; s>3
was the best known previous value for systems of the type occuring in general
relativity ([12], [16], [23]).

1. Introduction

Let X and Y be Banach spaces, with Y densely and continuously included
in X. Let W< Y be open, let T>0 and let G: [0, T] x W— X be a given mapping,
A nonlinear evolution equation has the form

_du
Codt”
If s€[0, T) and ¢ W are given, a solution curve (or integral curve) of G with

value ¢ at s is a map u(-)eC°%([s, T], W)n C!([s, T], X) such that (1.1) holds
on [s, T] and u(s)=¢.

(1.1) W) =Gt u(t), @
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If these solution curves exist and are unique for ¢ in an open set U < W, we
can define evolution operators F, ;: U— W that map u(s)=¢ to u(t). We say
equation (1.1) is well-posed if F,  is continuous (in the Y-topology on U and W)
for each t, s satisfying 0<s<t<T.

We remark that joint continuity of F, ((¢) in (¢, s, ¢) follows under general
hypotheses [3]. Furthermore, if one has well-posedness for short time intervals,
it is easy to obtain it for the maximally extended flow (see [3], [13] for general
discussions on nonlinear evolution equations).

Well-posedness can be difficult to establish in specific examples, especially
for “hyperbolic” ones. The continuity of F, | from Y to Y cannot in general be
replaced by stronger smoothness conditions such as Lipschitz or even Holder
continuity; a simple example showing this, namely #+uu =0 in Y=H*!,
X=H* on R, is given in [28]; see [13] for a discussion of these smoothness
questions.

The most thoroughly studied nonlinear evolution equations are those
giving rise to nonlinear contraction semigroups generated by monotone oper-
ators [1]. These sometimes have evolution operators defined on all of X. This
is not typical of hyperbolic problems, where F, ; may be defined only in ¥, may
be continuous from Y to Y, be differentiable from Y to X, and be Y-locally Lip-
schitz from X to X, without being X-locally Lipschitz from X to X or Y-locally
Lipschitz from Y to Y, as is shown by the above example.

Section 2 gives general criteria for the well-posedness of quasi-linear evolution
equations. The theorems generalize those of [29] and like them rely on recently
obtained estimates for time-dependent linear evolution equations [26, 27].

These results are applied in Section 3 to quasi-linear second-order hyperbolic
systems of the form
azl// Xn: azl// n 82¢

J=

laij ox, axj+i§1(a0i+ai0) Fiox 0xi+b’

(QH) oo

orr
where the unknown ¥ =(,, ..., ¥y) is an N-vector valued function of te[0, T]
and of x=(x, ..., x,)eR", where {a;|i,j=1,...,n} is a collection of (N x N)-

. . 0
matrix valued functions of the suppressed arguments t, x, y, a—f, Vi, and where

b is an N-vector valued function of these same arguments. Here V7 denotes the
collection of first order derivatives of i with respect to x.

We make various hypotheses on the functions g;; and b which are spelled
out in Section 3. The equations are shown to be well-posed in H**!' x H'=Y
(with X =H*x H*" 1) if s> (n/2)+ 1, or s>n/2 if a;; does not depend on derivatives
of Y. In particular, the solution ¥(¢) is in H*** if 1(0)e H*** and /(0)e H".

Sections 4 and 5 show how these results apply to elastodynamics and general
relativity, respectively. Comparisons with theorems in the literature are given.

Most nonlinear hyperbolic systems do not allow smooth solutions for all
time because of the presence of shocks. Exceptions are certain semi-linear
equations (see, e.g., [3], [39]). At present there are no theorems ensuring the
existence of unique global weak or strong solutions for an interesting class of
equations other than those depending on one spatial variable (see [36] and remarks
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in Section 3). In studying these problems, it is desirable to have solutions with s
as low as possible.

In the future we hope to consider equations (QH) with boundary conditions
suitable for application to elastodynamics. This generalization may require X
and Y to be manifolds, but the general results of Section 2 should still be applicable.

2. Quasi-linear Equations of Evolution
In this section we consider the abstract Cauchy problem
Q dujfdt+ At uyu=f(t,u), O0=t<T, u0)=9¢,

where the unknown u takes values in a Banach space and A(t,u) is a linear (in
general unbounded) operator depending on ¢t and w.

Equations of the form (Q) are considered in [29]. The results of [29] are
useful in applications to a number of differential equations in mathematical
physics, but are not strong enough for certain applications (elastodynamics,
for example). It is the purpose of this section to generalize these results in several
directions. Since we do not want to repeat the same proofs, we shall refer to [29]
and use the same notation as far as possible. Also we shall refer freely to [26, 27]
for the theory of linear evolution equations.

In [29] two Banach spaces Y=X were used, with Y required to contain
u(t) and with X required to contain 4(f) and be such that — A(z, u) generates a
quasi-contractive semigroup on X for each ueY. For each ¢eY, solutions of
(Q) were sought for small .

In the present generalization, we shall split these roles of X and assign them
to two spaces, X and Z, so that i(t)e X while — A(t, u) generates a C,-semigroup
on Z. Moreover, we shall allow this semigroup to be quasi-contractive with
respect to an equivalent norm N(t, u) on Z depending on t and u. This dependence
on u is assumed to be smooth in the X-norm. Furthermore, we introduce another
Banach space Z’ to describe the dependence of A(t, 4) on t and u. The case con-
sidered in [29] corresponds to the case when X =Z=Z’, and N(t, u) is constant.

2.1. Assumptions
We start from four real Banach spaces
(2.1) YcXcZ'cZ,

with all the spaces reflexive and separable and the inclusions continuous and
dense. We assume that

(Z") Z'is an interpolation space between Y and Z (thus if UeB(Y) n B(Z), then
UeB(Z) with |Ul, ¢ max{ll Uly, IU;}; B(Y) denotes bounded
operators on Y.)

