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Existence, uniqueness and well-posedness for a general class of quasi-linear 
evolution equations on a short time interval are established. These results, 
generalizing those of [29], are applied to second-order quasi-linear hyperbolic 
systems on IR" whose solutions (u(t),il(t)) lie in the Sobolev space H~+ix H s. 
Our results improve existing theorems by lowering the required value of s to 
s > (n/2) + 1, or s > n/2 in case the coefficients of the highest order terms do not 
involve derivatives of the unknown, and by establishing continuous dependence 
on the initial data for these values. As consequences we obtain well-posedness of the 
equations of elastodynamics if s>2.5 and of general relativity if s> l . 5 ;  s > 3  
was the best known previous value for systems of the type occuring in general 
relativity ([12], [16], [23]). 

I. Introduction 

Let X and Y be Banach spaces, with Y densely and continuously included 
in X. Let W c  Ybe open, let T > 0  and let G: [0, T] x W-.X  be a given mapping. 
A nonlinear evolution equation has the form 

du 
(1.1) i,(t)= ~(t, u(t)), i,= d--? 

If s~[-O, T) and r are given, a solution curve (or integral curve) of G with 
value ~b at s is a map u(.)~C~ T], W)c~C'([s, T],X) such that (1.1) holds 
on [s, T] and u(s)= 4~- 
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If these solution curves exist and are unique for ~b in an open set U c W, we 
can define evolution operators F~,,: U-o W that map u(s)=q~ to u(t). We say 
equation (1.1) is well-posed if Ft, s is continuous (in the Y-topology on U and W) 
for each t, s satisfying 0 < s < t < T. 

We remark that joint continuity of Ft,s(~b) in (t, s, qS) follows under general 
hypotheses [3]. Furthermore, if one has well-posedness for short time intervals, 
it is easy to obtain it for the maximally extended flow (see [3], [13] for general 
discussions on nonlinear evolution equations). 

Well-posedness can be difficult to establish in specific examples, especially 
for "hyperbolic" ones. The continuity of Ft,s from Y to Y cannot in general be 
replaced by stronger smoothness conditions such as Lipschitz or even H~51der 
continuity; a simple example showing this, namely /~+uux=0 in Y = H  '+1, 
X = H  ~ on IR, is given in [28]" see [13] for a discussion of these smoothness 
questions. 

The most thoroughly studied nonlinear evolution equations are those 
giving rise to nonlinear contraction semigroups generated by monotone oper- 
ators [1]. These sometimes have evolution operators defined on all of X. This 
is not typical of hyperbolic problems, where Ft.~ may be defined only in Y, may 
be continuous from Y to Y, be differentiable from Y to X, and be Y-locally Lip- 
schitz from X to X, without being X-locally Lipschitz from X to X or Y-locally 
Lipschitz from Y to Y, as is shown by the above example. 

Section 2 gives general criteria for the well-posedness of quasi-linear evolution 
equations. The theorems generalize those of [29] and like them rely on recently 
obtained estimates for time-dependent linear evolution equations [26, 27]. 

These results are applied in Section 3 to quasi-linear second-order hyperbolic 
systems of the form 

02~ ~2~ 
(QH) aoo 63t2 ~ r -- l a i J - - +  ~,(aoi+aio ) +b,  

", " =  i=1 

where the unknown ~ =(~1 . . . .  , ~N) is an N-vector valued function of t~[0, T] 
and of x = ( x l ,  ..., x , )~lR n, where {aijli, j = l  , . . . ,n}  is a collection of (Nx N)- 

suppressed arguments t, x, ~k, ~ ,  Vr and where matrix valued functions of  the 

b is an N-vector valued function of these same arguments. Here V6 denotes the 
collection of first order derivatives of ~ with respect to x. 

We make various hypotheses on the functions aij and b which are spelled 
out in Section 3. The equations are shown to be well-posed in H '+1 x H ' =  Y 
(with X = H ' x H s-l) if s > (n/2) + 1, or s > n/2 if aij does not depend on derivatives 
of ~k. In particular, the solution ~(t) is in H ~+x if ~k(0)~H '+1 and ~(0)~H'. 

Sections 4 and 5 show how these results apply to elastodynamics and general 
relativity, respectively. Comparisons with theorems in the literature are given. 

Most nonlinear hyperbolic systems do not allow smooth solutions for all 
time because of the presence of shocks. Exceptions are certain semi-linear 
equations (see, e.g., [3], [39]). At present there are no theorems ensuring the 
existence of unique global weak or strong solutions for an interesting class of 
equations other than those depending on one spatial variable (see [36] and remarks 
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in Section 3). In studying these problems, it is desirable to have solutions with s 
as low as possible. 

In the future we hope to consider equations (QH) with boundary conditions 
suitable for application to elastodynamics. This generalization may require X 
and Yto be manifolds, but the general results of Section 2 should still be applicable. 

2. Quasi-linear Equations of Evolution 

In this section we consider the abstract Cauchy problem 

(O) du/dt+A(t,u)u=f(t ,u),  O<t<T, u(0)=r  

where the unknown u takes values in a Banach space and A(t, u) is a linear (in 
general unbounded) operator depending on t and u. 

Equations of the form (Q) are considered in [29]. The results of [29] are 
useful in applications to a number of differential equations in mathematical 
physics, but are not strong enough for certain applications (elastodynamics, 
for example). It is the purpose of this section to generalize these results in several 
directions. Since we do not want to repeat the same proofs, we shall refer to [29] 
and use the same notation as far as possible. Also we shall refer freely to [26, 27] 
for the theory of linear evolution equations. 

In [29] two Banach spaces Y c X  were used, with Y required to contain 
u(t) and with X required to contain/~(t) and be such that -A( t ,  u) generates a 
quasi-contractive semigroup on X for each u eY. For each ~be I7, solutions of 
(Q) were sought for small t. 

In the present generalization, we shall split these roles of X and assign them 
to two spaces, X and Z, so that i4t)eX while -A( t ,  u) generates a Co-semigrou p 
on Z. Moreover, we shall allow this semigroup to be quasi-contractive with 
respect to an equivalent norm N(t, u) on Z depending on t and u. This dependence 
on u is assumed to be smooth in the X-norm. Furthermore, we introduce another 
Banach space Z' to describe the dependence of A(t, u) on t and u. The case con- 
sidered in [29] corresponds to the case when X = Z = Z', and N(t, u) is constant. 

