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this way to your examples you generally assumed a Hilbert space L*(R™). In field theory
one has a Fo_ck space, whigh is a Hilbert space, but not of the above form. But I suppose
that the particular form L (R™) is not necessary for most of the discussion — is this so ?

- Pr Marsden — Yes. For example, in the Hamiltonian formulation of fluid mecha-
nics the spaces W% = L, are very useful.
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RESUME

Dans cet article, nous examinons en quel sens la linéarisation d’un systéme d’équations
aux dérivées partielles non linéaire approche le systéme complet. Nous appliquons ces
idées a I’étude des déformations de [I’équation de courbure scalaire et des équations
d’Einstein en relativité générale, ainsi qu’d I’étude des ensembles de métriques rieman-
niennes a courbure scalaire donnée. On montre que ces systémes sont linéairement
stables sous des hypothéses trés générales : nous étudions aussi les cas exceptionnels d’ins-
tabilité linéaire.

ABSTRACT

In this article we examine in what sense the linearization of a system of nonlinear
partial differential equations approximates the full nonlinear system. These ideas are applied
to study the deformations of the scalar curvature equation and Einstein’s equations of gene-
ral relativity, as well as the set of metrics wirth prescribed scalar curvature. We show that
these systems are linearization stable under general hypotheses ; in the exceptional cases of
instability, we study the isolation of solutions.

0 — INTRODUCTION
Let M be a compact manifold, let X and Y be Banach manifolds of
maps over M, such as spaces of tensor fields on M and let
. XY

be a non-linear differential operator between X and Y ; we assume @ itself is
a differentiable map. Thus for given y, €Y,
@ (x) =y, (D

as an equation for x € X, is a system of partial differential equations. If
Xo € X is a solution to (1), we will say that a differentiable curve x (A),
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A <8, 8§ >0, of solutions to (1), d(x (X)) = y,, with x(0) = X, is a
finite deformation of x,.

To each solution x, € X of (1), we let
TP (x,)h =0, hETXOX 2)

(T® is the tangent, or derivative, of ® and TXOX is the tangent space to X
at x,), dencte the associated system of linearized equations about x,.

A solution h € TXOX of (2) is an infinitesimal deformation of x,.

Clearly the tangent 7 = x'(0) at x, of every finite deformation x (A) is an
infinitesimal deformation. We now ask the converse question :

When is every infinitesimal deformation of x, actually tangent to a
finite deformation ?

When the answer is affirmative, we say that the equations (1) are linea-
rization stable at x, ; otherwise the equations are linearization unstable.
From the implicit function theorem, linearization stability at x, will hold
if T®(x,) is surjective and its kernel has a closed complement.

In the following sections, we study the linearization stability and ins-
tability of the scalar curvature equation of riemannian geometry (part I) and
of the Einstein empty space field equations of general relativity (part II).
The relationship between these systems is remarked on in II-1 and II-4.

PART I — DEFORMATIONS OF THE SCALAR CURVATURE EQUATION

1-1. The Submanifold of Riemannian Metrics with Prescribed Scalar Cur-
vature

Let M denote a fixed smooth (C”) compact connected oriented #-
manifold, n = 2. Let U denote the space of smooth riemannian metrics
on M, S, the space of smooth 2-covariant symmetric tensor fields on M,
and C* = C” (M ; R) the smooth real valued functions on M. For g € oI,
let R(g) € C* denote the scalar curvature of g, and consider the “scalar
curvature map”’

R():M -~ C”, g+ Rig

as a non-linear second order differential operator. A somewhat remarkable
property of R(-) is that, locally, it is almost always a surjection :

I-1.1. Theorem (Bourguignon-Fischer-Marsden) — Let g € M and suppose
that either

a) R(g) is not a constant = 0, or

333

b) if R(g) = 0, then Ric(g) #£ 0 (Ric(g) €S, is the Ricci tensor of

g) _
Then R (-) maps any neighborhood of g onto a neighborhood of R(g).

Sketch of Proof -

First we enlarge T to the space N of riemannian metr'ics of Sobolev
class HS, s > n/2 + 1 (see Ebin [3] for a description of 't‘hls space), ansd
consider R(:) : I — HS™2 0% is an open set in the Hilbert space .S?,
the space of H® 2-covariant symmetric tensor fields on M, so by the HT.lpll.Clt
function theorem it suffices for these H® spaces to show that the derivative

-2 o s—2
v, = DR(g) : Tgdl® = 87 = Te "~ H

is surjective for g which satisfies condition () or (b). A classical computation
given for example in Lichnerowicz [13] gives

Y (1) = Atch + 88k — h- Ric(g)

.. b . .

where tr i = g”hu' is the trace of b, Atr h = — g° (Fr }?)lalb is the Laplacian

of g (here a vertical bar denotes covariant differentiation with respect to g),

56h = g g"Phy i = he, is the double covariant divergence, and h.
i/l . .

