PAUL R. CHERNOFF AND JERROLD E. MARSDEN

SOME REMARKS ON HAMILTONIAN SYSTEMS
AND QUANTUM MECHANICS*

1. INTRODUCTION

These notes contain some remarks on the general structure of a class of
physical systems called Hamiltonian, and on quantum mechanical
systems in particular. A complete treatment with emphasis on technical
details is found in [6]; our goal here is to point out some unifying struc-
tures and special properties of physical systems that may be of interest to
this conference. Thus many of our remarks are deliberately brief and
sometimes vague. Most of the results are known in the literature (cf. [18,
237]) although perhaps from a different point of view.

We shall begin in Section 2 with the general features that a physical
system admitting a probabilistic interpretation should have. The distin-
guishing features of classical and quantum mechanical systems are pointed
out. In Section 3 the C*-algebra approach to quantum mechanics, as
delineated by Segal, is reviewed. Then in Section 4 we study the dynamics
of classical and quantum mechanics — we endeavor to show that both
systems are Hamiltonian, when the latter condition is interpreted from
the modern point of view of symplectic manifolds (see [2]). In Section 5
we briefly describe some other classes of Hamiltonian systems: specifically
hydrodynamics and general relativity. Finally in Sections 6 and 7 we
mention a few problems connected with hidden variables and the theory
of measurement.

2. BASIC PROPERTIES OF PHYSICAL SYSTEMS

A physical system consts of two collections of objects, denoted & and @ —
called states and observables respectively, together with a mapping
& % @ — (Borel probability measures on the real line R)
Wy A) > py,y
Additionally, there is usually a Hamiltonian structure described below
in Section 4,
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Elements e & describe the state of the system at some instant and
elements A€ is represent “observable quantities”; when 4 measured
and the system is in state v, u 4,y Tepresents the probability distribution
for the observed values of 4. Thus if E<R, u 4,4 (E)€R is the probability
that we will measure the value of A to lie in the set £ if the system is
known to be in state ij.

From the general point of view, the above seem to be minimal features
that any physical system should possess. They have been axiomatized and
studied by several authors; cf, Mackey [16]. The set % describes the
basic mathematical structure we are dealing with, while s, w brovides the
physical interpretation.

Normally there is some additional structure as well, namely the dyna-
mics. The dynamics tells us how the system changes from time s to a
(later) time ¢. Thus we are provided with a family of mappings

U, - &,

called evolution operators.
Causality, in the sense that a state at a given time uniquely determines
the state at any other time 2 forces us to postulate the flow property:

Ulz,fl = t2:so Us, t ;
U, = identity,

If the dynamics or the law of motion’ is idependent of time, then Ui,
depends only on 7—s; j.c. we can write U, ;=U,__. Then U, satisfies:

Ut+s= Uons-

One also calls 7, semigroup or flow (nonlinear in general).

The flow U,: & — 2 i determined by a law of motion: let xe&’, write
x(t).= U, (x) and set A(x)=dx/dt | ... The flow property gives us the
required law: (d/ds) x(r)=4 (x(2)). We need enough structure on & for
this to make senge ;Le. that P he g differentiable manifold.

The dynamics U, determines and ;s usually determined by the operator
4, called the generaror of Uy. The differential equation dx/dz=4 (x) be-
comes the Schradinger equation in quantum mechanics or Hamilton’s
canonical equationg (or Newton’s second law, if you wish) for classical
mechanics,

Already at thig stage the technical problems are enormoys, For example
E
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one wishes to know just what operators A generate flows. This is an
active area of research, especially in the nonlinear case ; of. [5].

It is in connection with the dynamics that the Hamiltonian structure
enters. However, let us first consider some other general features of classi-
cal and quantum mechanics, We begin with classical mechanics from the
modern point of view [2].

2.1. Classical Mechanics

A classical mechanical system consists of a finite dimensional manifold P
called the phase space; a symplectic structure w on P, that is, a closed
(dw=0) differential 2-form of maximal rank; and 2 Hamiltonian or
energy function H:P— R, From o we can construct a measure, called
Liouville measure: pu=wA ... A @; from o and H we can construct
Hamilton’s equations Xy, a vector field on P. Xy is determined by the
relation 1y, =dH where 1, denotes the interior product and d the differ-
ential. Integrating the vector field Xu (e solving a system of ordinary
differential equations) yields the dynamics, U,: P — P.

