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WELL-POSEDNESS OF THE EQUATIONS OF A
NON-HOMOGENEOUS PERFECT FLUID

Jerrold E. Marsden
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Abstract

The Euler equations for a non-homogeneous, non-viscous

gﬁm%ompressible fluid are shown to be well-posed for a short
time interval, using techniques of infinite dimensional

geometry and a weighted Hodge theorem.Regularity and other

properties of these solutions are pointed out as well.

1. Introduction.

In [2], D. Ebin and the author introduced a technique
for solving the Euler equations for a perfect (homogeneous,
non-viscous, incompressible) fluid based on the use of the
group E)ﬁ of Sobolev class HS(or W®'P or H3lder class
Ck+° ) volume preserving diffeomorphisms. This method

originated in an idea of V. Arnold [1].
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In the present paper we shall use similar methods to
solve the equations with the additional complication of
non-homogeneity. These equations are (on a Riemannian

manifold M ), cf. [3]:

%% Vs EEE%—E (V = covariant derivative)
ap . -
It + grad p Y 0
(1)
div v = 0

v parallel to 9M = boundary of M

where v is the velocity field of the fluid, p(x,t) > 0
is the mass density and p(x,t) is the pressure. Onrﬂﬁ§
given wv(x%,0) , p(x,0) and the problem is to find
vix,t) , plx,t) , p(x,t) satisfying (1)

The key differences with the case of constant p are:

first, (1) is a coupled system between p and v and

s
u

right invariant (as we shall see below). Therefore the

second, the corresponding equaticns on D are no longer
equations (1) are not derivable using the methods of Arnold
(ef. [1,4])), although the methods of [2] do apply when
suitably modified.

One also gets, as in (2], solutions for non-homogeneous
viscous flow (in case of manifolds with no boundary) and
strong convergence in H® or WP of the solutions to

solutions of (1) as the viscosity v > 0 .
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2. Statement of the Results.

Concerning equations (1) we have the following which

is our main result:

Theorem.

vy € wSP(TM) C

For v

Let M be a compact, c” s, N~dimensional
manifold possibly with (C") boundary, oriented
and having a (C") Riemannian metric.

Let HS(TM) [resp. WS'P(mM) , cX*®(m)]
denote the vector fields of Sobolev class H®
[resp. wS*P | pstder class Ck+a] and suppose
s > % + 1 [resp. s > % +1,k>1,0<a<1].
Similarly define HS(M) = HS(A°(M)) to be the

real valued functions of class HS .

o € HO(TM) , py € H(M) ([resp.

k*aemmy , o € WPy K]

with div Vo © 0 ‘and Vo parallel to dM ,

and

€ >0

vix,t) =

plx,t)

po(x) >0 for all % €M, there is an

and a unique solution

v (x) € HS(TM) [resp. WS'Pa) cK*®(m)]

P (x) € H(M)  [resp. W2P(M) ck*eani

of the equations (1) for -e < t < e; v and

p are at least C1 Jjointly in t,x so the

solution i8 a classical solution. The pressure

p

i8 HS+1 [resp. WS+l’p R Ck+°] . Also, the
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equations (1) define on {v,p € HS(TM) x H%(M)|div v=0 ,
v parallel to M and p(x) > 0 for all x € M}
[resp. WS P(mMIxwS Py , X" (mmyxcX* )] o
8trongly continuous (non-linear) local one
parameter group (thie domain of definition is an
open set in a Banach space).
Further, the (time dependent) flow n, of
vy is an HS {resp. wSsP R Ck+°] diffeomorphism

of M and wve have

- -1
(2) plx,t) = py(n "(x))
Further properties of the solutions to equations (1)
are as follows:

(i) (Conservation of energy): )

<v_,v.>p,. du is independent of t (where
M L A o
¥ is the measure on M )

(ii) (Conservation of angular momentum): if Y is a

vector field on M whose flow Ft is an isometry of M
(i.e., LYg = 0 where g 1is the given metric on M and
Ly is the Lie derivative), and if Po is invariant under

Ft ,» then

J <Vt’Y>pt dp  is independent of ¢t
M

(iii) (Covering Theorem): there is an H® [resp.

wSsP | Ck+a] neighborhood Uof the identity diffeomorphism
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and an H® [resp. WS°P , c¥*®Jneighborhood V of 0 in
HS(TM) [resp. WS*P(TM) , cX**(TM)] such that for n €U
there is a unique Vo € vVsuch that if n, is the flow for

the solution v, of (1) then n, =n .

t
(iv) (Variational Theorem): for U,V as in (iii),

and any curve Ct of volume preserving diffeomorphisms

joining the identity to n and ¢, € U , then

1 1l < dct -1 dCt -1 -1
o lu <Vt’vt>pt dudt < o lu I oCt » JT ° ;t >Dt ° Ct dpdt

Remarks. 1l.. In (iv) we only have minimizing among curves
in a sufficiently small H® neighborhood U . (Examples
o, Hilbert manifolds with weak Riemannian metrics are known
‘v .ch that curves of shorter length than the geodesic
curves are obtained if these curves are allowed to go
outside such a neighborhood.)