Let N(Z) be the set of all norms in Z equivalent to the given one || ||,. N(Z) is
metrized by the distance function

22) d(| Il;» I 1,)=log max { sup |z|,/llzl,, sup lzll./lzl,}.
O*zeZ O*zeZ
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We now introduce four functions, 4, N, S and f on [0, T] x W, where T>0
and Wis an open set in Y, with the following properties:

For all ¢, ¢, ...€[0, T] for all w, w', ...€ W, there is a real number § and there
are positive numbers Ay, uy, ... such that the following conditions hold:

(N) N(t, w)e N(Z), with
(NG W), || 1) Sy,
d(N(E, W), N(t, w) S uy(? =]+ | = wlly).
(S)  S(t,w)is an isomorphism of Y onto Z, with
ISt Wy, zS%s, IS W) iz yS4s,
IS, w)—=SE Wy, zS ps(it' —tl+ W —wliy).

(A1) A(t, w)eG(Zy(. vy, 1, B), where Zy, ,, denotes the Banach space Z
with norm N(r, w). (This means that — A(t, w) is a C,-generator in Z
such that ||e 44" z|| <P ||z for all =0 and zeZ.)

(A2) S(t,w) A(t, w) S(t, w) "' = A(t, w)+ B(t, w), where
B(t,w)eB(Z), |B(t,w)lz= -
(A3) A(t,w)eB(Y, X), with [|A(t, w)|ly, x<4, and
1A W)= AWy, z ZpalW —wlz
and with t—A(t, w)e B(Y, Z) continuous in norm.
(Ad) There is an element y,€ W such that
A(t,w)yoeY, AL, W) yolly=4o.
1) feweY, [fEwiySi, 1fEW)=fEWlzSulw—wlz,
and t—f'(t, w)e Z is continuous.

Remarks. 1. If N(t, w)=const=| |,, condition (N) is redundant. If S(t, w)=
const=S, condition (S) is trivial. If both are assumed, and X =Z'=Z, we have
the case of [29].

2. In most applications we can choose Z'=Z and/or Z'=X.

2.2 Statement of theorems

Theorem L. Let (Z)), (N), (S), (Al) to (A4), and (f1) be satisfied. Then there are
positive constants p' and T'<T such that if Y with |¢—y,lly=p’, then (Q) has
a unique solution u on [0, T'] with

(2.3) ue C°([0, T']; W)n CH([0, T']; X).
Here p' depends only on Ay, Ag, As, and R=dist (yo, Y~ W), while T' may depend

on all the constants B, Ly, iy, .. and R. When ¢ varies in Y subject to ||¢p —yo |y = p/,
the map ¢r—u(t) is Lipschitz continuous in the Z'-norm, uniformly in te[0, T'].

Remarks. 1. p' may be chosen as any positive number not exceeding kR,
where k=e~2%¥/2 A, A5 (see (2.16) below).
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2. In most applications there is a dense set of y, in W satisfying (A4). In such
a case, given any ¢ W we can apply Theorem I by choosing an appropriate y,
such that |¢p—y,ly<p’. To find y,, let R,=dist (¢, Y~ W) and choose a y,
with [yo—@llySx(l+x)7! R,. Then

R=dist (yo, YN W)2(1+K)"'R,,

so that we may choose p'=x(1+x)"! R, by Remark 1 above. This gives
= yolly<p' as required.

To establish well-posedness as defined in Section 1, we have to strengthen
some of the assumptions. We assume for simplicity that S(t, w) does not depend
on w, and we intraduce the following conditions:

(A5) ||B(t, w)—B(t, Wl S ppllw —wly.
2) s Ew)=fEwlySuplw —wly.

Theorem IL Let (Z'), (N), (S), (A1) to {AS), (1) and (£2) be satisfied, where S(t, w)
is assumed to be independent of w. Then there is a positive constant T" < T such that
when ¢ varies in Y subject to |p—yl,<p’, the map $pru(t) given by Theorem I
is continuous in the Y-norm, uniformly in te[0, T"'].

Remark. As in [29] we can prove a similar continuity theorem when not
only the initial value ¢ but also the functions N, 4 and f are varied, i.e., the solu-
tion is “stable” when the equations themselves are varied. It appears, on the other
hand, that the variation of S is rather difficult to handle.

2.3 Proof of Theorem 1
Let R=dist (y,, Y~ W). Let E be the set of functions »: [0, T'] - Y such that

(2.4) lo(®)=Yolly S(3/4) R (so that v(t)e W)
and
2.5) lo@) =t | x S LI — 1,

where T'< T and L are to be determined later.
For each veE, set

N°()=N(t o),  S"(t)=S(t, v(1)),
A°(t)=A(t,v(t),  B()=B(t, v(1)),
[P(=r1(t,0(r)), where 1[0, 7],
and consider the linear Cauchy problem
(LY du/dt+A°(u=f*(t), O0Zt=T,
u(0)=1¢.

Lemma 2.1. The family {A"(t)} = G(Z) is stable on any subinterval of J, with
stability constants f§ and

M=exp {24y + 251+ L) 1J]},
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where |J| is the length of J. That is, for any finite family {t;} with0=1, <... <1, £ T,
we have

k
< MePbsr++s1)

exp {—5,4°(1;)}

1

J
for all s;20; here the product is time ordered in the sense that a factor with a larger t;
stands to the left of those with a smaller t;.