Considerations from statistical mechanics lead to the following inter-
pretation:

(a) States: & consists of probability measures v on P
(b) Observables: @ consists of measureable realvalued functions
A:P—-R

(c) The map & x @ - (Borel measures o R) is given by 1, A(E)=
=v(471(E)), where EcR.

The states are measures rather than points of P to allow for the possi-
bility that we may only have a statistical knowledge of the ‘exact’ state,
Note that & is a convex set. Its extreme points are called pure states (see
[7] for a detailed discussion of convex sets and extreme points; see [22]
for details on the connections with statistical mechanics),

It is easy to see that the pure states are point measures, so are in one-to-
one correspondence with points of P itself. Note that every observable 4
is sharp in a pure state; i.e. the corresponding measure ty,4a0nRisa
point measure. In other words there is no dispersion when measuring any
observable in a pure state.

Around 1930, B. O. Koopman noted that the above picture can be
expressed in Hilbert space language, Let # denote the Hilbert space of
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all functions y: P — C, square integrable with respect to Liouville measure.
Each e determines a probability measure v,=|{|* p if ||y]| =1. If 4
is an observable, its expected value is

& (4) ﬂfANIIZ d = CAY, ¥
¥ o

where 4 is regarded as a (self adjoint) multiplication operator on 7.

The dynamics U,:P— P on phase space P induces in a natural way, and
(under certain conditions) is induced by, a dynamics on & and on .

Consider the map Y+—v, of & to 4. It is many-to-one. In facty, =
==V, if Y’ = e’ where a:P — R. These phase transformations wwe‘“ W
form the phase group of classical mechanics.

Remark. It is not hard to see that an operator 4 on 37 is a multiplica-
tion operator if and only if it commutes with all phase transformations.
Classical observables are those 4’s which are self-adjoint, i.e. real valued.

Because the phase group is so large, neither the inner products {y, ¢)>
nor their squares |{¥, ¢>|* can have any physical meaning. This is related
to the absence of coherence phenomena in classical mechanics.

The dynamics U, on P is Hamiltonian; that is, U, preserves the 2-form
w. In other words U, consists of canonical transformations. In particular
U, preserves Liouville measure. Thus the induced dynamics on 47 is uni-
tary. Hence the dynamics is consistent with the statistical interpretation:
probability is conserved.

2.2. Quantum Mechanics

Quantum mechanics differs from classical mechanics in that the phase
group is much smaller; interference and coherence — typical wave pheno-
mena — now play a fundamental role. Furthermore, all predictions are
necessarily statistical in that there are no dispersion-free states (e .% is
dispersion-free when pi, 4 is a point measure for each 4e®).

In classical mechanics, each state ve.%” was a ‘mixture’ of pure states,
reflecting our ignorance of the true state. Increasmg our knowledge will
‘reduce’ v to a measure with smaller variance.

In quantum mechanics there are ‘irreducible’ statistical phenomena
even when the system is in a pure state. This is clearly illustrated by experi-
ments with beams of plane-polarized coherent light, or even with single
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photons. In such experiments, states can be described by unit vectors
Y eR? giving the direction of polarization. The probability that a ¢ wave
will pass through a i filter is observed to be |{¢, ¥> [?. Furthermore, the
emerging wave is y-polarized. But a little thought shows that the (p-pola-
rized state is not a statistical mixture of other polarized states.

This sort of experimental fact leads one to consider the states as being
the unit rays in a Hilbert space 2#>. (These are the pure states; mixed
states corresponding to v’s above are introduced later.) Thus, letting &7,
denote the rays in $# (57, is called projective Hilbert space), we have a
map 3 — &,, again many-to-one. This time the phase group is the circle
group {e”, aeR}. The reason 57, is chosen this way is that one imagines
general elementary selective measurements wherein [y, ¢>|2, for each
¥, pe, |l =@l =1, is the object with physical meaning — it represents
the probability that we will find ¢ in state y or, if you like, the ‘“transition
probability’ for going from ¢ to .

More generally, we can imagine a general selection measurement. Let
Fc 22 be a (closed) subspace and @pes#. The probability of transition
from ¢ to Fis {Ppp, ¢> where P is the orthogonal projection onto F.