2.1. Assumptions 

We start from four real Banach spaces 

(2.1) Y c X c Z ' c Z ,  

with all the spaces reflexive and separable and the inclusions continuous and 
dense. We assume that 

(Z') Z' is an interpolation space between Y and Z (thus if U~B(Y) c~ B(Z), then 
U~B(Z') with [1U][z.<C max {11Ully, [[U[qz}; B(Y) denotes bounded 
operators on Y.) 

Let N(Z) be the set of all norms in Z equivalent to the given one II IIz. N(Z) is 
metrized by the distance function 

(2.2) d([] [l,, [I [[~)=logmax{ sup [[zllu/llzll~, sup I[zl]Jllzllu}. 
O:#zeZ O :~ z e Z  
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We now introduce four functions, A, N, S and f on [0, 7] x W, where T > 0 
and Wis an open set in Y, with the following properties: 

For all t, t', ... �9 [0, T] for all w, w', ... �9 W, there is a real number fl and there 
are positive numbers 2 N, #N, ... such that the following conditions hold: 

(N) S ( t , w ) � 9  with 

d(N(t, w), II II/)_-<,~N, 

d(N(t', w'), N(t, w)) < PN(I t ' -  tl + I1 w ' -  w II x). 

(S) S(t, w) is an isomorphism of Y onto Z, .with 

IIS(t,w)llr,  z_-<;~s, IIS(t,w) -l[Iz,Y_-<;~;, 
II S(t', w ' ) -  S(t, w)llr, z < #s(It' - tl + II w' - w IIx). 

(A1) A(t,w)�9 , 1,3), where Zn(t,w) denotes the Banach space Z 
with norm N(t, w). (This means t h a t -A ( t ,  w) is a Co-generator in Z 
such that Ile-~A(~'w>zll<e ~ IIzH for all z_->0 and z � 9  

(A2) S(t, w) A(t, w) S(t, w) -1 =A(t,  w)+B(t,  w), where 

B(t ,w)�9 IIB(t,w)l[z<2~. 

(A3) A(t, w)�9 X), with I[A(t, w)lly, x_-__,~A and 

HA(t, w ' ) -  A(t, w) lby, z, < ~A IIw'-wllz, 

and with t~-~A(t, w)�9 Z) continuous in norm. 

(A4) There is an element Yo �9 W such that 

A( t ,w)yo �9  IIA(t,w)Yolly<=i.o �9 

W '  - -  t W , <  (fl) f ( t ,w ) � 9  I l f ( t ,w)l lr<Af,  [If(t, ) f ( ,  ) l I z=~f l lw ' -w l l z , ,  

and t~--)f(t, w ) � 9  is continuous. 

Remarks. 1. If N(t, w)=cons t=  II IIz, condition (N) is redundant. If S(t, w)= 
const = S, condition (S) is trivial. If both are assumed, and X = Z ' - -Z ,  we have 
the case of [29]. 

2. In most applications we can choose Z ' =  Z and/or Z ' =  X. 

2.2 Statement of theorems 

Theorem I. Let (Z'), (N), (S), (A1) to (A4), and (fl)be satisfied. Then there are 
positive constants p' and T t< T such that if r149 Y with II r  II ~ = p,  then (Q) has 
a unique solution u on [0, T'] with 

(2.3) u � 9  C~ T'] ;  W)c~ C1([0, T ' ] ;  X). 

Here p' depends only on ),N, 2s, 2'S, and R = dist (Yo, Y \ W), while T' may depend 
on all the constants fl, ),N, #N, ... and R. When dp varies in Y subject to [I qS- yo [IY <=P ', 
the map ffgv--~u(t) is Lipschitz continuous in the Z'-norm, uniformly in t �9  T'].  

Remarks. 1. p' may be chosen as any positive number not exceeding xR, 
where K = e-  2 ~'/2 2 s 2~ (see (2.16) below). 
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2. In most applications there is a dense set of Y0 in W satisfying (A4). In such 
a case, given any 49 e W we can apply Theorem I by choosing an appropriate Yo 
such that II~b-yolly<p'. To find To, let Re=dist(49, Y \ W )  and choose a Yo 
with II Yo - r r --< ~:(1 + K)- 1 Re" Then 

R =dist  (To, Y"- W)>(1 + x) - t  Re, 

so that we may choose p'=~c(l+~c) - 1 R  e by Remark 1 above. This gives 
II C - T o  [Ir<p ' as required. 

To establish well-posedness as defined in Section 1, we have to strengthen 
some of the assumptions. We assume for simplicity that S(t, w) does not depend 
on w, and we introduce the following conditions: 

(A5) II B(t, w ' ) -  B(t, w)Ilz < ~B tl w '  - w II y .  

(12) IIf(t,w')-f(t,w)lly<#'sllw'-wll~. 
Theorem IL Let (Z'), (N), (S), (A1) to (A5), (fl) and (f2) be satisfied, where S(t, w) 

is assumed to be independent of w. Then there is a positive constant T" < T' such that 
when 49 varies in Y subject to 1149-Yllr<p', the map 49w-~u(t) given by Theorem I 
is continuous in the Y-norm, uniformly in t ~ [0, T"] .  

Remark. As in [29] we can prove a similar continuity theorem when not 
only the initial value 49 but also the functions N, A and f are varied, i.e., the solu- 
tion is "stable" when the equations themselves are varied. It appears, on the other 
hand, that the variation of S is rather difficult to handle. 

2.3 Proof of Theorem I 

Let R =dist  (To, Y \  W). Let E be the set of functions v: [0, T']  ~ Y such that 

(2.4) IIv(t)-Yollr<(3/4)R (so that v(t)r 

and 

(25) II v(t ')-  v(t) tlx <= E l t ' -  t I, 

where T'_< T and E are to be determined later. 
For each veE, set 

N'(t) = N(t, v(t)), S~(t) = S(t, v(t)), 

AO(t) = A(t, v(t)), S~ = B(t, v(t)), 

f v ( t )=f ( t ,  v(t)), where te[O, T'] ,  

and consider the linear Cauchy problem 

(L*) du/dt+AV(t)u=fV(t), O<_t<_T', 

u(O) = 4). 

Lemma 2.1. The .family {A v/t)} c G(Z) is stable on any subinterval of J, with 
stability constants fl and 

m = exp {22 u + 2/~u(1 + E) LJI} , 
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where [J[ is the length of J. That is, for any finite family {tj} with O<=t 1 <= ... <=tk <= T, 
we have 

j_[llexp { - s jAY(t j)} <= M eP (S, + . . .  + Sk) 

for all sj >= O, here the product is time ordered in the sense that a factor with a larger tj 
stands to the left of those with a smaller t~. 

