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Abstract. We consider Cauchy data (g, ) on IR® that are asymptotically
Euclidean and that satisfy the vacuum constraint equations of general relativity.
Only those (g, m) are treated that can be joined by a curve of “sufficiently
bounded” initial data to the trivial data (6, 0). It is shown that in the Cauchy
developments of such data, the maximal slicing condition trz=0 can always
be satisfied. The proof uses the recently introduced “weighted Sobolev spaces”
of Nirenberg, Walker, and Cantor.

Consider the set € of spacetimes which are the Cauchy developments of
initial data (g, n) on R* which are asymptotically Euclidean and which satisfy
the constraint equations [see (3) and (4) below] in the dynamical formulation of
general relativity [1]. In 1968, Brill and Deser [2] conjectured that one can
maximally slice any such spacetime, i.e. one can find spacelike hypersurfaces
on which trr=0. In a Hamiltonian analysis of general relativity trz assumes
the role of a gauge variable (see for example [12]) and so one would expect that
the trr=0 condition can be met in any such spacetime. Here we prove that the
Brill-Deser conjecture is true.

We consider only those (g, 7) which can be joined by a curve of “sufficiently
bounded” initial data (to be explained later) to flat space (3, 0). Thus we are
considering the component %, of (5,0) in the set of asymptotically Euclidean
solutions of the constraint equations. €, is restricted to those 3-metrics which
are derived from Lorentz metrics on IR* that are near the “background” Minowski
metric. The set €, is discussed in [7-11].
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In her note [6]. Choquet-Bruhat proves a theorem for spacetimes with compagy
spacelike hypersurfaces which is similar to our step 2 below. She also notes her
proof extends to yield the local result for spacetimes with noncompact spacelike
hypersurfaces. The authors became aware of [6] after the present work was
completed. R L . RN

We shall prove: L e : '
Theorem. Let (g, x)e%,. Then in the Cauchy development of (g, %) there i5'a slice
on which the trace of the second fundamental form is zero. (Recall thar: this éntaijls
trr=0). : L

There is a similar theorem for the component of € containing any given
(9. ™ with trz=0 or in the case of compact hypersurfaces, tra/p,= constant
{sce [6] and [12]) The constant depends on the hypersurface, This theorem is
proven similarly to the one in this paper.

The proof requires the use of the weighted Sobolev spaces M2, introduced
in [3]. For compact hypersurfaces, the usual Sobolev spaces W*? will do, as
in[9). . . . .
Definition. Let o(x)=(1+|x]*)'%, For 1£pSw, s a nonnegative integer, and
o€RR, let MZ (R", R be thc completion of CP(R", R9) with respect to the norm

Mews= X D fN)a**1,,).
lizs

The elementary properties of these spaces arc discussed in [3.4]. .
The important technical result for this paper is

Lemma 1. [S). Let n>m and A_ = "E. d,D" be un elliptic homogeneous operator
on R". Suppose we have an elliptic operator A= Y ax)D* on R* satisfying
Jorszm, é.e C " and ' Ham '
. -suplbh,(x))-o"‘"""l<m Jor |al<m
and ) )
lim sup|DXa(x)-a)e"|<c  for la|=m

and [y|Ss—m. Then if p> nfin—m) und 0Sd<—m+up—-1)p andcis sufficiently
small, A is an isomorphism between M? , and M brm

Remark. The smoothness condition of the a, may be relaxed by takihg completions
in the appropriate Banach space of linear operators. This fact is used implicitly
below. :

We shall apply Lemma 1 where A is the Laplacian with respect to some

asymptotically flat metric on R®. Thus n=3 and m=2. We assume p and § are

"~ as in the thcorem and s> n/p+2. The (g, n) we shall consider will be of the form

g=06+h with he M? , and xe M?. 1.9+ 1 (see [8]). All norms are taken with respect

to the flat background metric. Note that for g€%, these norms are equivalent

to those induced by g. Note we may take trre M. 542 The topology on the
space of initial data is given by the M?, norms. ,
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Muimal Slicings