Once the above view is accepted, then as Mackey has shown, the rest
of the picture of what %, @ and p,, , have to be is pretty much forced
upon us. This can be seen as follows.

Consider an observable 4. For each E— R we have u 4,y (£), the proba-
bility of observing 4 to lie in E if the state is 1. The previous discussion
suggests there should be a projection operator P on 2# such. that

“A.'II(E) = <Pﬁ¢/= l/’)

Since p is a probability measure we must have:

(1) P3 =0, Ph =
(2) PAao = Z 'PE‘?I
18! E; i=1

if E; are disjoint. It follows that the P, are mutually orthogonal. We also
must have, by (2),

A A A A
Pior = Ppp -+ Ppg + Piar

4 A A
Pg = Pir + Pgar
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and
A A A
Py =Pirr + Pgar
Hence
P4P{ = P4 . = PEPL; ie. the P¥s commute.

The spectral theorem * now tells us that there is a unique self-adjoint
operator, also denoted A, such that A={®_1dP%; {P4} is the spectral
measure of 4. Conversely any self-adjoint operator 4 yields a spectral
measure and hence defines pu, .

Thus, to every observable there is a self-adjoint operator 4, but it is not
clear that every self-adjoint operator is physically realizable.’

Notice that the expected value of 4 in a state i is

s()= [ 2du = [ 2a<Pip vy = cav,u>.

Thus a state ¢ yields a mapping Fi—<{Prp, ¢> of subspaces in 2 to
[0, 1] describing a transition probability. It is a ‘probability measure’
based on the closed subspaces.

We can generalize the notion of state so as to allow for the possibility
of mixed states (with the same statistical interpretation as in the classical
case) by just considering a general ‘measure’ defined on the closed sub-
spaces of 5#. It is a famous theorem of Gleason ¢ that such a measure is
given by Fi—>trace (P,D) where D is a positive operator of trace one on
, called a density matrix. (Here we must add the condition that 3 have
dimension at least three.)

Thus quantum mechanics is specified as follows: we are given a com-~
plex Hilbert space 5 and set

& = all density matrices, a convex set
o self adjoint operators on 7.
t4,p(E) = trace (P4D), P4 the spectral projections of A.

f

It is not hard to see that the pure states (extreme points of &) are iden-~
tifiable with unit vectors in 2%, modulo the phase group — what we pre-
viously called .7,

We also postulate dynamics U,: & — % on &, and assume that U, con-
sists of convex automorphisms. It is a theorem (going back to Bargmann



HAMILTONIAN SYSTEMS AND QUANTUM MECHANICS 41

and Wigner) that U, is naturally induced by a one-parameter unitary
group V, on &, The generator of V, is H, the Hamiltonian. Conversely
if H is self adjoint, it determines ¥, by Stone’s theorem: V,=e'X* (see
[28]).

Actually this dynamics is Hamiltonian in the same sense that classical
dynamics is, as discussed in 2.1 above. We shall see this in Section 4 below.

3. THE C*~ALGEBRA APPROACH TO QUANTUM MECHANICS

There are many ways of generalizing the examples of physical systems
given in Sections 2.1, 2.2 above. One of these, taken by von Neumann and
Segal, is to regard the set of observables as an algebra. This is mathemati-
cally convenient although it may not correspond exactly with physical
reality; for, as mentioned above, the sum of two observables need not be
observable. Another type of generalization is the ‘quantum logic’ peoint of
view described in other lectures and in [26].

In the classical case the algebra is the algebra of functions on phase
space — a commutative algebra. The quantum case is distinguished by
having a non-commutative algebra, Indeed any C *-algebra which is
commutative must be isomorphic to a space of continuous functions and
so is, in this sense, classical.,

Segal’s version of this formulation proceeds as follows. Let U be a
C*-algebra’, (for example all bounded operators on Hilbert space). The
observables ® are the self-adjoint elements of 9.

The states are the normalized positive linear functionals on 2. They are
automatically continuous.® We are to think of states in the same way as
before. If & is a state, & (4) is the expectation of 4 in the state &.

Of central importance is the Gelfand-Naimark-Segal construction: Let
U be a C*-algebra and & a state of . Then there is a Hilbert space #, a
unit (cyclic) vector yes#, and a *-representation 7:U— % (#°) (the
bounded operators on 5#) such that

&(A) =Lng(A) Y, > forall A4e?

