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Abstract

A new compact foram of the dynamical equations of relativity is proposed. The new form
clarifies the covariance of the equations under coordinate transformations of the space-time.
On a deeper Jevel, we obtuin new insight into the infinite-dimensionai symplectic geometry
behind the dynamical equations, the decompositions of gravitational perturbations, and the
space of gravitational degrees of freedom. Prospects for these results in studying fields cou-
pled to gravity and the quantization of gravity are outlined.

It has been over 15 vears since Arnowitt Deser, and Misner laid down the
basic formulation of Einstein’s equations as dynamical equations for an evolving
spatial universe {3]. This procedure is basic for studying the evolution equations
from a geometric point of view {i1], for estaolishing the stability of space-times
{7,13,14, 18, 20] and the positivity of their energy content {5, 8], and for ap-
proaching many other important questions.

On the other hand, there have been significant developments in Hamiltonian
mechanics and symplectic geometry (i.¢., Poisson bracket structures) during the
same period. Both classical mechanics and field theories have been successfully
put into the general context of symplectic geometry (1, 9]. From this geome-
trization and unification spring new insights and methods. Specifically, there is
now a satisfactory general procedure for eliminating the symmetries of a given
Hamiltonian system. Previously, this was welf understood in the classical litera-
ture only for commutative symmetry groups (i.e., for the relatively rare occur-
rence of first integrals in involution)} and in special cases, such as rotational sym-
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metry (see {16, 21]). This generalization for eliminating the symmetries of a
Hamiltonian system is important in relativity since its gauge group is noncom-
mutative and is infinite dimensional.

It is tempting to apply this new elimination procedure to the space of solu-
tions to Einstein's equations and therecby remove the group of coordinate trans.
formations of a space-time. The resuiting space of four-geometries is called the
space of gravitational degrees of freedom. Some important conformal representa-
tions of this space have been constructed by O’Murchadha and York {20] and
York [22, 23]. However, we desire a construction that is natural with respect to
the dynamics and wish to prove that the space is a smooth infinite-dimensional
manifold and carries a Poisson bracket structure.

[n the meantime, Moncrief [19] has published an important new decomposi-
tion of gravitational perturbations. one piece of which represents the direction
of the space of gravitational degrees of freedom. This decomposition unifies and
extends several previcus decompositions in geometry and relativity due to Berger
and Ebin [4] and Deser {10]. However, only Moncrief's formulation reveals ex-

plicitly the symplectic matrix
. [0 1

where / is the identity operator.

The above developments suugest that between these otherwise diverse
approaches some beautiful connections can be made. However. there is an im-
mediate and basic obstacle. The dynamical equations of Arnowitt et al. are not
written in a form that makes explicit use of the symplectic structure, and conse-
quently it is not clear how to use the symplectic geometry alluded to above. Part
of the problem is that the equations contain terms involving the lapse function ¥V
and the shift vector field Y. These terms are necessary because of the arbitrary
way the space-time can be sliced into space and time or, in other words, because
of the coordinate invariance of the space-time.

The remainder of the essay witl explain how the authors have solved this
problem using a new form for the evolution equations and how the solution
might be useful for tuture research.

We begin with some notation that will enable us to state the equations. Let
M be a 3-manifold and let Q be an open subset of a linear space of C™ tensor
fields of some specificd type on Af and let Q* be the space of dual tensors. For
instance, if Q consists of the symmetric covariant two-tensors ¢ = ¢;;, Q* is the
set of contravariant symmelric two-tensor densities =% If L: Q, = Q, isa
linear differential operator, L*: 33 - (27 denotes its adjoint obtained in the
usual manner by integration by parts. If 7> O, = Q. is a nonlinear differential
operator, DT (o) denotes its lincarization (= Fréchet derivative, or functional
derivative) at ¢ € Q,. so DT(9) is a lincar differential operator from Q, to Q,.
We let J denote the symplectic matrix on @ X Q * as defined above and let P =
QX @ denote the phase space.
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Lie differentiation L y ¢ of fields ¢ by vector fields X is a first-order differ-
ential operator in X. Its negative adjoint is called the flux density 4;it may be
regarded as a map of P to A}, the one form densities (dual to vector fields), and

is explicitly defined by
fx~ 5(¢.n)=-fn Lyo

Let 3(: P - C 7 (scalar densities) be a given Hamiltonian density and define
P(¢, m) = (3 (9, 7)., 4(o. 7))