2. One can solve equations (1) if a force term
f(x,t) is added. This force ft(x) should be in HS+£(TM)
for 2 > 1 and must be divergence free and parallel to3M .
We can also allow £ = 0 although the proof is harder
(requiring appendix B of [2]).

3. All of the results (i)-(iv) are easily proved
from our methods below and the results of [2], (41, (51].

4. In [5], a priori estimates are established which
enable one to give an alternative Galerkin type proof of

existence and uniqueness for the Euler equations (see [7]
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for details). A similar situation holds here.However, the
present method has the advantage that the other properties
of the solution are obtained automatically and naturally;
these require considerably more effort using the method of
[7].This is the case,in particular, for the well-posedness.
We note that the solutions are continuous but probably not
locally Lipschitz functions of the initial data. (This is
true only in Lagrangian coordinates.)

In §3, 4 below we will outline the proof of the main
theorem. The idea is similar to that used in [2]: We
replace the problem with one of finding geodesics with
respect to a weak Riemannian metric on an infinite dimen-
sional manifold of diffeomorphisms. We stick to the ‘E;S

k+a

case, WS'P and ¢ being similar.

3. A Generalized Hodge Decomposition.

See §7 of [2]) and Chapter 7 of [6] for the usual Hodge
decomposition. We use the notations of [2].

Let ¢ € H(M) and o(x) > 0 (if s is not larger
than n/2 + 1 a Hodge theorem is also valid but we must
suppose ¢ is continuous in that case).

k*l) by

Define the operator d7: HS(A%) » B~ L(a

do(a) = d(Ua)
c

(HS(Ak) stands for the k-forms of class H® .)
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Then it is easy to see that
@2 = o

and that relative to the inner product

(a,B)o = I(a ~ %R)g

that 6 and a® are duals:
g
(a,GB)o = (4 u,B)c

A form a is called o-closed if d%a = 0 and is
o-harmonic if d%a = 0 and 6a = 0 . The notions of
(w\ballel to 93M and normal to 9M are the same as in [2].
Since there exists constants M , § > 0 , such that
§ < a(x) <M, we see that the norm of ( , )  is equiva-
lent to the usual Ho norm (with o = 1 ).

Let JCdenote the space of o-harmonic fields of class

H® . We have:

Generalized Hodge Decomposition:

Sk ofFn 1™ s+1,,k+1
(3) H(A)=d(———-——-06(Ht (A" e 1S

o o
where @ denotes direct orthogonal sum in the inner

product ( , )0 . Here H: denotes the space of HS
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forms which are normal to 8M . Also,

(ﬂi)n and (ﬂi)t are finite dimensional.

There i8 a similar result for WP and ckta

We also have the decomposition

s-1,,k-1
(1) HS (k) = g X D) g 28 (¥
where C: denotes the coclosed forms (8ca = 0)

tangent to 9dM .

The proof of this follows from the methods of [6],
Chapter 7. (The proof of the differentiability of theﬂmﬁ

members of the decomposition follows from the fact that

is closed in the u° topology on H® as is 6(Hi+l) s by

the usual Hodge theorem.) We shall omit the detailed proof.
As a corollary of decomposition (4), note that any HS

vector field X can be written X = Y + 53%?—2 where

§Y =0 , and Y is parallel to 3M .

4. Outline of the Proof of the Main Result.

We shall consider the H® case; that for Ck+a is

similar. Let &)ﬁ denote the H°® diffeomorphisms of M
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which preserve the standard volume element u . This is a

Hilbert manifold, and a topological group; right multipli-
cation is C~ . Define the following weak metric on 9;81

(X,Y)p0 = ’M <X(x),Y(x)>n(x) po(x) du(x)

where X,Y € Tn.i'Jlsj » the tangent space at n which can be
identified with H® sections of TM covering n 693 .

‘That ( , )p is smooth in n follows because the
0
metric on M is C° as in [2]. However, the metric

«, )p is not right invariant (unless o is constant).
0

Let M be the double of M and consider the manifold
HS(M,M) and the map

Z: THO(M,i) DS = HZ(M,TH) D7 + T(HS(M,TM)|9§)

defined by X+ ZoX where 2: TM » M is the spray

derived from the given metric on M . Then Z is ¢C°

Now define a map

p
p . HO(M,TH) [F + 183

P
by its action P 0 on the fiber over n ES‘SJ , as

Po
P Y(X) =R _oP ¢ R
n e
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-1
[P
where Peo is the projection of a vector field onto

its divergence free part parallel to the boundary with
respect to o = p, © n'l (in the generalized Hodge
decomposition described in §3 above) and where RnY = Yonq
is right translation by n .

p
Main Technical Lemma. P 0 Z¢ a C~ mapping.