In face 52, W, = are unique up to unitary equivalence. See Lanford [15]
for details.

In this way, we can construct our probability measure p 4,8 Thus we
have a general example of a physical system ~ consisting of &, @ and the
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map ey, g just constructed — which includes both classical and quantum
systems as special cases.

The above construction is similar to Gleason’s theorem in that it cha-
racterizes states. The Gelfand-Naimark-Segal construction essentially
enables one to recover the Hilbert space formalism from the abstract
C*-algebra formalism. Often it is convenient to stick with the general
formalism (e.g. see Section 6 below). For example, one can characterize
pure states & as those for which 7, is irreducible.

Several other ideas carry over also. For example, a general form of the
uncertainty principle is valid: for observables A, Be, and a state &,

o (A, &) o (B, &) = 3£ (C); C = i(AB — BA)

where o(A4, &) is the variance of the probability distribution p 4, 8"
o (4, ) =& (A42)~ (& (4)* =&((4—& (4)1)?).
Proof. Let [X, Y]=¢& (XY*). This is an inner product on 9, so obeys the
Schwarz inequality. Note that it is enough to prove the inequality in case
& (A4)=0, &(B)=0 for we can replace 4, B by A—&(A) I, and B—& (B) L.
Then
E(C)=i[&(A4B) — &(BA4)]
=2 Im[d, B]
< 2[4, 41'*[B, B]'/?

5038 (C)<o(d, &) o (B, &). Q.E.D.

4. THE HAMILTONIAN STRUCTURE

A general Hamiltonian system consisis of a manifold P, possibly infinite
dimensional, together with (a) a (weakly) nondegenerate, closed two form
w on P(i.e. wis an alternating bilinear form on each tangent space TP of
P, dw=0, and for xeP, w, (v, w)=0 forall veT,Pimplies w=0)and (b)a
Hamiltonian function H: P — R.

Then P, H, @ determine, in nice cases, a vector field X3; by the relation
ix =dH;ie.,

@ (Xy(x), v) =dH,-v forall xeP and veT, P.

As in Section 2 we can require that Xy be the generator of a flow U, on

P,
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Let us enrich our definition of a physical system as follows. It consists of

(a) a convex set of states &

(b) a set @ of observables

(©) amap (f, A)—pu, , from & x @ to (Borel probability measu-
res on R)

(d) a flow of convex automorphism of &, U,: & — & ;

this induces a flow U,:P — P, where P=—cxtreme points of
& =pure states.

We also assume:
(e) The flow on P arises from a Hamiltonian system.

The fact that we deal with % rather than P is due to our ignorance
about the precise initial state. This stochastic aspect of physical models is
fundamental. Moreover, there are other related questions. Usually we
don’t know the dynamics exactly either, so only stable states are of physi-
cal interest. Here stability means that the time evolution should not be
affected much by a perturbation of either the initial condition or the
vector field itself. (The latter property is called structural stability.) Such
questions are not simple and much remains to be discovered; cf, [1].

We have already explained the Hamiltonian structure for classical
mechanics. It remains to discuss it for quantum mechanics. (cf. [17]).

Thus Iet 5# be complex Hilbert space and let P be the corresponding
projective Hilbert space. Let 4 be a self-adjoint operator on 2. We claim
that for a suitable symplectic form w on %, i4 is Hamiltonian. By ‘quo-
tienting’ by the phase group, it can be shown that this symplectic structure
is inherited by P.

The symplectic form will be given by an antisymmetric bilinear form
WA % — R, namely

@ (Y, @) = Imf, @ .
The energy is
Hp) =34y, y>.
The Hamiltonian condition, namely

w (fAvr, @) = dH, - ¢
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is verified as follows:

ImJidy, o>

= Re <AW: (P>

= $[<4¥, 0> + {4y, )]

= 3[4, 0> + Lo, AYD]
T[4, > + (4o, ¥)]
= dH, - op.

Thus we conclude that the usual Hilbert space formalism of quantum
mechanics satisfies all the requirements (a)-(e) listed above.