Proof. (A1) implies that 
AV(t)~ G( ZN~,(o, 1, fl) 

and (N) implies that 

d(nv(t'), nv(t))<= #N([ t'-- t[ "b l[ v(t')- v(t)]l x) < l/N( 1 "b E) It'-- t l 

by (2.5). Thus Lemma 2.1 follows from [26, Proposition 3.4]. The factor e zz" in M 
comes from the necessity to relate N~(0) to [] [[z. 

Lemma 2.2. t~--,AV(t)~ B( Y, Z) is continuous in norm. 

The proof is similar to that of Lemma 9.1 of [29] and is therefore omitted. 
The reader wishing to write out the proof should note that by (A3) the map 
w~-~A(t, w) is Lipschitz continuous from Z' to B(Y, Z') and hence afortiori from 
X to B(Y,, Z). 

Lemma 2.3. We have 

llsv(t)dly, z<=,~s, IIs~(t) -1  llz, y__<,~, 

][ SV(t')- S~(t)l[r,z <=#s(1 -bE)i t ' - t [ .  

Furthermore, S~(') is a strong indefinite integral of a strongly integrable function 
S~(') on [0, T'] such that [[SV(t)l[r,z <=ps(l + E) a.e. 

Proof. The first three inequalities follow from (S) and (2.5). The last assertion 
then follows from a theorem of K6MURa [33], which implies that a Lipschitz- 
continuous Z-valued function is an indefinite integral of a bounded function 
(note that Z is reflexive and separable). 

Lemma 2.4. We have 

S~(t) A ~(t) S~(t)-I = A v(t) + B~(t). 

Moreover the map t~-,B(t)eB(Z) is weakly continuous (and hence strongly mea- 
surable). 

The proof is essentially the same as that of Lemma 9.2 of [29]; we need only 
use Lemmas 2.2 and 2.3 above. 

Lemma 2.5. We have [[ ff(t)[[r <=2or. Moreover the map t~--,fv(t) is continuous 
in the Z-norm and weakly continuous (and hence strongly measurable) in the Y-norm. 

The proof is the same as that of Lemma 9.3 of [29]; note that Z' c Z. 
According to Lemmas 2.1, 2.2, and 2.4, we can construct an evolution operator 

{U~(t,s)} associated with the family {A~(t)} of generators, such that 
U~(t, s)~B(Z)c~ B(Y); see [27]. 
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Lemma 2.6. We have the estimates 

(2.6) II UV(t, s)llz<exp {22N+ [2/~N(1 + E ) + f l ]  ( t -s)} ,  

(2.7) II UV(t, s)llr<=,~s,Vs exp {2).N+e 2z" [-2#N+2~/~s)(1 + e ) + f l + 2 B ]  (t--s)}. 

Proof. (2.6) follows directly from Lemma 2.1 and [26, Theorem 4.1]. To prove 
(2.7), we note that II U~(t, s)llr<2s2~ II W~(t, s)llz, where 

w~=s~u"(s~ ~ [ -  U~(B v- C.)yU ~, 
p=0  

CV(t) = ~v(t ) SV(t)-  1, 

in the symbolic notation used in [27, Section 5] (change X of [27] into Z). Since 

liB'(t)- C~ llz_-<,~ + ~ ~s(1 +/~/ 
by (A2) and Lemma 2.3, it is easy to deduce (2.7). 

Now we can solve (U), noting Lemma 2.5. As in [29, (9.12)] the solution u 
is given by 

(2.8) u( t ) - yo= U~(t, 0)(qS-Yo) + i U~(t, s)[f~(s)-AV(s)yo] ds. 
0 

Using (2.7), we obtain for 0_< t <  T', 

Hu(t)_Yo[lr<2s2,seZ~N+~ r' [[[qS_Yollr +(2f + 2o) T'],  (2.9) 

where 

(2.10) 7 = e 2 ~" [(2 #N + 2} #s) (1 + E) + fl + 2B]. 

From du/dt=fv(t)-AV(t)u(t)  we then deduce 

(2.11) Ildu(t)/dtllx<c2i+2a(llYo[Ir+[right member of (2.9)], 

where c is a constant such that I1 ilx<cll lit; note that IIAV(t)lir, x<=)~a by (A3). 

Lemma 2.7. E and T' can be chosen to be independent of v and such that u 
is in E. 

Proof. In view of (2.4) and (2.5), this will be the case if the right members of 
(2.9) and (2.11) are smaller than 3/4R and E, respectively. This can be achieved 
by a proper choice of E and T', provided that 

(2.12) 2s2~e 2~" Ilq5-Yollr<=R/2. 

Indeed, first choose E such that 

(2.13) c ~.f + •a(ll Y0 IJ r + 1 R) = E/2. 

Then the required inequalities hold for T' = 0  and hence for sufficiently small 
T '>0 .  

With this choice of E and T', we have defined a map q~: v~--,u=cbv of E 
into itself. 
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As in [29], we then introduce a metric in E by 

(2.14) d(v, w)= sup Ilv(t)-w(t)llz. 
O < = t < = T  ' 

and note that E becomes a complete metric space (here we have replaced the 
X-norm used in [29] by the W-norm). 

Lemma 2.8. I f  T' is sufficiently small, q) is a contraction map of E into itself. 

Proof. First we note that the factor 2s2'se 2~'+7r' = K  used in (2.9) majorizes 
both (2.6) and (2.7), since 2s2~>1. Hence by condition (Z') it also majorizes 
II UV(t, s)llz, up to a constant factor. With this remark it is easy to argue as in [29] 
to obtain 

(2.15) d(q)w, ~v)<=c K T'[l~f + #a(llYollr + R)] d(w, v). 

Hence 4~ is a contraction if T' is chosen sufficiently small. 
It follows that �9 has a unique fixed point, which is obviously a unique solution 

in E of (Q). This completes the proof of the first part of Theorem I, where p' may 
be chosen as 

(2.16) p' = e -  2 ~,, R/2 2 s 2's. 

(For a proof of uniqueness for evolution equations under general assumptions, 
which includes the case here, see [13], Theorem 6.13.) 

The proof of the Lipschitz continuity in Z' of the map q~ ~ u(t) is essentially 
contained in the proof of [29], Lemma 10.1. Indeed, if ~b' is another initial value 
and if 4 '  is the associated map of E into E, we have 

d(~'v, ~v)= sup II UV(t, 0) (~ ' -  ~)llz, < c K  I1~'- ~LIz,, 
t 

from which the assertion follows together with ~ 'u '  ' = u, �9 u = u. (Again, this 
sort of result can be proved for general evolution equations under hypotheses 
including those here; cf. [13].) 