For general relativity, Q is the space of Riemannian metrics g;; on M, Q* the
symmetric two tensor densities 7/, and (see {3.4, | I

H(g,m)=["-2" - §(Ten' ) - R(g)}/detgy;

where ' denotes the tensor part of 1 = 1" @ p,, - denotes contraction to scalars,
tr is trace, and R(g) is the scalar curvature. One calculates that (g, 7) = 2x,/ s
twice the covariant divergence of =.

Let us next recall the meaning of the lapse and shift functions of Wheeler
(see [17]). Let V be a space-time with a Lorentz metric (*)g. Let iy be a slicing
of V'by M;i.e., for each number A, iy is an embedding of M to a spacelike hyper-
surface of ¥ (and these embedded manifoids fill out an open set in V). The
A-derivative of i) is a vector field on V defined along the embedded hypersur-
faces. The negative of the normal and tangential components, regarded as scalar
and vector functions on M, are called the lupse N and shift X. They depend, of
course, on the slicing of the space-time and in fact characterize the slicing.

For vacuum space-times, Einstein’s equations state that the Ricci tensor of
(9)¢ vanishes. Misner et al. showed that these equations are equivalent to certain
complicated-looking evolution equations and constraint equations (see [3],

p. 236 or [17], p. 525) for the 3-metric g;; induced on M by a slicing and its cor-
responding conjugate momentum 7'/ (deiined to be ((trk)g? - k¥]\/detg,,
where k;; is the second fundamental form or extrinsic curvature of the embedded
hypersurface regarded as a two-tensor on M).

Our first main point is that these equations can in fact be written in the fol-
lowing compact way (the slicing parameter X is often denoted ¢, but it need not
be a timelike direction, so we use A):

(E) .aa_)‘_ (i) =JoDd(g, m)* (IN\,) |evolution equations]

(C) ®(g.m)=0 {constraint equations]

Computing the adjoint Dd(g, n)* (see [13]) shows that these equations are
equivalent to the Arnowitt-Deser-Misner aquations. '

This new way of writing the equations is of intrinsic interest in itself. How-
ever, we claim something more profound: We assert that equations ot the same
form also apply if there are general (nongravitational) tensor fields present (for
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example, electromagnetic or matter fields) which are nonderivatively coupled to
the gravitational field;i.e., the Hamiltonian for the nongravitational fields does
not depend on the spatial derivatives of the metric tensor nor on 7. These new
equations are

Er) = (g’ ‘:) =72 DPr((g.9), (n,n,,»*( X )

L
v

(CT) ¢‘7~((g, ¢)v (ﬂ’ "0)) =0

where ¢ represents all dynamical fields other than the metric g, 7, is the con-
jugate momentum of ¢, and Y represents all degenerate fields (other then the
lapse N and shift X') which are freely specifiable, ®1 = (Hyeiativity + Heietdss
Sretativity + dtietds, €) is the total Hamiltonian and flux density for the cou-
pled system, and Crepresents the constraints associated with the degenerate
fields {. These equations give a unified Hamiltonian formulation of general field
theories coupled to gravity! .

We shall now make a series of remarks intended to show the geometric
and analytic utility of this new formulation of Hamiltonian equations for field
theories.

First of all, the above form of the evolution equations shows explicitly how
the dynamical equations are generated by the linearized constraints, and shows
explicitly how the equations depend on the slicing. Moreover, the above form
shows explicitly the role the symplectic structure plays, i.e., the equations are
of the Hamiltonian type (see {9]) and that the symplectic structure J is indepen-
dent of the slicing.