The structure of some of the basic observables in quantum mechanics
can be derived by the elegant Mackey-Wightman analysis and other
group-theoretic arguments. In particular, that the position and momen-
tum operators have to be x/ and i (9/8x”) follows from very fundamental
and non-controversial hypotheses. See [26], [6], and [13]. Note that the
usual Heisenberg uncertainty principle follows, as was explained in
Section 3.

5. SOME OTHER EXAMPLES OF HAMILTONIAN SYSTEMS

Several interesting physical systems can be putinto the above Hamilton-
ian framework. They are all classical in the sense that % consists of the
probability measures and @ the real-valued functions on a given phase
space P,

Examples are:

(a) wave equations such as
& ) ’ .
Fad(p-—-m @ —oap , paninteger > 2

«eR, m=0.

(b) Maxwell’s equations

(c) hydrodynamics |

(d) conservative continuum mechanics

(e) elasticity

) Einstein’s equations of general relativity.

Of course many of these examples are interrelated. For details, see [6]
and [18]. We shall make a few brief remarks concerning (c) and (f).
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3.1. The Motion of a Perfect Fluid

Let v be the velocity field of a perfect (incompressible, homogeneous,
non-viscous) fluid in a region D of R3. Euler’s equations assert:
v
Y + (v'V)v=—grad p
(E) divy =0
v parallel to D

These equations are not in Hamiltonian form. But they can be so put
as follows. Let (¢, x)e D, xe D, teR be defined by

E%q(t, x) =v(t,n (s x))
7 (0, x) = x.

Then t—#(z, x) is the trajectory followed by the particle which was ini-
tially at x. Let #,(x)=#(7, x). Then #,:D — D is invertible (a diffeomor-
phism} and is volume-preserving. Let 2, denote all volume-preserving
diffeomorphisms on D.

In 1967, V. Arnold showed that v satisfies (E) if and only if 7, is a
geodesic on the infinite dimensional manifold 2,. (The metric on 2, is
canonically associated with the kinetic energy of the fluid.) Thus we imme-
diately have the required Hamiltonian structure, since geodesics on a mani-
fold M are well-known to arise from a Hamiltonian system on T'M. See
for example [2]. Thus P=72,,.

This point of view has turned out to be very useful technically for
proving existence and representation theorems for the solutions of the
equations of ydrodynamics. It may be of importance in problems of
quantization as well.

5.2. The Equations of General Relativity

Consider a Lorentz manifold ¥ and associated metric (Yg. Outside
regions of matter, Einstein’s equations assert that ¥ is Ricci-flat : R,p=0.
Pick a space-like hypersurface M in ¥ and some orthogonal coordinate ¢;
then, near M, ¥ looks like M x (an interval in R). Hence Vg vields a
curve f— g, of positive-definite Riemannian metrics on M. Let 9N denote
the set of all such metrics on M. Then one can show that R,;=0 if and
only if t—g, is a geodesic (with a potential term) in the space 1.
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Of course we can choose different M’s and f-coordinates. In this way
we get different Hamiltonian representations in 9%, but they are all
equivalent.?

The phase space is thus P=T9%. The symplectic structure is that asso-
ciated with an indefinite, but non-degenerate metric on 9 called the
deWitt metric:

5, (hy k) = f {(tr h) (trk) — <hy kD) dp,
M
where tr is the trace, <4, k) =h"%,; and ug-:\/ detg,; dx' A dx* A dx3.

6. A HIDDEN VARIABLES THEOREM

The orthodox physical interpretation of quantum mechanics has discom-
forted many physicists, notably including Planck, Einstein, de Broglie,
and Schrédinger; cf. [11]. It is hard to escape the feeling that a statistical
theory must be, in some sense, an incomplete description of reality. One
might hope that the probabilistic aspects of the theory are really due, as in
the case of classical statistical mechanics, to some sort of averaging over
an enormous number of ‘hidden variables’; in a perfect description of
a state, in which these hidden parameters would have well-determined
values, all the observables would be sharp. However, von Neumann [27]
has given a proof that the results of quantum mechanics are not compat-
ible with a reasonably formulated hidden variable hypothesis. We shall
outline an argument along von Neumann’s lines, but in the more general
setting of Segal’s C*-algebra formulation of quantum theory.