Ric(g) = h‘”’Rab is the pointwise contraction of 4 and Ric(g).

From ‘elliptic theory (see e.g. Berger-Ebin [1]), v, is surjective if the
L, adjoint
y¥ o HS e SS72 . fr gAf+ Hessf—fRiclg),
g
(where Hess f= f“-” is the Hessian of f) is injective and has injective sym-

NN x

bol. v* clearly has injective symbol ; to show v, is injective let f € kery, so
Tig

that

gAf+ Hess f — fRic(g) = 0 (1.1)
Taking the trace and the divergence of 1.1 yields
(n—1Af=R(@f (1.2)
and
fd(R(g)H =0 (1.3)

If R(g)=10, (1.2) implies f = constant so from (1.1} f Ric(g) = O implies
f = 0 since Ric(g) # Q.

IfR(gEO,f#0,and f_l(O) = ¢, then 1.3 implies .R (2) =_1C =c_i)ns-
tant. Integrating 1.2 then gives Cff du, = 0 and since f~'(0) = 0,
C=R(g =0

IfR(g)£0,f # 0,and f1(0) # 6, and if x, € £7*(0), then df (x,) # O
follows from 1.1 and 1.2. Thus fﬂl(O) is an n — 1 dimensional submanifold
ans so d(R(g)) =0 on an open dense set and hence everywhere. Thus
R (g) = constant and from 1.2, R(g) = constant > 0.
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The C™ case requires some additional arguments. One needs to show
the the image neighborhood of R (g) can be choosen independent of s ; this
is possible because one can construct local right inverses for R (-) by maps in-
dependant of s. The idea is similiar to one occuring in Ebin [6] and works
quite generally when we have L, orthogonal splittings for elliptic operators.

Note . We thank J.P. Bourguignon for pointing out that v*7=(

f# 0 implies R(g) = constant. Previ iti o )

‘ p g ant. Previously we had condition (a) replaced
with the condition R(g) < 0.

Remark : If Ric(g) = 0, ker 7; = {constant functions on M}, and if
(M, g) is isometric to S” with. the metric 8o of a standard sphere of radius
ro in R™™ | then ker 7;‘ = {eigen functions of A}. We conjecture that these
are the only cases for which Yy Is not surjective.

For g, € L, let p = R(g,) and let
M, ={g €M : R(g) = p},

denote the set of riemannian metrics with prescribed scalar curvature p.
We consider the following conditions on M, g, and p :

a) dimM =2
A { b)dimM >3 and p is not a constant = 0

, ¢) dimM > 3,‘ p =0 and Ric(g,) #0 (Note. If dimM = 3,
Ric(gy) =0 = g, is not'flat).

?—I.2. Theorem — Ler & €, p = R(gy), and JTCp ={g € R(g) = p}
if Aa) or A(b) hold, then JIZD is @ smooth closed submanifold of M. If
A (c) holds, then IR, is a smooth submanifold in a neighborhood of g, .

Sketch of Proof :

If A(b) or A(c) holds, the theorem follows from surjectivity of Yoo the

implicit function theorem, and a regularity argument similiar to that in
I-1.1.

If dim M = 2, we need only consider the case p = constant > 0 since

otherwise Y, Is surjective. If p = constant > 0, (M, g,)is C” isometric to
2 172

a standard 2-sphere S* in R*® of radius o =<:> . Thus
P

Jrcp = 680 = W(g,) ={gecat : g = v¥g, €@}

whe're @® = Diff (M) is the group of smooth diffeomorphism of M, and
ng is the orbit of g,. By [6], I, = 680 is then a smooth closed submani-
fold of T
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If p=0, M=T? and 0L, =%, the set of smooth tlat riemannian
metrics on T?. From [9], & is a smooth closed submanifold of JNT.

Remark : If dim M 2 3 and p = 0, then under the hypothesis that
i+ ¢, M, is also a smooth submanifold of IT (see 1.3).

J. Kazdan and F. Warner (see [12] and the references there in) study
the equation R(g) = p by considering metrics which are conformally equi-
valent to g. Their interest in this equation is to find which functions
are the scalar curvature of some metric rather than the structure of the
space JIC, and so is somewhat complementary to our considerations.