2.4. Proof of  Theorem II 

The proof of Theorem II is essentially the same as that of Theorem 7 of [29] ; 
here it is simpler since we are not varying the functions A and f .  

Suppose qS" is a sequence such that []~)n--YoHr<=p', IIq~"-q~llr-'O as n ~ o e .  
Then we can apply the proof of Theorem I given above (with the same function 
space E) to (Q) with the initial value 4)", to construct the corresponding solution 
u" on [0, T'].  

Then we prove that [lu"(t)-u(t)llr~O uniformly on a subinterval [0, T"]. 
The proof is almost the same as that of [29, Theorem 7] (replace X by Z). It is 
essential here that we have assumed that S(t, w)=S(t) does not depend on w; 
the t-dependence causes no difficulty. We shall omit the details. 
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3. Quasi-linear Hyperbolic Systems 

In this section we shall apply  Theo rems  I and II  of Section 2 to the equat ions 
(QH). This can be done  by the s tandard  procedure  of writing (QH) as a first 
order  system in t by introducing q~(t) as a new variable and writing u(t)= (~O(t), ~b(t)). 

3.1. Assumptions and statement of  results 

The equat ions (QH) will, in general, be hyperbol ic  only if q;, ~, V ~p are confined 
to take values in some open set s In other  words, the type of the equat ion m a y  
depend on the solution itself. 

Thus,  let f~ ~ IR N x IR N x IR "N be an open set containing the origin and which 
is contract ible  to the origin, and let aij, i,j=O, 1 . . . . .  n, and b be defined on 
[0, T ]  x IR" x O. These variables will be denoted by (t, x, p)~[0,  T]  x IR" x s 

Let  HS(IR ", ~N) be the usual Sobolev space of functions whose derivatives up 
to order  s are in L 2 (see [19];  spaces with non-integer  s are obta ined  by inter- 
polation). Let C~,(IR" x O, IR m) denote the functions of class C s in x and p whose 
x-derivat ives up to order  s are bounded.  

Regarding  the functions aij and b, we make  the following hypo theses* :  

(al)  aij~Lip([O , T], C~+I(IR"x f2, IRN2)), i,j=O, 1 . . . . .  n 

b eC~ T],  Cg+'(]R" x (2, IRN)), 
and 

b( ' ,  ", 0) eC~ T],  HS(IR ", IRN)). 

(a2) * -- where is the of the N x ai j -a j i ,  a* t ranspose  N matr ix  aq. 

(a3) There is an e > 0  such that  

ao o (t, x, p) > e I  
and 

,_, ~ i ~ j a i j ( t , x , p ) ~ e  2 ~  2 I 
i,j=l \ i = 1  

for all (t, x, p)e[O, T]  • P~"• ~2 and all (~1 . . . . .  G)elR". (These are matr ix  inequal- 
ities with I denot ing the unit matrix.) 

Remark .  Wi thout  loss of generality, we could assume that  a o is symmetr ic  
by replacing it with (aq+ai3/2. However ,  the more  primitive assumpt ion  (a2) 
is the form relevant  for e lastodynamics,  so we shall leave it in that  form. 

We consider the Cauchy  p rob lem for (QH) with ~b=C~/Ot and the initial 
condi t ion 

~/,(0, -) = Oo e HS+ z (IR", IRU), 

(3.1) q~(O, ") = ~o e H~(IR ", IRN), 

where it is assumed that  

(3.2) (~/,o(X), ~b0(x), 17~9o(X))Eg2 for all x~IR" 

so that  the right m e m b e r  of (QH) makes  sense at t = 0. 

�9 If s is not an integer we require aq and b to be sufficiently smooth functions of their arguments. 
For example in (al) s+ 1 can be replaced by [s] +2. 
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Theorem IlL Assume s > n / 2 + l  and that (al)-(a3) hold. ( I f  the ais do not 
depend on the derivatives of ~k, only s > n/2 need be assumed.) Then the Cauchy 
problem for (QH) is well-posed in the following sense. Given ~k o and ~b o satisfying 
(3.1) and (3.2), there is a neighborhood V of (~ko, ~o) in H ~+1 x H ~ and a positive 
number T' < T such that, for any initial condition in V, (QH) has a unique solution 
~k(t,.) for t~[0, T'] satisfying (3.1) and (3.2) (with 0 replaced by t). Moreover, 
t~,eC'([O,T'],HS+I-'), O<r<-s, and the map (~,o,~o)~--~(~k(t,.),~(t,.))is con- 
tinuous in the topology of H ~+1 • H ~, uniformly in t~[0, T']. 

Remark. The system (QH) is reversible so we could work on [ -  T', T'] just 
as well. 

System of the type (QH) have been considered by a number of authors. See, 
for example, [4, 12, 18, 20, 34, 37, 43, 44, 45]. However, none had considered such 
a low value of s. Well-posedness in the sense of continuous data dependence 
from H ~+~ • H ~ to itself (i.e., in the sense of dynamical systems) is especially 
delicate for these low values of s. For larger s this well-posedness may be implicit 
in the proofs of [12] (see also [8]). 

By differentiating the equation (as in [16]) it is not hard to show that regularity 
holds in the sense that if the hypotheses hold for larger s then T' can be chosen 
independent of s. This allows one to conclude that if the initial data is C ~~ so is 
the solution. 

The asymptotic conditions implicit in the spaces Hs+~(IR",IR N) are not 
always appropriate. Although the hyperbolicity of the equation ([11]) diminishes 
the importance of this point, one can contemplate building in other asymptotic 
properties. For example, in relativity ~O should be O(1/r) at ~ .  One can imagine 
~o(t, x) given and ask that ~ - ~  =~ be of class H s+~ and examine the equation 
satisfied by ~. Often it is again of type (QH); this happens in relativity, for instance, 
as is shown in Section 5. 

3.2. Proof of Theorem III 

For the proof we shall need some properties of Sobolev spaces H s and 
uniformly local Sobolev spaces H~l; proofs can be found in [-19], [28], [42]. 

1. If s > 2 + k, k a non-negative integer, then 

H~(IR ", IR") "',l  ~ = ' ,  

and the inclusions are continuous. 