Let the observables of a given physical system be represented by the
self-adjoint elements of a C*-algebra . If 4% is an observable and p is
a state, the dispersion of 4 in the state p is given by o (4, p)=p(4%)—
~p(4)?=p((A—p(4)I)?). We shall say that p is a dispersion-free state
provided that ¢®(4, p)=0 for every observable 4e9l. The results of
experiment show that the states of quantum systems prepared in the
laboratory are not dispersion-free. The hidden-variable hypothesis is that
the physical state p owes its dispersion to the fact that it is a statistical
ensemble of ideal dispersion-free states. (The latter need not be physically
realizable — just as one cannot really prepare a classical gas with precisely
determined positions and velocities for each of its molecules.) Mathe-



HAMILTONIAN SYSTEMS AND QUANTUM MECHANICS 47

matically, the hypothesis states that every state p is of the form

p(4) = f Po(4) dut () )

22

where each p,, is a dispersion-free state and y is a probability measure on
some space 2. The coordinate weQ represents, of course, the indeter-
minate ‘hidden variables’.

THEOREM. (Segal [24]). A C*-algebra W admits hidden variables in the
above sense only if W is abelian. (The corresponding physical system is then
‘classical’.)

Proof. The first step is to show that a dispersion-free state P 15 multi~
plicative. Note that the bilinear form €4, By =p,, (AB*) is a Hermitian
mmner product on W. ({4, AP =p,(A4A4*) is >0 by hypothesis. From this
it follows easily that p,, (C*)=p,, (C) for any Ce. In particular we have
(B, AY=po (BA*)=p,((AB*)*)=p, (AB*)=(4, BY.) Hence, by the
Schwarz inequality,

1o (AB)] < po(AA*)/2 o, (B*BYH?

for all 4, BeW. From this we see that if p,(44*)=0 then p, (4B)=0 for
all B. Suppose that A is self-adjoint. Then, since 2 is dispersion-free,
Po((A—py,(4) I)*)=0. Therefore, for every B, p,((4—p,(4)) B)=0.
That is, p, (4B)=p,(A4) p,, (B). This holds as well for non-self-adjoint 4
by linearity. In particular, if % is dispersion-free it follows that p,, (48)=

But if A admits hidden variables, it follows immediately from (1) that
every state p satisfies p (4B)=p (BA). Since there are enough states to
distinguish. the members of A (e.g. states of the form A A, ), it
follows that AB= BA. Thus Wis abelian. [

Remark. Conversely, a well-known theorem of Gelfand and Naimark
states that every abelian C*-algebra is isomorphic to C(X), the set of
continuous functions on some compact set X. (Many accounts of this
result are available; a very readable one is in Simmons [25].) The states
of A are simply the probability measures on X, which are convex super-
positions of the -measures at the points of X; the latter are, of course,
precisely the dispersion-free states,
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We can also dispose of a less stringent notion of hidden variables.
According to Jauch [13], Mackey has proposed the consideration of
‘e-dispersion-free’ states. A state p is called e-dispersion-free if for every
brojection EeW we have o*(E, P)<s. A system is said to admit ‘quasi-
hidden variables’ if for all £ >0, every state can be represented as [podp(w)
where all the states p, are e-dispersion-free. If 9 admits quasi-hidden
variables and p is a pure state of U, then it is easy to see that p is e-disper-
sion free for every &, Then by the argument above p must be multiplicative
onthealgebra generated by the projections in 9. This will be all of Y in many
interesting cases — in particular, if % is a von Neumann algebra (i.e. closed
in the strong operation topology). But then, because the pure states separate
elements of 21, it follows as before that 9 is abelian. (We must hasten to
add that Jauch and Mackey were considering these questions in the
context of lattices of ‘questions’ which are more general than the project-
ion lattices which we have discussed; so from the foundational point of
view the notion of quasi-hidden variables has raised problems which
our simple argument cannot handle. But see [297.)

The essential point of the argument given above was the non-existence
in general of a large supply of linear functionals on 9 which carry squares
to squares. A much deeper analysis has been carried out by Kochen and
Specker [14]; cf. also Bell [3]. They have faced squarely the fact, which
we have mentioned, that it is really not physically reasonable for the sum
of non-commuting observables always to be an observable. Drastically
reducing the algebraic operations which they allow, they nevertheless
reach the same results; their functionals are required to be linear only on
commuting observables. We shall not go into the details of thejr arguments,
for which we refer the reader to their paper, which also includes an inter~
esting discussion of the entire problem of hidden variables and various
attempts to introduce them. Finally, we mentjon some recent experimental
work in this area, centering around ‘Bell’s inequality’; the outcome argues
against the hidden variable hypothesis. See [8,12].