Proof. (A1) implies that
A ()eG(Zyvy, 1, B)

and (N) implies that
A(N"(), N*O) S pun(It' — ¢+ 0() — 00| x) S pa(L+ L) |~ 1]

by (2.5). Thus Lemma 2.1 follows from [26, Proposition 3.4]. The factor ¢**¥ in M
comes from the necessity to relate N°(0) to || ||,.

Lemma 2.2. t— A°(t)e B(Y, Z) is continuous in norm.

The proof is similar to that of Lemma 9.1 of [29] and is therefore omitted.
The reader wishing to write out the proof should note that by (A3) the map
wi— A(t, w) is Lipschitz continuous from Z’ to B(Y, Z') and hence a fortiori from
X to B(Y, Z).

Lemma 2.3. We have
IS°Olly,zS 45, 1S° @)z, v SAss
IS*()—S*(®)lly, s S pus(1 + L) [t —1].
I_’urthermore, S(+)isa strong indefinite integral of a strongly integrable function
§%(+) on [0, T'] such that |S°(tH)|ly, ;S us(1+L) ae.

Proof. The first three inequalities follow from (S) and (2.5). The last assertion
then follows from a theorem of KOMURA [33], which implies that a Lipschitz-
continuous Z-valued function is an indefinite integral of a bounded function
(note that Z is reflexive and separable).

Lemma 2.4. We have
SU(t) A(t) S*(t) "t = A*(t) + B*(¢).

Moreover the map t— B(t)e B(Z) is weakly continuous (and hence strongly mea-
surable).

The proof is essentially the same as that of Lemma 9.2 of [29]; we need only
use Lemmas 2.2 and 2.3 above.

Lemma 2.5. We have | f°(t)ly<A;. Moreover the map t—f"(t) is continuous
in the Z-norm and weakly continuous ( and hence strongly measurable) in the Y-norm.

The proof is the same as that of Lemma 9.3 of [29]; note that Z' = Z.

According to Lemmas 2.1, 2.2, and 2.4, we can construct an evolution operator
{U"(t,s)} associated with the family {A°(t)} of generators, such that
U*(¢, s)e B(Z)n B(Y); see [27].
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Lemma 2.6. We have the estimates
(2.6) 11U, s)lz=exp {2Ay+[2un(1+ L)+ B] (=)},
Q7 U, 9) |y S Ashsexp {24y +e* ™ [2uy+ Asus) (1+ L)+ + 251 (1—9)}
Proof. (2.6) follows directly from Lemma 2.1 and [26, Theorem 4.1]. To prove
(2.7), we note that | U"(t, s)|ly S Agds | WU(t, s)||z, where

Wv=8" Uv(Su)—l — [_ Uu(Bu_ Cv)]p Uu,
p=0
C*(1)=5"(t) $°(1) 1,
in the symbolic notation used in [27, Section 5] (change X of [27] into Z). Since
I1B*()— C* ()l z S A+ Asus(l + L)

by (A2) and Lemma 2.3, it is easy to deduce (2.7).
Now we can solve (I'), noting Lemma 2.5. As in [29, (9.12)] the solution u
is given by

Q8 u= = U OB+ | U L= A6 3] ds.
Using (2.7), we obtain for 05T,

29 lu(®) = yolly S AsAse®* ¥+ T [ d—yolly + (A +20) T'],
where

(2.10) y=e**"[Quy+ Asps) (1 + L)+ B+ 2]

From du/dt= f*(t)— A*(t) u(t) we then deduce
(2.11) ldu(t)/dt|lx < c A+ A4 yolly + [right member of (2.9)],

where ¢ is a constant such that | [[y<c]|| |ly; note that |A"(t)lly x<A, by (A3).

Lemma 2.7. ' and T’ can be chosen to be independent of v and such that u
isin E.

Proof. In view of (2.4) and (2.5), this will be the case if the right members of
(2.9) and (2.11) are smaller than 3/4R and L, respectively. This can be achieved
by a proper choice of L and T”, provided that

(2.12) AsAse* ™ ¢ —yolly S R/2.
Indeed, first choose L such that
(2.13) chr+24(lyolly +3 R)=L)/2.

Then the required inequalities hold for 7'=0 and hence for sufficiently small
T >0.

With this choice of L and T’, we have defined a map ®: v+ u==ov of E
into itself.
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As in [29], we then introduce a metric in E by

(2.14) d(v,w)= sup lo(®)— w2

and note that E becomes a complete metric space (here we have replaced the
X-norm used in [29] by the Z’-norm).

Lemma 2.8. If T is sufficiently small, @ is a contraction map of E into itself.

Proof. First we note that the factor Agige?*¥+?T =K used in (2.9) majorizes
both (2.6) and (2.7), since AgAg=1. Hence by condition (Z’) it also majorizes
U, s)||z up to a constant factor. With this remark it is easy to argue as in [29]
to obtain

(2.15) d(@w, D) c KT [+ p4([yolly + R)I d(w, v).

Hence @ is a contraction if T is chosen sufficiently small.

It follows that @ has a unique fixed point, which is obviously a unique solution
in E of (Q). This completes the proof of the first part of Theorem I, where p’ may
be chosen as

(2.16) p'=e PR/ A K.

(For a proof of uniqueness for evolution equations under general assumptions,
which includes the case here, see [13], Theorem 6.13.)

The proof of the Lipschitz continuity in Z’ of the map ¢+ u(t) is essentially
contained in the proof of [297], Lemma 10.1. Indeed, if ¢’ is another initial value
and if @' is the associated map of E into E, we have

d(®'v, ¢v)=sup |U°(t,0)(¢' =)z =c K[ ¢' - Sl 2,

from which the assertion follows together with ¢'u'=v', du=u. (Again, this
sort of result can be proved for general evolution equations under hypotheses
including those here; cf. [13].)