1.2. Linearization Stability of R(g) = p

As another application of L.1.1, we have the following result concer-
ning the linearization stability of R(g) = p.

1.2.1. Theorem — Let g, € OIC and let p = R(g,). Assume that one of the
conditions of (A) hold. Then the equation R(g) = p is linearization stable
about g, ;ie for any h € S, satisfying the linearized equation.

DR(g,)-h = Atrh + 86h — h - Ric(g,) = 0

There exists a C* curve g(\) € M such that g(0) = g,, g (0) = h, and
R{g\) = p.

Sketch of Proof :
Under conditions A(d) and A(c), ker Yoo TgOOTCp (which implies
linearization stability) follows from surjectivity of Yeo and similiarly of

dimM = 2 and p isnot a constant = 0. If dim M = 2 and p = constant 2 0,
then Yeo is definitely not surjective. However, an analysis of the symmetric

2-tensors on a flat 2-torus and a standard 2-sphere shows that even in these
cases kery, = T, JIC .
0 g P

Remark : Linearization stability does not follow from the manifold
structure of the level set OTCp alone ; one needs more, viz. ker Yoo = Tg0 GTZp .
As a finite dimensional example of the type of pathology that might develop,
consider

®: R~ R, (x,y)= xx*+y?)

Then & '(0) = Y-axis, a submanifold, but since the origin is a critical

point for ¢,
d®0,0)-(h,,h,) =0

for all (h,,h,) € R?. However, if h, # 0 the infinitesimal deformation
(h;, h,) is not tangent to any finite deformation).
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Here the difficulty can be based to the fact that
Tio,0)(Y-axis) = R # ker d® (0, 0) = R

so that there are non-integrable infinitesimal deformations.

By extending the analysis of the map R () to second order one can
also prove the following linearization instability result ([9]).

1.1.2. Theorem — Let dim M > 3, g, € IR, R(g,) = p and suppose that
either
a) Ric(gy) =0
b) M, g,) is isometric to a standared n-sphere in R of radius
n{n — 1)\!/? . .
Fy = (——) . Then R(g) = p is linearization unstable aboutg,.
D

Thus the question of linearization stability or instability of R(g) = p

remains open only if dim M = 3, p = constant > 0, and (M, g, ) is not iso-
1/2

. . nin—1)
metric to a standard n-sphere of radius r, = (%)
P

1.3. Isolated solution of R(g) = 0 and the manifold of metrics with zero
scalar curvature

When R(g,) = 0 we have seen from I.1.]. that Yeo is surjective iff

Ric (glo) £ 0, and in dim M > 3, the lack of surjectivity 0f7g0 leads to Ii-
nearization instability of
R(g)=0 (3.1)

at g,. Moreover, if g, = g,- €% is a flat solution of 3.1, then we assert that
there are no non-flat solutions which are near g,.. Thus the flat metrics are
an isolated set of solutions to 3.1. This result is somewhat surprising in
view of the fact that the scalar curvature is a relatively weak mesure of the
curvature.

[.3.1. Theorem — Let g,. € &. Then there exists a neighborhood UgF cCMm
of gy such that if g € UgF and R(g) =0, then g is also in .
Sketch of Proof ([9]):

Let a’,ugF denote the volume element of g, and define

M > R, ngR(g)d,ugF.

Then the critical points of ® are those metrics g € & such that du, = ca'pgF

for some constant ¢ > 0. At the critical point g. the second derivative of
¢ is given by
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1 1
d*®(gy) - (h, h) = — 5 f(v/z)zdygb‘ -3 f(d trh)duy  + f(&h)zdng

Let S be a slice at gp (see [6] for the definition of a slice), and let
<I>S = &|S. Since TgFS ={h €S, :8h =0}

1 1
d2¢s(gp) A, ) =— B f(Vh)Zd}JgF 3 f(d trhz)dug}7

Thus d”®g(gg)- (h, 1) <O for all €T, S, and d*®s(gp)(h, h) =0
implies vi = 0.

It follows that there exists a neighborhood V C S of gy such that
¢, <0 on Vandif g€V and $5(g) = 0, then g is flat.

Now let U= @ (V) ={50;‘ € : pE®, g€ V) By Ebin’s Slice
Theorem [6], U fills out a neighborhood of g¢. Thus if g € U, R(g) = 0,
there exists a ¢ € ® such that gp; € V.

Thus CDS(up;) = fR(ap;)dng =JR(g)e spdugF 2 (0 and since &5 < O,
on V, &g (\0;) = 0 implies gp;,“ is flat. Thus g is also flat.