2. If s > ~-, then pointwise multiplication induces continuous bilinear maps 

H*-I (IR ", R ' )  x Hk+I (IR n, R)--* Hk(R n, R m) 
and 

l , ,, H k+l(lR", H,, (~.., IR ) x IR) -o Hk(R ", IR m) 

f o r 0 < l < s ,  0 < k < s - l .  
n 

3. (a) Assume that 12clR" is open, s>~ ,  ~bEHS(~, ", IR m) takes values in ~2, 

W c  H~(~, ", IR m) is a ball centered at ~b with radius chosen small enough so any 
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u e W  takes values in a compact set C c Q  (this is possible by property 1), and 
that F: lR"x ~2 ~ IR p is C~, (again "b"  referring to the first variable). Then there 
is a constant C~ such that for all u e W, 

(3.3 a) IIF( o, u(-))llm~__< C,(1 + Ilull~). 

(b) I fF  is of class C~, +1, there is a constant C 2 such that 

(3.3 b) liE(', u( . ) ) -F( . ,  v(" )) lln, __< C21lu-vlln, 

for u, v e W  and O<_r<_s. 
(c) If in addition 0el2, if g2 is contractible to 0 and if F(- ,0)eH' ,  then 

F ( ' , U ( ' ) ) e H  r for u e W  

Remarks. 1. Parts (a) and (b) are proved in [28]. The estimate (3.3b) uses 
the convexity of W and the mean value theorem along the line joining v and w. 

2. To prove (c) we use contractibility of • to join q~ to 0 by a smooth curve 
q~e Hs(R ", IR") which take values in f~. (If H(2, x) is the C ~ contracting homotopy, 
H(1, x)=x,  H(O,x)-O, and H(2, x)eO for xeO, 0 < 2 <  1, set q~z(x)= H(2, ~b(x)).) 
Along the curve q~ construct a finite covering by balls I4"1, W 2 . . . .  , W~ = W such 
that ue W~ c H~(IR ", IR") implies u takes values in t?; this is possible by property 1 
and the compactness of {qS~eHS(lR",IR")12e[0, 1]}. Now by a finite number of 
applications of (3.3b) starting at v=0 we obtain our result (c). 

In order to verify the hypotheses of Theorems I and II, we shall need to set 
up some further notation and establish a number of lemmas. Let 

X = H~(IR ", IR N) x H ~-  1 (jR n, IRN), 

Y =  Hs+ I(IR n, lR N) x H S ( ~  n, ]RN), 
and 

Z = Z ' =  HI(~, ", IR N) x H~ ", IRN). 

Also let W c  Y be a ball centered at q5 with radius small enough so that ue W 
satisfies (3.2). 

For w=(a, (~)eW define the operator A(t, w) by 

__ n 02 0 

a(t ,w)= a~ ,,j:lZ aiJ oxiOxj ao~ i=1 (a~176 

where ali stands for aij(t, x, ~, d, V a), i,j=O, 1 . . . .  , n. Also, define f (t, w) by 

f (t, w)= (0, b(t, x, ~, (r, V ~)). 

Lemma 3.1. There are constants 21 and 2A such that .for te [0, T], we W,, we have 

A(t, w)eB(Y, X), f ( t ,  w)e Y 
and 

IlA(t, w)llr, x<2a,  Ilf(t, w)llr<,~f. 
Proof. We have 

" 0 - 1  
- ~--~- ] + a o o 2 ( a o i + a i o ) ~ - ] .  A(t,w)(~9,~)= ( ~ , a o o l ( ~ a l j  02 

\ i , j = l  CX i CXj] i=1 CXi] 
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By the properties of Sobolev spaces above, ao I aij and ao~ (a o i + aio) are uniformly 
bounded in H~I(IR ", IR N~) for w~ W,, t~[0, T]. Therefore, for (0, ~)~ Y, 

[]A(t, w)(O, ~b)l[x < [l~bllu~ + 
i , j = l  

a o  I 0~' , ,~ ,  
+ i=o ~ (a~176 

i , j = l  

+ i Ilao~(aoi+aio)llm,, II~tllm) 
i=1 

__-< C211(0, ~b)ll y. 
n 

Here we have used the fact that H ~ .  H ~ - l c H  ~-~ for s>~ .  Thus we can take 
2A = C2. 

Similarly, since b(t,., O)eH ~ and b(t, . ,  .)~ C~, +~, it is clear that b(t, x, a, #, Va) 
is uniformly bounded in H * for t e [0, T], w = (a, dr) e W (see property 3 of Sobolev 
spaces). Therefore f ( t ,  w) is uniformly bounded in Y. 

Lemma 3.2. There are constants M, Co, d o > 0 such that 

In(t, w; 01,02)1 _-<M IIG Ilu, t102 Ilux, 
(3.4) 

B(t, w; t), 0)>Co 110112, - d o  110112 

for all OsHI(IR ", IRN), te[0,  r ]  and we W, where 

B(t, W; I//1 , 0 2 )  = - -  aij 8x i, 8x j /~  
i , j = l  

here (,)o denotes the L z inner-product on IR" and aij stands for aij(t, x, a, & V a) 
if w = (a, dr). 

This is GP~RDING'S inequality, which follows from (al) and (a3); see [15], 
[41] or [50]. (Note: Reference [41] considers systems, which we are concerned 
with here; the version of GARDING'S inequality presented there (p. 253) replaces 
IR" with a bounded domain G. However, using the uniform continuity of alj, 
we can readily adapt the proof given there to our context. If a~f are the matrix 
elements of a~j in the notation of [41], then the second inequality of (a3) is exactly 

a~P 2~2~i~j>=e ll2[[2 tl~ll2, 
�9 , f l=l  i , j = l  

which is the strong ellipticity hypothesis of [41].) 
For te[0,  T] and w e W  define a norm N(t, w) on Z by 

11(0, @)]lNt,,w)=B( t, w; 0, O)+do ll01lo 2 +(aoo q~, q~)o. 

From (3.4) it follows that N(t, w)eN(Z). The corresponding bilinear form will 
be denoted (,)mr, w). 
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Lemma 3.3. There is a constant #1 >0 such that for t, t 'e[0,  T] and w, w' e W, 
w = (a, it), w'= (a', &), we have 

(3.5) Ilaij-a~j}[n~= ]laij(t , x, a, 6, Va)-ai j ( t ' ,  x, a', 6', Va')llm 

</~x ( I t -  t'l + IIw- w'll. . . . .  w) 

for O<r<s ,  i,j=O, 1 . . . . .  n; moreover there is a constant #z such that 

(3.6) IIb( t ,x ,a , f ,  V a ) - b ( t , x , a ' , & , V a ' ) l l n . < # 2 1 l w - w ' l ] ,  . . . .  m. 