2.4. Proof of Theorem 11

The proof of Theorem 11 is essentially the same as that of Theorem 7 of [29];
here it is simpler since we are not varying the functions 4 and f.

Suppose ¢" is a sequence such that ||[@"—yelly=p’, |¢"—@lly—0 as n— 0.
Then we can apply the proof of Theorem I given above (with the same function
space E) to (Q) with the initial value ¢", to construct the corresponding solution
u" on [0, T].

Then we prove that [ju"(t)—u(t)|y —O uniformly on a subinterval [0, T"].
The proof is almost the same as that of [29, Theorem 7] (replace X by Z). It is
essential here that we have assumed that S(t, w)=S(t) does not depend on w;
the t-dependence causes no difficulty. We shall omit the details.
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3. Quasi-linear Hyperbolic Systems

In this section we shall apply Theorems I and IT of Section 2 to the equations
(QH). This can be done by the standard procedure of writing (QH) as a first
order system in ¢ by introducing ¥() as a new variable and writing u()= (¥(t), ¥/(¢)).

3.1. Assumptions and statement of results

The equations (QH) will, in general, be hyperbolic only if i, ¥, ¥ are confined
to take values in some open set . In other words, the type of the equation may
depend on the solution itself.

Thus, let 2<R" x RV x R™ be an open set containing the origin and which
is contractible to the origin, and let a;;,i,j=0,1,...,n, and b be defined on
[0, T]x R" x . These variables will be denoted by (¢, x, p)e[0, T] x R" x Q.

Let H*(IR", R") be the usual Sobolev space of functions whose derivatives up
to order s are in L, (see [19]; spaces with non-integer s are obtained by inter-
polation). Let C;(IR" x 2, R™) denote the functions of class C* in x and p whose
x-derivatives up to order s are bounded.

Regarding the functions g;; and b, we make the following hypotheses *:

(al) a;eLip([0, T], C;*'(R"x 2, R™)), i,j=0,1,...,n

beCO([O, T], Ci*1(R" x Q, RM)),
and
b(-,-, O)eCO([O, T], H(R™", ]RN)).

(a2) af=aj;, where a} is the transpose of the N x N matrix aj;.

(a3) There is an £>0 such that
agol(t,x,p)zel

i &ia;t, x, p)=ze (é:l ff) 1

i,.j=1
for all (¢, x, p)e[0, TIxR"x Q and all (¢, ..., £,)eIR". (These are matrix inequal-
ities with I denoting the unit matrix.)

and

Remark. Without loss of generality, we could assume that a;; is symmetric
by replacing it with (a;;+a;;)/2. However, the more primitive assumption (a2)
is the form relevant for elastodynamics, so we shall leave it in that form.

We consider the Cauchy problem for (QH) with  =0y/dt and the initial
condition

(3.1) Y(0,")=yoe H**(R", R"),

¥(0,)=yoe H(R", R"),

where it is assumed that

(3.2) (Wo(x), Yolx), Viho(x)eQ  for all xeR"
so that the right member of (QH) makes sense at t=0.

* If s is not an integer we require g;; and b to be sufficiently smooth functions of their arguments.
For example in (al) s+1 can be replaced by [s]+2.
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Theorem IIL. Assume s>n/2+1 and that (al)-(a3) hold. (If the a;; do not
depend on the derivatives of Y, only s>n/2 need be assumed.) Then the Cauchy
problem for (QH) is well-posed in the following sense. Given Y, and 1, satisfying
(3.1) and (3.2), there is a neighborhood V of (1o, ) in H**' x H® and a positive
number T' < T such that, for any initial condition in V, (QH) has a unique solution
Wit +) for te[0, T'] satisfying (3.1) and (3.2) (with O replaced by t). Moreover,
YyeC ([0, T'], H*'~"), 0<r<s, and the map (Yo, Yo)r— (U(t,*), ¥(t,*)) is con-
tinuous in the topology of H**! x H®, uniformly in te[0, T"].

Remark. The system (QH) is reversible so we could work on [— T, T'] just
as well.

System of the type (QH) have been considered by a number of authors. See,
for example, [4, 12, 18, 20, 34, 37, 43, 44, 45]. However, none had considered such
a low value of s. Well-posedness in the sense of continuous data dependence
from H**!x H* to itself (ie., in the sense of dynamical systems) is especially
delicate for these low values of s. For larger s this well-posedness may be implicit
in the proofs of [12] (see also [8]).

By differentiating the equation (as in [16]) it is not hard to show that regularity
holds in the sense that if the hypotheses hold for larger s then T’ can be chosen
independent of s. This allows one to conclude that if the initial data is C®, so is
the solution.

The asymptotic conditions implicit in the spaces H**(R",R") are not
always appropriate. Although the hyperbolicity of the equation ([11]) diminishes
the importance of this point, one can contemplate building in other asymptotic
properties. For example, in relativity ¢ should be O(1/r) at co. One can imagine
¥ (t, x) given and ask that y —  =a be of class H**! and examine the equation
satisfied by o. Often it is again of type (QH); this happens in relativity, for instance,
as is shown in Section 5.

3.2. Proof of Theorem 111

For the proof we shall need some properties of Sobolev spaces H® and
uniformly local Sobolev spaces Hj,; proofs can be found in [19], [28], [42].

1.If s>g+k, k a non-negative integer, then
H¥R", R™c H:, (R", R™) < CHR”, R™)
and the inclusions are continuous.