Using 1.3.1, we can now study the set JIC, ={g € AT : R(g) = O}
Let&, ={g € O : Ric(g) = 0}, the set of Ricci flat metrics. It is not known
if there exist any non-flat Ricci flat metrics on a compact M. However, if
F+0Q, theng, = F [11].

1.3.2. Theorem — Assume that & # (. Then
My =@, —F).UF

is the disjoint union of smooth closed submanifolds of N, hence I, is
itself a smooth closed submanifold.

Proof : From 1.1.2, M — &, is a smooth submanifold of M. If & # @,
&, =&, which is also a smooth closed submanifold of 3. Thus

My = (O, —F)U F

is the union of smooth submanifolds of A, & closed. From 1.3.1,9 , — &
is also closed.

Remark : If dimM = 2, M, = F, and if dim M = 3,8, = & so that in
these dimensions we can drop the hypothesis that § # §. Note also that we
are allowing the possibility that 91, — & is empty.

Although 1T, is a submanifold (under the hypothesis that & % ?), in
dim M 2 3, R(g) = 0 is not linearization stable at a flat solution g . This
“difficulty” is a consequence of the fact that ker Yep is larger than

TgFJTZO = TgFé%T since the components of 91, have different “dimensionali-
ties”.

22
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PART Il — LINEARIZATION STABILITY OF THE EINSTEIN EMPTY
SPACE FIELD EQUATIONS

11.1. The Einstein equations as a Hamiltonian system

We now consider the Einstein empty space field equations of general
relativity as a system of non-linear evolution equations. The problem of
linearization stability for an evolution equation is interesting only when
there are some non-linear constraints on the initial data of the form
®(x) = ¥,, as in the introduction. Then linearization stability of ® implies
that the evolution equation is also linearization stable (see I1I.2).

Other approches to the problem of linearization stability of the
Einstein equations are given by Brill and Deser [2], Choquet-Bruhat and
Deser [3] and O’Murchadha and York [14].

Let (4)g be a smooth Lorentz metric of signature —+++ on a 4-
manifold V. The Einstein empty space field equations are that the Ricci
tensor of mg vanish :

Ric(¥g) = 0

These equations can be converted to a Hamiltonian system as follows :
Let M denote a spacelike hypersurface of (V (4)g) and let g be the induced
riemannian metric on M and k the second fundamental form of the embed-
ded hypersurface M. Assume that M is compact, and let JIC be the space of
smooth riemannian metrics on M as before, T~ xS, its tangent
bundle, and for g € I, T;J]‘L =5 ® Mg, the space of 2-contravariant
symmetric tensor densities (we are using Mg and a’ug interchangeable for the
volume element induced by g). Let T*JIL = U T;‘OTZ denote the ‘“‘co-
tangent bundle” of I geMm

Here we are taking the dual in the L, inner product butuse only the
closed subspace of such elements continuous in the C” topology, so the
dual of S, is S* ® .

We introduce the De Witt “weak” metric on 9T (see [7]) by
8,0, k)= [ Uk — i) dy,

for kK € TgdL =~ S,. The “momentum” conjugate to the “‘velocity” k is
then given by :
G0 LT, M - T,*N, k= Gl =(k—(rk)gp, =

with inverse

1
Qj cT* g = Tgdit , 7+ ﬂ’—a(trrr')g

where 7' is the “tensor part” of m ;7 =7 ® y,.
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We define a hamiltonian on T*J as follows :

1
H: TR = R, (g,m = 5 8 (§/m . §7(m) — [ R(e)dy,

= [ 7 =S - R@)d,
= f5‘€(g, ™) du,

1
Where 8€ (g, 7) = (w' == (tr ) — R(g)) dp, is the hamiltonian
density. 2
Using the canonical (weak) symplectic structure on T*JT, (see the
article of Chernoff-Marsden in these proceedings) Hamilton’s equations are
then the evolution equations :

og ) 1(t N
— =7 ——(trm
ot 2 £
(E)
om , , , ) 1
— = x7)u, —(tra)m —2Ric+ —R(g)g
Tt & 2

(where 7' x 7' = (ﬂ')ik(n'){; is the “‘cross-product” of symmetric tensors)
with initial conditions g(0) = g,, m(0) = m,. Remarkably, these evolution
equations correspond to six of the equations of Ric (“g) = 0 in Gaussian
normal coordinates originating on M. The remaining four equations are
the conditions that every spacelike hypersurface in a Ricci-flat Lorentz ma-
nifold must satisfy, viz.