7. THE MEASUREMENT PROCESS

Let us now discuss the process of measurement in some detail, following
von Neumann [27]. (A clear summary of von Neumann’s ideas may be
found in the book of Nelson [20]; see also Jauch (13] and de Broglie [9].)
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Various solutions of the problems of measurement have been proposed:
cf. [4] and J. Bub’s lecture in this conference. However, it is not yet clear
that the problems have been solved.

The measurement of an observable involves the interaction of a ‘phys-
ical system’ with an ‘obsering apparatus’, so we should first describe the
mathematical treatment of such composite systems.

If the pure states of a system § correspond to the unit rays of 2, and
those of a second system S’ correspond to the rays of s/, then the pure
states of the compound system consisting of .§ and S’ correspond to the
unit rays of the tensor product'? s ®.#"'. (The tensor product of Hilbert
spaces 2 and 2’ is by definition the completion of their algebraic tensor
product with respect to the following inner product:

<Z ? ® @i, }j_: ¥ ® */f}> = ZJ; @y ‘/{f) <o ‘//D .

For example, L*(R*)®L* (R®)=L? (R). If {e;} and {f;} are orthonor-
mal bases of 22° and 2’ respectively, then {¢,® f i}: ;=118 an orthonormal
basis of #°®#".) An observable 4 of $ corresponds to the operator
A®I on A ®IF'; similarly the observable B of S’ corresponds to I® B.
It can be shown that every observable of the composite system is a func-
tion of observables of the above sort, in the sense that every bounded
operator on #° @2 is a limit of operators of the form > (4,10): (IQ B)).
A state p of the compound system determines a state of S by the relation

ps(Ad)=p(Ad®I).

Itis important to note that pg will in general be a mixture even if p is pure,
Thus, if p is given by the vector " ¢,®¢}, with {@,}, {¢}} orthogonal
systems in & and o', we have

ps(4) =3 ol <Ay, 0,5,

so that p, is given by the density matrix }" |p;|2 P,,..

Now let . be a physical system which we wish to study. Suppose that
we wish to measure an observable A4 of S. For simplicity let us assume
that 4 has a pure point spectrum, with eigenvectors ¢, ¢,, .... To measu-
re A it is necessary to allow the system S to interact with an apparatus S,
A suitable apparatus for measuring 4 will have the property that, if the
system S is initially in the state ¢,, after the interaction the composite
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system of § and S’ will be in the state ¢;®0,, where {0,} is a sequence of
orthonormal vectors in 5. The interaction, of course, is governed by the
Schrodinger equation for the composite system. Hence, if the initial
state of S’ is given by =) ° ¢;¢p;, the final state of S+.5' will be §=
=% ¥ ¢;0,®0,by linearity, Now if B is an observable of S’, then after the

interaction the expected value of B will be
{I®B)o,0>= i; les|* <BO;, 6,

so that, although S+ .5’ is in the pure state 8, S’ is in the mixed state
221 led® Py,. Similarly, S'is in the mixed state 3.2, |¢;|2 P,,,.

Now the apparatus is supposed to be of a macroscopic nature; its
orthogonal states @, represent, say, different counter readings. After the
interaction the observer ‘looks’ at the apparatus. Through his faculty of
introspection he realizes that the apparatus is in a definite state, say 0.
(This occurs with probability l¢;12.) Once this act of consciousness has
taken place it is no longer true that the state of S+.5' is >R X 0;;
it must be @; % §,. One then says that the system has been found to be in
the state ¢;. This is the famous (or notorious) ‘reduction of the wave
packet®.13

We now venture to make some philosophical remarks. It is important
to realize that analogous ‘reduction’ takes place in a classical statistical
mechanical system when new information is gained. This is never regard-
ed as a difficulty, because the classical probability packet is always
viewed as a mere reflection of the observer’s ignorance of the objective
underlying state of the system. This is a perfectly consistent interpretation.
Why can’t the same interpretation serve in the quantum mechanical case?