2. If s>5, then pointwise multiplication induces continuous bilinear maps

H*'(R", R™) x H**! (R", R) - H*(R", R™)
and
Hy ' (R, R™ x H*"'(R", R) > H*(R", R™)

for 0 1<s, 0Zk<s™ 1.
3. (@) Assume that Q<=IR™ is open, s>g, ¢peH(R" R™) takes values in ,

W< H¥(IR", IR™) is a ball centered at ¢ with radius chosen small enough so any
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ue W takes values in a compact set C<Q (this is possible by property 1), and
that F: R"x Q2 —»IR? is C; (again “b” referring to the first variable). Then there
is a constant C; such that for all ueW,

(3.3a) IF (s w( )W g, < Cy (1+ 1wl 3)-
(b) If Fisof class Cj*!, there is a constant C, such that
(3.3b) LE(s, u() = F(+, o(- ) g = Cylu—0] g

for u,;JeWand 0=r&s.
(¢) If in addition 0eQ, if Q is contractible to 0 and if F(-,0)eH", then
F(-,u(-))eH" for uew

Remarks. 1. Parts (a) and (b) are proved in [28]. The estimate (3.3b) uses
the convexity of W and the mean value theorem along the line joining v and w.

2. To prove (c) we use contractibility of Q to join ¢ to 0 by a smooth curve
¢, H*(R", R™) which take values in Q. (If H(4, x) is the C* contracting homotopy,
H(1,x)=x, H(0,x)=0, and H(4, x)eQ for xeQ, 0SA<1, set ¢,(x)=H(A, $(x)))
Along the curve ¢, construct a finite covering by balls W, W,, ..., W,= W such
that ue W;c H*(R", R™) implies u takes values in Q; this is possible by property 1
and the compactness of {¢,e H(R", IR™)|1[0, 1]}. Now by a finite number of
applications of (3.3b) starting at v=0 we obtain our result (c).

In order to verify the hypotheses of Theorems I and II, we shall need to set
up some further notation and establish a number of lemmas. Let

X =H(R", RY)x H*"'(R", RY),

Y=H*'(R", R")x H}(R", RY),
and
Z=7'=H'(R", R")x H*(R", R").

Also let WY be a ball centered at ¢ with radius small enough so that ue W
satisfies (3.2).
For w=(0, 6)e W define the operator A(t, w) by

( 0 I

At w=—| _, = 0 o a)
ag, QGj=—=— oo )2 (Ao;+a;0) ——
OO_JZ: J axiaxj Ooig1 0 0 ax

i 1 i
where a;; stands for a;(t, x, 0, 6,V 0), i,j=0, 1, ..., n. Also, define f(t, w) by

fe,w)=(0,b(t, x, 0,6,V 0)).

Lemma 3.1. There are constants A; and 2,4 such that for te[0, T, we W, we have

A(t,w)eB(Y, X), f(t,weY
and

(A Wy, xS 4es  1fEWrE 4.
Proof. We have

Al ) (9= = (Va4 (

> o) rast an//)
jzzlaij 5xiaxj)+aooi§1(a0i+aio)a—xi .
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By the properties of Sobolev spaces above, agg a;; and agg (ay; + a;) are uniformly
bounded in HS;(R", IRY") for we W, te[0, T]. Therefore, for (i, )€Y,

n azw

1A )W Dlx S Wls+ X dog a5 ——
i, j=1 jl|Hs = 1
" 0
Z a01+a10) af oot

<c, (nww S 03¢ il 1 e

i, j=1
+ 3105 (@or+ o)l 11
i=1
<C, 1 P)ly.

Here we have used the fact that HS, - H* "' c H*"! for s>g. Thus we can take
la=C,.

Similarly, since b(t, *, 0)e H* and b(t,+,*)e Ci*1, it is clear that b(t, x, 6, 6, V o)
is uniformly bounded in H® for te[0, T], w=(o, ) W (see property 3 of Sobolev
spaces). Therefore f (¢, w) is uniformly bounded in Y.

Lemma 3.2. There are constants M, ¢y, dq >0 such that
B(t, w; Y, W) SEM Yyl g 12 s
B(t,w: g, W)z co il —do 1W1I3

for all ye H'(R", RY), te[0, T] and we W, where
. 3 oy, 5%) _
B(ta w; wlalpZ)'— Z (aij 6xl-’ axj O’

i j=1

(3.4)

here (,)o denotes the I? inner-product on R" and a;; stands for a;{t, x, 0,6,V o)
if w=(o,6).

This is GARDING’S inequality, which follows from (al) and (a3); see [15],
[41] or [50]. (Note: Reference [41] considers systems, which we are concerned
with here; the version of GARDING’s inequality presented there (p. 253) replaces
R” with a bounded domain G. However, using the uniform continuity of g,
we can readily adapt the proof given there to our context. If i/ are the matrix
elements of a;; in the notation of [41], then the second 1nequa11ty of (a3) is exactly

Z Za Aatg&isz e 212 1EN,

a,f=11i,j=1

which is the strong ellipticity hypothesis of [41].)
For t€[0, T] and we W define a norm N(t, w) on Z by

[[UA lﬁ)“N(t,W):B(ts wi Y, W) +do W13 +(ago s ¥)o-

From (3.4) it follows that N(t, w)e N(Z). The corresponding bilinear form will
be denoted (, )y, -
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Lemma 3.3. There is a constant p, >0 such that for t,t'€[0, T] and w,w'eW,
w=(o, ¢), w =(d", 6"), we have
(3.5) lay;— il = la(t, x, 0,6, Vo) —ay(t', x, 6", 6, Vo)la

Sp(je=t+ lw—wllgresxnr)
for 0<r<s, i,j=0,1, ..., n; moreover there is a constant p, such that

(36) Hb(t, X, 0, é’ VO-)_b(t’ X, O-/’ 6”v VO-I)HH"é,JZ H‘N_M/”Hr+l x H"*

Proof. (3.6) results at once from (3.3) and the hypotheses (al) on b. Similarly
(3.5) is proved by using the Lipschitz estimate on a;;, adding and subtracting the
term a;,(t', x, 0,6, Vo), and using the fact that W is a bounded subset of Y.