Proof. (3.6) results at once from (3.3) and the hypotheses (al) on b. Similarly 
(3.5) is proved by using the Lipschitz estimate on aq, adding and subtracting the 
term a~j(t', x, a, (r, Va), and using the fact that W is a bounded subset of Y. 

From (3.3) we can derive a number of estimates. For example, from (3.5) with 
r = s - 1, we get 

(3.7) IB(t, w; ~, ~ ) - B ( t ' ,  w'; ~, r <=#3([t-t'[ + Nw-w'l lx)  

if s -  1 > n/2. If aij is independent of derivatives of a~ then H * on the left side of 
(3.5) may be replaced by H ~+1, so (3.7) remains valid assuming only s>  n/2. 

By the same proof the estimates (3.5) are also valid when ai3 is replaced by 
ao~ aq. From this we can get an estimate on A(t, w). 

Lemma 3.4. There is a constant 1'4 >0 such that for t, t' e [0, T] and w, w' e W 
we have 

(3.8) HA(t, w)--A(t',w')Hy, x N #4(lt-- t'[ + I lw-  w'llx) 

and similarly 

(3.9) [IA(t, w ) -  A(t', w')llr, z' ~/zs( l t - t ' [  + Ilw- w'llz,). 

Proofi First take the case in which s > 2 + l  and O _ < r < s - 1 ;  then 

I[(A(t, w ) -  A(t', w'))(~, q})l]n . . . .  n~ 

n ~ H r "Z= (ao  -1 , ~ ' Z(aol(ao,+a,o)_ao (ao,+a,o),) "~- aij-(aooaij) ) ~ - ~ - i =  I i, 

< c  ~ [lao0 ~ % - ( a o o  ~ a0 ' l l , .  114'l[,,+, 
i , j= 1 

+ c ~ [lao~(aoi + a~o)-ao~(ao, + a,o)'lin~ I]q}lim 
i=1 

<m(it-t'l+ ilw-w'll. . . . .  

If s>n/2  and if a~ does not depend on derivatives of a, then we can use (3.5) 
with H r on the left replaced by H r+l and replace the use of H s- '  �9 H r c H "  above 
by H ~-' �9 H '+Xc H'  (see property 2 of Sobolev spaces above) to obtain the same 
estimate. 
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We get (3.8) and (3.9) by taking r = s - 1  and r = 0  respectively. 
In the same way we can prove the following estimates for f :  

(3.10) 

and 

(3.11) 

II f( t ,  w ) - f ( t ,  w')ll y ~_~/L/6 IIw-w'llY 

]If(t, w) - f ( t ,  w')llz' N#7 IIw-w'llz, 

for 0 <  tN T and w,w'e W. Although f need not be Lipschitz in t, its Z-continuity 
in t follows from the t-continuity of b. 

From (3.4) and (3.7) we can derive estimates for N(t, w), namely: 

(3.12) #s Ilullz- -< IlullN,,~)<#81 Ilullz 

and 

(3.13) ] [lu IIN,. ~)--Ilu IIN,.. w.)] ~ #9(It- t'[ + [Iw- w'llx)IlUllz 

that for 

for t,t'e[O, T] and w,w'eW, usZ.  

Lemma 3.5. There is a constant f l>0  such 
and 2 > fl we have 

II A (t, w) u + 2 u II N(t, ~) > (2 -- fl) [I U II N(t, w)" (3.14) 

re[0, T], we W, ueZ, 

Proof. Let w = (or, ~) and u = (~, ~), and let % stand for air(t, x, a, it, Va). By 
using the Schwarz inequality, integration by parts, and the symmetry of ao, + a~o, 
we obtain 

HA(t, w) u + 2ullmt, w)IlullN.,w> 
> (A(t, w) u+2u, u)N,,~) 

=B(t, w; - r  0 ) + d o ( - r  ~)o+2(~, r  

+ - a o  I E aov,.(aoi+a,o) ,r 
i,j=l i=l o 

-- ~ (aij ,~02@~ - -,~11 - - ~  ((aoi-[-aio)~xi, r162 0 i,j=l GXiGXj ]0 i=l 

,,j=l \c~xi ~xj o +2B( t 'w ;  t P ' 0 ) + d ~ 1 6 2 1 7 6  

+�89 ~, (aoi+aio)r +2(r  r i=l 0 
r 

Since ~ is uniformly bounded, the first and fourth terms are bounded by 

C11] r [] o 1[ ~ 1] HI and C2 ][ r [1 o 2 �9 These two together are bounded by C 3 (H r H 2o + 1] ~ I[ ~,). 
Thus by (3.12), the sum of the first and fourth terms exeeds - C 4Hu]]N(,,w).2 
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Therefore, 
IIA(t, w) u + 2ullN,.w) Ilullx(,.w) 

2 2 +do(~, >= --C411UlIN.,w)+211UlIN,.w) ~)o 
> 0 - - / ~ ) l l u  2 = IlN(t,.,,), 

where fl= C4+do#8/2. Thus (3.14) holds. 

Lemma 3.6. I f  fl is sufficiently large, then the map A(t, w)+2I :  H2x  H 1 ---~Z 
is invertible for 2>fl,  and by (3.14), 

II (A(t, w) + 21)- a IIN., w)=< 1/(2. - fl). 

Since the proof is similar to that in YOSIDA [50, XIV, 3] we just sketch the 
idea. One first shows that 

n 

Az(t, w)= ~, a ,  02 g 
i,j=l 3xi c~x~ + 2(aoi+aio) c~xi 

satisfies the elliptic estimates 

I1r < CAllA(t, w)r + IIr 

and that any weak solution of Az(t,w) ff/+J.2ff/=0 is actually a strong solution. 
(This is done for systems in [41, Chapter 6], again for bounded regions, but 
the same proof works on lR".) From this and Gh]RDING'S inequality it follows 
that A~(t, w)+2zI  is one-to-one with closed range. Since ,4~(t,w)+22I is also 
one-to-one (for fl large enough) for similar reasons, it follows that Aa(t, w)+22I  
has dense range and so is invertible. Finally, invertibility of A( t ,w)+2I  can 
then be reduced to that of_4a(t, w) + 2 z I: the solution of(A(t, w)+ 2I)(r q~) = (f , f ) is  

~t=(Az( t ,w)+22I)-1aoof ,  q ~ = f - 2  0. 