Secondly, the form (£) allows one to see more easily relationships between
properties of the space-time and corresponding conditions on solutions of the
constraint equations. For example, the equations (E) simplify the calculations
in the proof of Moncrief’s criterion which relates linearization stability of solu-
tions of the constraint equations, and hence of the space-time, to the absence of
Killing fields on the space-time (see [13, 14, 18]). Very recently this idea has
been used by Arms to successfully analyze the linearization stability of the cou-
pled Einstein-Maxwell system.

Thirdly, the equations (£) give a unified picture of decomposition theorems
used in relativity. Moncrief's basic decomposition theorem [19] states that the
phase space can be decomposed as follows:

P=rangeJ - D®(g,w)* @ {kerncl D& (g, 7) N [kernel (DP(g, 7)o )] *}
@ {range D (g, 1)*]*
=0eQ@0

The three summands in this decomposition are shown in Figure 1 below. This
decomposition generalizes Deser’s [10] classical decomposition of tensors into
transverse-traceless and other pieces. In terms of the equations (£), each term
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orthogonal complement

to the constraint space 8dyn = space of gravitational

degrees of freedom

@3 N€; = constraint space

\J

€ (g, ) = orbit of (2, m) under
the dynamical equations
(£)

Fig. 1. Geometrical representation of the space of gravitational degrees of freedom.

in the above decomposition can be given a geometrical meaning (see Figure 1),
and the decomposition itself becomes a special case of a general fact in sym-
plectic geometry [2]. The present formulation is not merely a restatement;

it also shows us how, with no extra effort, to explicitly decompose perturbations
of general field theories coupled to gravity!

Finally, the form (£) enables us to give a representation of the space of grav-
itational degrees of freedom that is directly related to the dynamical equations.
We let @3¢ N €5 denote the space of solutions of the constraint equations (9N}
is known under what conditions ;¢ N €, is a manifold near (g, 7)€ €3 N €s.
If we identify all (g, 7) € €3¢ N €5 that are induced on all spacelike hypersur-
faces of a space-time (¥, *)g), or of an isometry class of spacetimes [(*)g], which
satisfies Einstein’s empty space field equations, we obtain a quotient space 84yn =
€3 N€;/~. The general theory of reduction of phase spaces with symmetry
(16] shows that 84, is almost always a smooth symplectic manifold. Moreover,
since coordinate transformations of the space-time yield all the different possible
slicings, €4y, represents the space of solutions of Einstein’s equations where
solutions which are related by a coordinate transformation are identified; i.e.,
with the space of gravitational degrees of freedom, or mathematically, with the
space of isometry classes of solutions 10 the empty space field equations. The
tangent space to Qdy,, is exactly the second summand in the above decomposi-
tion, showing the natural refationship of the manifolds ¢5 N €5, Sdyn =C3c N
€5/~, and the equations (£).

Similar methods of symplectic geometry can be applied to give results for
general field theories coupled to gravity. Our new formulation of these coupled
systems allows for the organization of deep theorems concemning the structure
of the spaces of degrees of freedom in a systematic and unified manner.

Future prospects for the methods described here are bright. There is every
reason to believe that a more profound understanding of fields coupled to the
purely gravitational field will result. In another direction, there is hope that it
will help clarify the quantum gravity problem as well. Admittedly, the solution
of the coordinate gauge problem is only a beginning, but its rigorous resolution
is still a significant one, for we now have a well-defined symplectic space in
which to quantize.
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It is gratifying that methods of infinite-dimensional analysis have been so
successful in recent years in the analysis of general relativity (see [4-15, 18-23]).
It is now time to seriously use the additional machinery provided by the natural
symplectic structure of the spaces involved.

Note Added in Proof. Recently, in a milestone series of papers, Kuchaf [25,
26) has shown how to construct a generalized Hamiltonian formulation for a
general Lagrangian field theory. His work provides the details of the ideal en-
visioned by Dirac (see [24] and the references therein) of constructing a dy-
namical formulation of a covariant field theory. Our work compliments his, in-
asmuch as we assume one has a Hamiltonian formulation of the system under
study and begin from there to give a compact formulation of the evolution equa-
tions and derive the consequences of this formulation.
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