From (3.3) we can derive a number of estimates. For example, from (3.5) with
r=s—1, we get

(3.7) |B(t, w; r, y)— B(t', w's Y, )| S ps(jt —f+ [w = w'llx)
if s—1>n/2. If a;; is independent of derivatives of o, then H" on the left side of
(3.5) may be replaced by H"*!, s0 (3.7) remains valid assuming only s>n/2.

By the same proof the estimates (3.5) are also valid when a;; is replaced by
apo a;;. From this we can get an estimate on A(t, w).

Lemma 3.4. There is a constant p,>0 such that for t,t'€[0, T] and w,w'eW
we have
(3.8) 1A, w) =AW W)y, x Sua(t =1+ w—wliy)
and similarly

(3.9) A, w)— A, W)lly, zz S ps(t =1+ W —w| 2).

Proof. First take the case in which s>g+1 and 0£r<s—1; then

(At w)— A, W)W Yl s e

o4y o ) ey
axi axj+i;(aoé(a0i+ai0)—ao(}(aol.+ai0))R

!

!

(ago ai;—(ago ai))

M=

—-

H"

€ lago aij_(aaé a;) g 1 L gs e

i,j=1

A
M=

“~.
i

+c Z lapg(@g: +a;0)— g0 (@oi + ao) | ar 11l s
i—1

Spa(lt=1 1+ 1w =Wl s a) 108 Py

If s>n/2 and if a;; does not depend on derivatives of g, then we can use (3.5)
with H' on the left replaced by H"** and replace the use of H*~! - H" < H" above
by .HS‘1 - H"*1 < H” (see property 2 of Sobolev spaces above) to obtain the same
estimate.
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We get (3.8) and (3.9) by taking r=s—1 and r=0 respectively.
In the same way we can prove the following estimates for f:

(3.10) I f @& w)=f(t, w)lly Spellw—wlly
and
(3.11) ILf (&, w)=f & W)z Spqlw—w| 5

for 0St< T and w,w' e W. Although f need not be Lipschitz in ¢, its Z-continuity
in t follows from the t-continuity of b.
From (3.4) and (3.7) we can derive estimates for N(t, w), namely:

(3.12) g llull z S Ml y, wy S g il
and
(3.13) 1l my = 1l e, | S ol =+ [lw — W] ) 2],

for t,t'e[0, T] and w,weW, ueZ.

Lemma 3.5. There is a constant >0 such that for te[0, T], we W, ueZ,
and 1> f we have
(3.14) A wy s+ Aully g, w2 (A= B) [l w)-

Proof. Let w=(s, 6) and u=(y, ), and let a;; stand for a;(t, x, 9, 6, Vo). By
using the Schwarz inequality, integration by parts, and the symmetry of Ag;i+a;q,
we obtain

IA@ w)u+ A1y, w l1ully e, w
Z (A, wyu+Au, u)y )
=B(t, w; =+ Ay, ) +do(— ¥+ 20, ¥)o+ AW, ¥)o

"‘(aoo( aoouilaua al/l aa(}ii(a()i-i_ai())g_i)’l&)o
- 3 (w5 ] —"’) (= b+ 1, ),

- 3 (ot ¥) - 5 (a0 2.0) ai

i=1 i

5 (G20, 5) +ABw ) do( =+ 2

i

z( (@or+ o)) +ith .

da;; )
Since aa,, is uniformly bounded, the first and fourth terms are bounded by
x

k
Cy Illo 1%l m and C, ¥ )|3. These two together are bounded by C,(| /1|2 + [y Zs).
Thus by (3.12), the sum of the first and fourth terms exeeds —C, 1ullZ . wy:
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Therefore,
A, w)u+ Au”N(t, w) ”uHN(t, w)

— CollullF, iy AUl R, wy+ o, o
g(l—-ﬁ) ”uHI%J(t,w)’
where f=C,+d,ug/2. Thus (3.14) holds.

Lemma 3.6. If B is sufficiently large, then the map A(t,w)+AI: H*xH' - Z
is invertible for 1> B, and by (3.14),

(A, W)+ 21) Iy e,y < 1/~ B).

Since the proof is similar to that in Yosipa [50, XIV, 3] we just sketch the
idea. One first shows that
" 0? 0
(t w)= Z a;; 5x l(“o;“*‘“io)a

i,j=1 i

satisfies the elliptic estimates

12 < C(LA(, w12+ | W1i3)

and that any weak solution of 4,(t, w)y + 1%y =0 is actually a strong solution.
(This is done for systems in [41, Chapter 6], again for bounded regions, but
the same proof works on IR") From this and GARDING’S inequality it follows
that A,(t, w)+ 421 is one-to-one with closed range. Since A*(t, w)+ 421 is also
one-to-one (for f large enough) for similar reasons, it follows that A,(t, w)+ A%]
has dense range and so is invertible. Finally, invertibility of A(z, w)+AI can
then be reduced to that of A (¢, w)+ A2 I the solution of (4(z, w)+ AI) (¥, ¥)=(f,f)is

Y=(Aut W+ 22Dt age f,  Y=f-2y.
Let S: Y— Z be defined by

S ((1 —OA)S/z . —OA)S/Z) ,

so that S is an isomorphism between Y and Z. For te[0, T] and we W, let

Bt w)—( 0 0
= (- a0 are - as a0 ae)
where

n . 62
A1=—210600u5xi7xj,

1

s J
" 0
~1
— Y ago (o +a:0) =—,
i=1 0x;

and [,] denotes the commutator.