The required slicing will be determined by a lapse function N(Z, x)=(—g°%)~ 12,
Letting the shif vector gy, =X (4, x)=0, the Einstein. Equations read (here n
isadensity): - -

g/E)=2N(r~ } (trm)g) (1/,)= — 2Nk (1
fr/éd= — N(Ricly)~ } Riglgu, + § N(n-n— }(irx))/p,
~2N(zxx— § (trmm)/p, + (Hess N — gV Ny, 2
H(g. R)=(r-n~ § (trn)*)pe, - Rigly, =0 &)
é,n=0 @
and using p=tra/p,=2 trk, we find from the above cquations that .
p/Ci=2Ak-k—VH)N . (5)

Step. 1. If p=0 for some i, we may choose an N such that p is zero for all A (for
which the dynamics is defincd).

Proof. Writing N=1+N (so that N is close 10 0 when N is close to 1), we find
plih=2k-k+ Ak -k - FON . -

Thus the equation @p/é7=0 may be solved using Lemma 1 for A'I}A)EM{.,.,,
for each /. Thus for this choice of N=1+N in the dynamics the condition p=0
will be maintained. [

In what follows we show that whaiever p equals at A=Q we may achieve
p=0 at =1 by choosing a suitable N. Throughout, we shall take N/ =0.

Step 2. (Local Argument). Let (90, ®o)e €, and suppose trny=0. Then there is a
neighborhood V of (g,,. Ro) such that if (g, 7)e V then there is°an Ne.#?,, ,
Such that p=0at 2=1. (By a suitable choice of scale, we may assume A=1 will be

teached by the dynamics.)

Proof Let F=@ox.#2, , (R IR)~ M{_, 44 (R R) be defined (on a suitable
open set) by

F((g, =), N)= {the function p at 4=1 determined by Equations (1), (2), 5)}.

Then using smoothness properties of the evolution equations (see [8]), F is

: :,rr}ooth mapping The derivative with respect to N at {(go 1) 0) in the direction
is

47 ) ’ ‘ )

DuF(ge i 0)-8N = ([ hotd-kod) = Pida) 6N ®
;Vherc ko{d) is the évoluﬁon of k; for the éiven @0s 7o) and P} is the Laplacian
orgod). - : v .. ‘

Since we are only considering functions that are independent of 2, it follows
Sasily from Lemma 1 that the operator (6) is an isomorphism (ses also [9]).

us by the implicit function theorem we can uniquely solve F((g, n), N)=0
N(g, 1) near 0 and (9. ) near (go, 7o) This proves step2. O
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Slep3 ( Globalization). Let (g,. xo) be jomed to (g. n) beacontmuous cm‘ve (g(a). u(a))
in €, 2 [0, 1]. Let J be the set of « for which the rwulnns space umcbasa maximal
slice. Then Oe J and step 2 shows that J is open. We can always wprk in-a neigh-
borhood of the curve (g(a), n{a)) so that the evolunon umw used in step 2. mn
be chosen to be uniform along the curve.

To show J is closed, let a,,eJ and &, —a. Let N, be the uruquc lapse l'unctwns
given by step 2 In order to demonstrate that 72 remains uniformly elliptic and
the slices “uniformly spacelike”, we may take a sequence of coordinate trans-
formations f, on the slices S, chosen so as to keep the eigenvalues of g,, (relative
to the flat background metric) bounded away from zero. Since ko(m) remains
uniformly bounded and F2 remains uniformly elliptic for &,, n— o, the N,, will
converge to a function N. This N is the required zero of F.

Thus J=[0, 1] and our proof is complete. []

Note Added in Proof. The hypotheses of Lemma 1 should include that a, is nen-positive. In our ap-
] .

plication. ag = — § kq(4)-ko{1}di 50. -
a
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