Let S: Y ~ Z  be defined by 

S = ((1 
0 (l?A)S/2) ' 

A)S/2 

\ 

so that S is an isomorphism between Y and Z. For te[0,  T] and we W, let 

where 

( o o ) 
B(t, w)= [(1 - A )  s/2, A1](1 - A )  -s/2 [(1 - A )  s/z, A2](1 - A )  -'/2 ' 

~2 
A 1 = - aolo a .  , 

i,j= 1 Ox i t3xj 

A 2 = -  ~ ao~(aoi+aio ) 
i = 1  OXi' 

and [ , ]  denotes the commutator. 

Lemma 3.7. We have B(t, w)eB(Z). Moreover there exist constants #9 and #1o 
such that 

(3.15) [[B(t, w)[[z__<p9 
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and 

(3.16) liB(t, w)-B(t,  w')[Iz<plo IIw- w'll r 

for tel0,  T] and w, w' e W. 

Proof. We have 

liB(t, w)(G ~b)ll z = I1[(1 - Z )  s/2, a x ]  (1 - h )  -s/2 ~q- [(1 - d )  s/2, h 2 ]  (1 --A) -s/2 if/Ito �9 

Write 
[ ( 1  - A) s/z, Ax] (1  - A ) - s / 2  

_(,-1)  82 
=-- ~ [(l_A)~/2, ao~aij](l_A) 2 8xiSx~(l_A)-l /2~.  

i,j=l 

82 (1-  A)-U2~I o Now clearly ~ < C1 I[$[lul, and from [29, Lemma A2] the 

commutator with a multiplication operator can be estimated as follows: 
_(s- l~  

II [(1 - A) s/2, ao~ alj ] (1 - A) ~ - '  fl L2, L2 < C2 II grad ao~ aislls- 1- 

Using properties 2 and 3 of Sobolev spaces and the chain rule to expand the 
gradient, we see that the right-hand side is uniformly bounded. Hence, after 
estimating the second terms in a similar manner, we find 

liB(t, w)(G ~b)llz_- < C 3 I1(~,,- ~b)llz, 

i.e., (3.15) holds. Starting from (3.5) with r=s ,  that is, from 

II ao~ % -  (ao~ %)' II n~--< ~1 II w -  w' II y 

(here t =  t'), the estimate (3.16) we obtain by similar reasoning. 
Now we shall verify the hypotheses from Section 2. 
(Z'): Since Z ' = Z ,  this condition is trivial. 
(N) " If we write 

IMIN,.w) _ IlullN..w)-IlullN,..w.) + 1, 
IlullN~c.w.) IlulIN,..w.) 

use estimates (3.12), (3.13), and the fact that log( l+x)<(cons t )x  for 0 < 6  
< x  + 1 < ~ ,  we get condition (N) easily. 

(S) �9 Since S is independent of t and w, this is trivial. 
(A1): This follows from Lemmas 3.5 and 3.6 and the HILLE-YOSIDA theorem 

([50], Ch. IX). 
(A2): That S A S - I = A + B ;  i.e. that B=[S ,A]S  -~ for A and B as given 

above, is a straightforward algebraic computation. The estimate ]]B(t, w)I[z<2~ 
is given in Lemma 3.7. 

(A3): This condition is verified in Lemma 3.1 and estimate (3.9). 
(A4): Using Remark 2 following Theorem I, we need only find a dense set 

of Yo satisfying (A4). Such a dense set is 

Wc~(H~+ 2(R,, ~u)  x HS+' (IR ", IRN)). 
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Indeed, if Yo = (Oo, q~o) lies in this set, we have the estimate 

[IA(t, w)(~k o , ~bo)ll r 

" 02~0~ + i ao~(aoi+aio) 0~~ 
~l[~OHn*+l+i,j~--1 a~ 63xi~xj  1t, i=1 ~3Xi I-I" 

--< II~ollm+, + ~ C Haoo ~ %1111a, I1r + ~ c Ilaol(ao,+a,o)llm,, II~bol111=+~ 
i,j=l i=1 

-_< Ca(ll~bohllls+, + tlq, olln,+=) =,~o, 
since, as earlier, the H~ norms are uniformly bounded by property 3(a) of Sobolev 
spaces. 

(fl): See Lemma 3.1 and estimate (3.11), together with the remark following 
(3.11). 

(A5): See estimate (3.16). 
(t2): See estimate (3.10). 

Remark. In order to utilize available energy estimates or other conservation 
laws to investigate global properties in time, it is important to have s as low as 
possible. One often has a bound of the form 

(3.17) I1(~', q'~)L111, • 11o < Const 

(independent of t) for a solution of (QH) derived from an energy inequality (such 
is often the case in elastodynamics and general relativity). In a number of inter- 
esting semilinear cases with air independent of ~O, ?,O/at and VO this is enough to 
obtain global solutions, as is well known (see references in 1-39]). In the quasi- 
linear case, this is not so due to shocks. We remark, however, that in case a o 
does not depend on derivatives of ~, then (3.17) is enough to guarantee global 
solutions in one dimension. This requires an examination of the proof, though 
we shall not give the details. The remark is relevant for general relativity; see 1-40]. 

4. Applications to Nonlinear Elastodynamics 

Theorem III enables us to establish the well-posedness of the equations of 
nonlinear ealstodynamics. Here we consider the case in which the body is all of 
11t3; more interesting cases involving boundaries require extensions of the pre- 
vious results and will be pursued in future work. 

Suppose p'lR 3 --*JR, the density of the initial configuration. B: [0, T] x ~3 
x lR 3 x lR 3 x lRg~IR 3, the extrinsic body force, and P: IRSx 01 ~ 1 t  9, the first 
Piola-Kirchhoff stress tensor, are given and that 01 c lR  9 is an open set contract- 
ible to the origin. 

If U(t, X), X=(XI ,  Xz, X 3 ) e ~  3, is the displacement, we write 

B(t, X)=/3(t, X, U (t, X), (] (t, X), V U (t, X)), 

(although V U and 0 may normally not be present as arguments of/~) and 

P(t, X) = P(X, V U(t, X)). 
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Remark. With no change in the proof, we can allow P to depend on t, U or 0 
as well, cf. Theorem III. 

The equations of nonlinear (finite) elastodynamics may be written 

( 4 . 1 )  p O = p B + D I V P ,  where ( D I V P ) ~ = ~ - P ~  ~. 

The Cauchy, or initial value problem, consists of finding a function U(t, X) 
satisfying (4.1) subject to given initial conditions 

(4.2) U(0, X)= Uo(X ), 0(0, X)= Oo(X ). 