This is proved as in [2), appendix A, with the

following modifications. We define

P -
d % uSam, 8% 195 » B 1(,AK*1) |08

by

Do°n'l
d = R, od o R

(compare [2, appendix A, lemma 2]).

=P -
Then d © isa ¢ mapping (as is 6n = Rn o § o R _1)
n
Indeed, for o € HS(M,Ak) covering n ,
p d(p, © 0™ - a o ) d(pa)
<0 _ 0 - 0
d (a) = R =
n o n~1 Po

Po

so d is smooth (by lemma 2 of [2]).
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The proof of lemma 3 of (2] does not carry over to the
present context because for one thing €/ 1) does not
consist of C elements, and depends on pgon .

However, we know from [2] that ker § and im § are
0 im 3T
subbundles in H3(M,A*)D% . Also, im 3 0 =3
0o

im d is a subbundle. Hence ([2], lemma 11)

P _p
ker d 0 is also a subbundle. Therefore, ker d QWker ¥

_p
is a subbundle since d ¢ restricted to ker & is still

_P
onto the subbundle im d 0 by the Hodge decomposition.

Therefore the analogue of lemma 3 is valid.
With these modifications, the proof of the technical

lemma is the same as [2, appendix Al.

™

Now we define the map
p
s 0: 195 » T%S
n M

by

Pg

Po Po =
s %(x) = TP %(20x) = TP Y o Z(X)

p
(where TP = tangent or derivative of P o .
p
The above lemma shows that S 0 isa ¢~ mapping;

furthermore, by a straightforward modification of the proof

0

P
in {2, 811], we find that S is the spray associated

to the weak metric ( , )p .
0
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0 has (unique)

[
It follows immediately that S
integral curves u, € Taﬁ for any initial conditions

(= S
ug TnéDu .

To prove the theorem, let ut be the integral curve
on Tﬂz with ug covering the identity and ug = vy -

Let

where u_ €T 9% so n_ is the time dependent flow of
t nt u t
the vector field Vi s and Ng = identity.
Also let (cf. equation (2))

_ -1
Dt(x) = Pg o Ny (%)

We claim that Vi Py satisfy equations (1) (conversely

given vt,p we get nt and hence u, so solutions are

t
unique; cf. [2, §15]). The result will follow from this.
By the same proof as [2, theorem 14.4] and the fact
-1
0000
that Pe is the identity on the divergence free

vector fields, we have

-1
dav p.on
t . 0 't
= ° P ‘Vvt ved
P
- _pt
= -P, (vvt v,)
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grad o
= -V v+—L‘t

v t pt

by the generalized Hodge decomposition. This is the
equation for Vo if we set Py = PyBy - That for o
is seen as follows: Since

t

dn
_ -1 t -1
at "t =TT o gE o N,

and —= = u, (as S 1is a spray), we have

a . S

3t Pt = ~deg - Ty Ve
) -1, |
= -d(p0 ° n, ) vy
= -d(pt) T vy

where we have used the chain rule. This establishes the

equation for and completes the proof.

Py

5. Regularity of Solutions.

Because we do not have right invariance on .‘Di » the

regularity theorem ([2, theorem 12.1]), which states in
particular that if Vo is ¢” , SO is v, on the interior

of M as long as v is defined in H® , is not immediate

t
in this case. Nevertheless, the result is still true for

o ec” .
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Indeed, an examination of the above proof shows that
p .
s ? depends in a c¢® fashion on Py * The associated

exponential map
p
=0, s s
E “: tﬂu —leu

therefore also depends smoothly on Py * 1f g Ei)ﬁ we

have

(X,Y)po = (XOE,Yog)po o §

in place of right invariance. It follows that

~Pg°& ~P ’a\)

> (X-E) = E 0 (X)ok

If X and Py are c” s the left side is smooth in & ,
(by the composition lemmas {2, §2]) so the right side is
also. Now the argument in theorem 12.1 of [2] applies
to yield the result.

Regularity, including at the boundary, can also be

proved by the methods of [5].

6. @Global Regularity.

It is amusing to note that while global (in time)
regular solutions exist for Euler's equations in two

dimensions (the Wolibner-Judovich-Kato theorem), this
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problem remains open for non-homogenous flow in two

dimensions, and may well be false. The key fact used
in the proof of Wolibner's theorem is conservation of
vorticity (Kelvin's circulation theorem). That result

is not true for inhomogeneous fluids.
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