Lemma 3.7. We have B(t, w)e B(Z). Moreover there exist constants pq and p,
such that

(3.15) IB(t, W)z = 1o
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and
(3.16) IB(t, w)—B(t, W)l z = pyo lWw—wlly
for te[0, T] and w,w'eW.
Proof. We have
IB(&, w) (¥, )z =IILA — 4", 4,11 = 4)~ 2+ [(1 = AF"2, A1 (1= 24) = Yllp.

Write
[(1 =4y, 4,11 —4)"

n y 1 (s 1) 62 12
Z [(1 -4y, a5, a;](1—4) Ox (3 (1-4) Y.
2
Now clearly H (1 AVl £C, 1Ylig, and from [29, Lemma A2] the
0
commutator w1th a multiplication operator can be estimated as follows:

=452 apday](1—a) 2

Using properties 2 and 3 of Sobolev spaces and the chain rule to expand the
gradient, we see that the right-hand side is uniformly bounded. Hence, after
estimating the second terms in a similar manner, we find

I1B(5, W), )2 C5 10— ) 5,
i.e., (3.15) holds. Starting from (3.5) with r=s, that is, from

“L2 L= =< C2 ngad aOO alj”s 1-

HaOO al] (aOO alj) HHS H “W w ”Y

(here t=t'), the estimate (3.16) we obtain by similar reasoning.
Now we shall verify the hypotheses from Section 2.
(Z): Since Z'=Z, this condition is trivial.
(N): If we write

Hu”N(t,w) lull e, wy— “u”N(t W) +1,
Hu“N(t‘,w’) ”“”N(: w')

use estimates (3.12), (3.13), and the fact that log(l+x)=<(const)x for 0<éd
<x+1< oo, we get condition (N) easily.

(S): Since § is independent of ¢t and w, this is trivial.

(Al): This follows from Lemmas 3.5 and 3.6 and the HILLE-YOSIDA theorem
([50], Ch. IX).

(A2): That SAS~*=A+B; ie. that B=[S,A4]S ' for A and B as given
above, is a straightforward algebraic computation. The estimate |B(t, w)||;< A
is given in Lemma 3.7.

(A3): This condition is verified in Lemma 3.1 and estimate (3.9).

(A4): Using Remark 2 following Theorem I, we need only find a dense set
of y, satisfying (A4). Such a dense set is

Wﬁ(Hs+ Z(IR", IRN) x Hs+1(mn’ ]RN))
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Indeed, if y,=(¥,, ¥,) lies in this set, we have the estimate

1A W) (o, ¥o)lly

n 52¢/ n a!p
< st age a1+ Y llagd(ag; +a;0) ==
_“%O”H i’jZ=1 00 “ij axi axj s i; 00( 0 0) axi s
n n
= HlpoHHsH"’ z CHaaé aij“Ha, [Wollgs+2+ Z C Haaé(a0i+ai0)”H.§, ”'ﬁo”H“l
i,j=1 i=1

= Cl(”‘ﬁo“nsﬂ + “l/lOHHS*Z)ZA'O’

since, as earlier, the H;, norms are uniformly bounded by property 3(a) of Sobolev
spaces.

(fl): See Lemma 3.1 and estimate (3.11), together with the remark following
(3.11).,

(AS): See estimate (3.16).

{f2): See estimate (3.10).

Remark. In order to utilize available energy estimates or other conservation
laws to investigate global properties in time, it is important to have s as low as
possible. One often has a bound of the form

(3.17) I, )l g1 pro < Comst

(independent of ¢) for a solution of (QH) derived from an energy inequality (such
is often the case in elastodynamics and general relativity). In a number of inter-
esting semilinear cases with a;; independent of ¥, ¢/t and Py this is enough to
obtain global solutions, as is well known (see references in [39]). In the quasi-
linear case, this is not so due to shocks. We remark, however, that in case a;
does not depend on derivatives of ¥, then (3.17) is enough to guarantee global
solutions in one dimension. This requires an examination of the proof, though
we shall not give the details. The remark is relevant for general relativity; see [40].

4. Applications to Nonlinear Elastodynamics

Theorem III enables us to establish the well-posedness of the equations of
nonlinear ealstodynamics. Here we consider the case in which the body is all of
R*; more interesting cases involving boundaries require extensions of the pre-
vious results and will be pursued in future work.

Suppose p:R*—R, the density of the initial configuration. B: [0, T] x R?
xR*xR?*xR®->R? the extrinsic body force, and P: R*x Q, —» R®, the first
Piola-Kirchhoff stress tensor, are given and that Q, =R® is an open set contract-
ible to the origin.

If Ut X), X=(X,, X,, X;)eR?3, is the displacement, we write

B(t, X)=B(t, X, U(t, X), U(t, X), V U(t, X)),
(although VU and U may normally not be present as arguments of B) and
P(t, X)=P(X, v U(t, X)).
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Remark. With no change in the proof, we can allow P to depend on ¢, U or U
as well, cf. Theorem IIIL
The equations of nonlinear (finite) elastodynamics may be written

4.1) pU=pB+DIVP, where (DIV PF= a—i— Pe.

The Cauchy, or initial value problem, consists of finding a function Uf(t, X)
satisfying (4.1) subject to given initial conditions

(4.2) U@, X)=Us(X), U®©, X)=Uy(X).
Define the fourth-order tensor A‘?‘p= (ZPU) and let g;; denote the matrix
B

whose " entry is A3/ We make the followmg assumptions:
(e1) Pisa Ci*? (or Ci1*3 if 5 is not an integer) function* of X,V U; B, p
are Ci*! (or C,[f]”' if s is not an integer) functions, and

B(-,+,0,0,0)e C°([0, T, H'(R3, R?)).
(€2) A =A%
(e3) There is an £>0 such that p(X)=e¢ and

A X, p) & h Apze | E]2 1217

for all (X,p)eR>xQ,, £cR? and ieR>

In terms of A‘fj , equations (4.1) read
orur s U,

43 oY
@3 P e =7 5x, 08X,

+b*

where b*=pB*+ Z 6P"/6X These are precisely of the form (QH). The condi-

tions (el)-(e3) correspond to (al)-(a3), so we obtain the following.