As long as we are concerned only with a single observable (or with a
commuting family of observables) it is perfectly possible to view the
quantum system classically. That is, one can interpret the reduction from
the mixture to the state ¢, as a reduction of classical type. But the exis-
tence of incompatible observables in quantum mechanics forces this
interpretation to break down. Indeed, the entire point of the negative
results concerning ‘hidden variables’ is that there is no ‘objective under-
lying state’ of the system!

Perhaps the quantum probability distributions can be interpreted as
reflecting our partial knowledge, as long as we do not insist that there be
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an objective entity of which we have partial knowledge. This seems
reminiscent of the problem of the golden mountain in the sentence ‘The
golden mountain does not exist’. If one asks ‘what does not exist?’ and
answers ‘the golden mountain’, one is implying that the golden mountain
is in fact an entity with some sort of ‘existence’. Some philosophers tried
to rescue the situation by stating that the golden mountain “subsists’ — that
is, has enough of a shadowy sort of existence to serve as the subject of a
sentence. Now Bertrand Russell has observed that the real solution of the
problem is to recognize that the original sentence is implicitly quantified,
and actually should be regarded as saying ‘for every x it is false that x is
both golden and mountainous’. In the absence of new physical discove-
ries, it seems not impossible that the same sort of purely grammatical
trick may be the ultimate solution of the quantum measurement problem.

Department of Mathematics,
University of California at Berkeley, San Francisico

NOTES

* Presented by J. Marsden to this conference. Partially supported by NSF Grant
GP-15735.

! This appears to require a universal Newtonian time, thereby excluding relativistic
cffects. In fact, as we shall see, general relativity can be included in this formalism.
2 In other words, the state contains complete information of the system, and the
dynamical laws are followed exactly. There is a serious philosophical point here which
is further discussed in Section 4 below.

8 We take ##° to be complex but it is not @ priori clear why it shouldn®t be real, There
are good reasons for the complex structure related to the Hamiltonian structure; cf,
{6] and [16] and related references.

4 See for example [28]. Of course a self-adjoint operator (like the position operator)
need not have any square integrable eigenfunctions. What is asserted to be of rhysical
relevance is the probability measure g4, w, which is always well defined. Of course, one
must avoid trivial ‘paradoxes’ in quantum mechanics which arise from an inadequate
understanding of the spectral theorem, or by ascribing more physical meaning (e.g.
individual trajectories) to the theory than that given by the fta,p; cf. [21].

5 For example it is not clear how {0 measure (position) ~+(momentuni) =g --p in the
Inboratory.

% See Mackey [16] for further discussion. Gleason’s theorem is proved in [26].

? See Dixmier [10] for their theory. Simmons {25] contains a very readable account
of elementary facts.

8 Unbounded operators like x, p are included via their spectral projections,

? See for example Lanford [15], p. 160. Real linearity is the main content of ‘linear’,
for complex linearity is a convention by which the state extends from the self-ndjoini
operalors to all of A, Countably additive states are called *normal’,
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10 Whenever one has a symplectic manifold 2 and a symmetry group G acting on P
once can construct another symplectic manifold, called the reduced phase' space.
Namely, let Pu=y~1(u)/Gu where y: P—®* is a ‘moment’ or energy function for
the action, ®* is the dual of the Lie algebra and G, is the isotropy group of the action
of G on B*. In the quantum mechanical case G=.51 is the quantum mechanical phase
group and w3 — R, ¢ — 4<p, »>. See Marsden-Weinstein [19] for details, _

1 One can pass to a suitable reduced phase as one can do in quantum mechanics by
dividing out the phase group. See [19].

12 The tensor product #°® # is the direct product in the category of Hilbert spaces,
just as the Cartesian product is in the category of manifolds (if P and P’ are phase
spaces for isolated systems P X P is the phase space for the interacting system). A pure
state in a composite quantum system is much more complicated than an ordered pair
of pure states of the subsystems. This fact seems related to many, if not all, of the so-
called ‘paradoxes’ of quantum theory.

18 Of course, ‘looking at the apparatus’ involves interaction with some further ap-
paratus — ultimately with the consciousness of the observer. But one can lump all that
into § and the observer’s mind into S, Nevertheless, apparently one cannot find a
mathematical device (within the framework of orthodox guantum mechanics) to yield
the reduction of pure states. This is the fundamental problem in interpreting the founda-
tions of quantum mechanics.
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