~ and let a o denote the matrix Define the fourth-order tensor A~  ~(ajUa)' 

whose aft th entry is A~fl. We make the following assumptions: 
(el) P is a Cg +2 (or C~ ~l+3 if s is not an integer) function* of X, VU; B, p 

are C~, +1 (or C~ ~]+2 if s is not an integer) functions, and 

/3(', ", 0, 0, 0)~ C~ r ] ,  H~(~,. 3, IR3)). 

(e2) A~fl= A]~. 
(e3) There is an e>0  such that p(X)>=e and 

A~f(X, p) ~i Cj ~ p ~  i1~112 [1~112 

for all (X,p)elR3 x O1, ~ I R  3, and 2 ~ R  3. 
In terms of A~fl, equations (4.1) read 

~ U ~ ~2 Ua 
(4.3) p ~ = A~f OX, ~Xj ~- b~ 

3 
where b~=pB~+ ~ ~PS/OXj. These are precisely of the form (QH). The condi- 

j = l  
tions (el)-(e3) correspond to (al)-(a3), so we obtain the following. 

Theorem IV. Let (el)-(e3) hold and assume that V Uo(X)ef21 for all X e R  3. 
Given initial conditions Uo, (]o in HS+lx H ~, where s> 2.5, there is a T ' > 0  and 
a neighborhood V of (U o, 0o) such that for any initial data in V, (4.1) has a unique 
solution on [ - T ' ,  T']; the solution is a continuous function in H s+l x H ~ of the 
initial data. 

Remarks. 1. Assumption (e2), equivalent to postulating the existence of a 
stored energy function, means that the material in question is hyperelastic. 

2. Since H s c C~ if s > (n/2) + k, the solutions are classical and can be made as 
smooth as we please by choosing s large (see Section 3 for regularity remarks). 

3. In some examples the ellipticity condition (e3) fails for large displacement 
gradients*. This is one of the reasons for restricting to an open set f21 . 

* Recall from Section 3 that the "b"  refers to boundedness only of X-derivatives. 
t This remark is based on a preprint of J. ABouDI, Two-dimensional Wave Propagation in a Non- 

linearly Elastic Half  Space. 
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4. In two dimensions we require s > 2 and in one dimension s > 1.5. We cannot 
lower the requirement s>(n/2)+l to s>n/2 because A~'~ will always depend 
on VU. 

5. In the linear case there are no restrictions on s other than s > 0, and solutions 
are defined for all t and depend continuously on the initial data. This is contained 
in the above work. In elastodynamics quite a bit is already known about the linear 
case ([14], [15], [22], [30], [31]), but little seems to have been known about the 
nonlinear case ([9], [47], [48]). 

6. The equations are linearization stable in the sense that first-order perturba- 
tion analysis is valid (this is proved by using [17] and [13]). 

5. Applications to General Relativity 

The literature on existence and uniqueness of the Cauchy problem in general 
relativity is extensive; see [5], [12], [16], [23], [38], and the references cited 
therein. For this problem there has been some interest in obtaining the lowest 
possible value of s, namely s = 2  (in our notation); see for instance [23], p. 251. 
The use of Theorem III allows this to be accomplished. 

The Einstein equations for a Lorentz metric g~ on IR 4, 0<~,  f l< 3, can be 
written in the form 

~2gu~ ( ~g~  
(5.1) - � 8 9  ~x~x~+H~v g~, 8x ~ ] ~ 0  

after a transformation of variables to harmonic coordinates; Huv is an explicit 
rational function of g,o and its first derivatives ([16], p. 22). It is customary to 
write (x ~) = (t, x~), 1 _< i < 3. 

The asymptotic behavior of g,a requires special attention. Let us fix on a set 
of initial data gO, gO; we are concerned with choosing other initial data in a 
neighborhood of this one. 

In the asymptotically flat case gO will differ from the Minkowski metric by 
a term which is O(1/r) at spatial infinity (see, for example [10]). This extra term 
is not in H ~, but it is nevertheless important to include it in order to ensure non- 
trivial solutions tO the constraint equations on the initial data. We shall take 

Assume the following conditions 

(gl)* gO e C~,+~(IR3 ~.), g~ JR) 

and 
ag~ 
Ox i E Hs(IR3, Fx), 0~0~, ~ 3, 1_<i_<3. 

(g2) f 2 ~ R l o  • ~ l o  x IR 3~ is chosen as follows: f2=f2 o x IR 1~ • ~3o, where 
f2 o is a ball about 0 such that if (g~p-g~ for any xEIR3, then g~p is of 
Lorentz signature ( - ,  §  + ,  +). 

'~ Again, ifs is not an integer, we require the class Cg +1 to be replaced by C tsl+2. 
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In the variables r the equations (5.1) are of the form (QH). Since Huv is 
quadratic in the derivatives of g,p, condition (gl) implies condition (al). 

The coefficients of the second-order terms do not involve derivatives of ~O, 
so only s > n/2 is required, as opposed to elastodynamics which requires s > (n/2) + 1. 

s 0 s Let us write Hg% etc., for the space of g,a such that g , a - g , p ~ H ,  topologized 
accordingly. Then Theorem III yields. 

Theorem V. Let (gl) and (g2) hold. Then for s > 1.5 and initial data in a neigh- 
borhood of (gO, �9 o H s-a s g~a) in g% • H~%, equations (5.1) have a unique solution in the 
same space for a time interval [0, T'], T ' >  0. The solution depends continuously 
on the initial data in this space (i.e. it is well-posed or "Cauchy stable"). 

Thus, with the asymptotic conditions subtracted off, H3• H 2 initial data 
generates a piece of n 3 space-time in a way which depends continuously on the 
initial data. If f2 is chosen too large or T' is allowed to be large, the Lorentz 
character of g,p could be lost or a singularity could develop. 

Remarks. 1. Uniqueness of the spacetime up to H s+2 (e.g. H 4) coordinate 
transformations of the spacetime can be proved as in [16]. 

2. Previously the best known existence and uniqueness result was for H 4 • H 3 

Cauchy data (and for H s coordinate transformations in Remark 1), although 
existence without uniqueness in H 3 • H 2 is claimed without proof in [23]. (Well- 
posedness is implicit in [8], [16], and [28] only for s>(n/2)+ I.) 

3. The results can be formulated on manifolds in standard fashion, as in 
[5], [38]. 

4. In the asymptotically Euclidean case of Theorem V, spacetimes with 
different mass require different choices of gOp since the coefficient of 1/r will be 
different (see [10]). 

5. See the remarks at the end of Section 3 and in [40] regarding global solutions. 
6. The results concerning (QH) together with those for symmetric hyperbolic 

quasi-linear systems ([16], [28]) cover a wide variety of field theories. 
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