Theorem IV. Let (e1)-(e3) hold and assume that V Uy(X)eQ, for all XeR?>.
Given initial conditions U,, U, in H**' x H*, where s> 2.5, there is a T'>0 and
a neighborhood V of (U,, U,) such that for any initial data in V, (4.1) has a unique
solution on [ —T’, T']; the solution is a continuous function in H*' x H® of the
initial data.

Remarks. 1. Assumption (e2), equivalent to postulating the existence of a
stored energy function, means that the material in question is hyperelastic.

2. Since H* < Ck if s> (n/2)+k, the solutions are classical and can be made as
smooth as we please by choosing s large (see Section 3 for regularity remarks).

3. In some examples the ellipticity condition (e3) fails for large displacement
gradients*. This is one of the reasons for restricting to an open set £, .

* Recall from Section 3 that the “b” refers to boundedness only of X-derivatives.
* This remark is based on a preprint of J. ABouDI, Two-dimensional Wave Propagation in a Non-
linearly Elastic Half Space.
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4. In two dimensions we require s>2 and in one dimension s> 1.5. We cannot
lower the requirement s>(n/2)+1 to s>n/2 because A;f will always depend
on VU,

5. In the linear case there are no restrictions on s other than s =0, and solutions
are defined for all ¢t and depend continuously on the initial data. This is contained
in the above work. In elastodynamics quite a bit is already known about the linear
case ([141], [15], [22], [30], [31]), but little seems to have been known about the
nonlinear case ([9], [47], [48]).

6. The equations are linearization stable in the sense that first-order perturba-
tion analysis is valid (this is proved by using (17] and [13]).

5. Applications to General Relativity

The literature on existence and uniqueness of the Cauchy problem in general
relativity is extensive; see [5], [12], [16], [23], [38], and the references cited
therein. For this problem there has been some interest in obtaining the lowest
possible value of s, namely s=2 (in our notation); see for instance [23], p. 251.
The use of Theorem III allows this to be accomplished.

The Einstein equations for a Lorentz metric g,; on R* 0<a, <3, can be
written in the form

08y, 08,
(5.1) ~gt B, (ga,,, a—gxﬁ)=o
after a transformation of variables to harmonic coordinates; H,, is an explicit
rational function of g, and its first derivatives ([16], p. 22). It is customary to
write (x*)=(t,x9), 1 <i<3.
The asymptotic behavior of g,; requires special attention. Let us fix on a set
of initial data g2, £2;; we are concerned with choosing other initial data in a
neighborhood of this one.
In the asymptotically flat case g7, will differ from the Minkowski metric by
a term which is O(1/r) at spatial infinity (see, for example [10]). This extra term
is not in H* but it is nevertheless important to include it in order to ensure non-
trivial solutions to the constraint equations on the initial data. We shall take
lpaﬂ =8up— ggp-
Assume the following conditions
ED)* g G (RVR), e H (R, R)
and
aggﬁ s(p 3 .
—ax—ieH (R°,R), 0=ga,f<3, 1=<ig3.

(82) Q<R xR xR*® is chosen as follows: 2=0,x R x R>°, where
2, is a ball about 0 such that if (8.5—825)(x)eQ, for any xeR>, then 8ap 18 Of
Lorentz signature (—, +, +, +).

* Again, if s is not an integer, we require the class C3** to be replaced by Ci1+2,
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In the variables y,;, the equations (5.1) are of the form (QH). Since H,, is
quadratic in the derivatives of g,;, condition (g1) implies condition (al).

The coefficients of the second-order terms do not involve derivatives of ,
so only s> n/2 is required, as opposed to elastodynamics which requires s > (n/2) + 1.

Let us write Hy, etc., for the space of g, such that g,,— gfﬁeHs, topologized
accordingly. Then Theorem III yields.

Theorem V. Let (g1) and (g2) hold. Then for s> 1.5 and initial data in a neigh-
borhood of (gf,,, gg,,) in Hzgfﬁ x Hi,, equations (5.1) have a unique solution in the
same space for a time interval [0, T"], T'>0. The solution depends continuously
on the initial data in this space (i.e. it is well-posed or “ Cauchy stable”).

Thus, with the asymptotic conditions subtracted off, H®> x H? initial data
generates a piece of H> space-time in a way which depends continuously on the
initial data. If © is chosen too large or T’ is allowed to be large, the Lorentz

character of g,; could be lost or a singularity could develop.

Remarks. 1. Uniqueness of the spacetime up to H**? (e.g. H*) coordinate
transformations of the spacetime can be proved as in [16].

2. Previously the best known existence and uniqueness result was for H* x H?
Cauchy data (and for H® coordinate transformations in Remark 1), although
existence without uniqueness in H* x H? is claimed without proof in [23]. (Well-
posedness is implicit in [8], [16], and [28] only for s>(n/2)+1.)

3. The results can be formulated on manifolds in standard fashion, as in
[5], [38].

4. In the asymptotically Euclidean case of Theorem V, spacetimes with
different mass require different choices of g2, since the coefficient of 1/r will be
different (see [107).

5. See the remarks at the end of Section 3 and in [40] regarding global solutions.

6. The results concerning (QH) together with those for symmetric hyperbolic
quasi-linear systems ([16], [28]) cover a wide variety of field theories.
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