1
(g, m = <7r’-7r' — = (tr')* — R(g)) pe =0
2
(©)
8(g,7r)=8g7r=()

These equations are thus constraints on the initial date (g,, m,). We shall
refer to # (g, m) = 0 as the hamiltonian constraint and 6, m = 0 as the
divergence constraint.

The relationship between the equations (E), (C) and Ric((4)g)=0
can be summarized as follows :

If M is a spacelike hypersurface of a Ricci-flat spacetime (4)g, then the
induced (g, m) satisfy (C) and if {M} is slicing of V by geodesically parallel
hypersurfaces (Gaussian coordinates), then the induced (g, ,7,) on M, sa-
tisfy (E). Conversely, by means of the existence theory for the evolution equa-
tions (E) [5], every solution (g ,m) which satisfies the constraint equations
(C) generater a Ricci-flat spacetime in a tubular neighborhood of M.
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The presence of R (g) in the Hamilfonian constraint is the reason parts
I and II of this paper are closely related. In fact the same methods of I can
be used to analyze the linearization stability of the equations (C).

11.2. The main idea for the proof of linearization stability

Those (g, 7) which satisfy the constraint equations may be regarded as
a certain subset € of T*JIT, We will, according to our general method, show
that in a neighborhood of points (g, m) € € that satisfy certain conditions,
€ is a smooth submanifold of T*M with tangent space T @ = (ker D&
(g,m) ker D 6(g, m)). This we do in I1.3.

Thus if (7, w) € T, (T *IM) = S, x (S? ®H,) is a solution to
the linearized constraint equations

D¥Eg,m - (h,w)=0 (2.1)
Da(gaﬂ)'(h;w):o (2-2)

(g,m

(h,w)eE (kerDF (g, m), ker Dé(g, 7)) = T,m© and so is tangent to €.
Thus there exists-a curve (g(A), () € € with (g(0), 7(0) = (g, m) and
(g'(0), 7' (0) = (h , w).

Now suppose (4)g is a solution to the empty space equations
Ric (Wg) = 0.
We let :
D Ric (Wg) : S,(V) = S,(V)

denote the derivative of the map Ric(-) : {Lorentz metrics on V} > S,(V)
at (4)g ; the linearized Einstein equations are then

D Ric (Wg) - Wp =10 (2.3)

for Wp € S, (V). A solution @y of 2.3 is then an infinitesimal deformation
of g,

Now, if Wg is Ricci-flat and M is a spacelike hypersurface, then (4)g
induces a solution (g, m) to the constraint equations on M, and if M, is a
Gaussian normal slicing, (4)g induces a solution (g (¢), m(#)) to the evolution
equations (E).

Now suppose P4 is an infinitesimal deformation of Yg. Then g

induces a solution (%, w) to the linearized constraint equations 2.1, 2.2
about (g,w) on M, and also a solution (h(f), w(f)) to the linearized
evolution equations about the solution (g (), m(¢)).

If (g, m) satisfies certain conditions, then there exists a curve (g(A\),
7 (A)) = € tangent to (h, w) at (g, ). From the existence theory of the
evolution equations, each of these solutions (g (M), @ (\)) to the constraint
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equations generates a flow (g(A, 1), w(A,£)) to the evolution equations
which pieces together to form a Ricci-flat Lorentz metric (4)g (A) in a tubular
neighborhood V' of M. This curve (4)g (M) of Lorentz metrics, after possible
adjustment by a curve Y (\) : V' = V' of diffeomorphisms of V', is
tangent to Y.

11.3. The constraini submanifolds
Let Cpe = 57 (0) = {(g,m E T : Je (g, 7)
S, =610 ={(g,mE T - 8gw

0}, and
0},

the solution sets to the Hamiltonian and divergence constraints respectively.

The following theorems are proved by methods similar to those in
I.1.2. an 1.2.1.

[1.3.1. Theorem : Let (g,,m,) <= ANL. Then the equation 3€ (g ,m)=0is
linearization stable at (g, ,m,) iff the following condition holds

Cp: (8y, Ty EF x {0}

If condition C, is satisfied, then @, is a smooth submanifold in a neighbor-
hood of (g, , Ty)-

Remark : Since dim M = 3, & = &, without the assumption of & # Q.
Note also that the kinetic terms in # (g , 7) involving 7 help us in thesense

that € (g, m) = 0 is linearization stable at a (g, 7)), g €F, 7# 0 ;
whereas the equation R(g) = 0 is not linearization stable at gg.

11.3.2. Theorem : Let (g,,m,) € C;. Then the equation §(g ,m) = 0 is
linearization stable at (g, , w,) iff the following condition is satisfied

Cs . if Lygo=0and Ly my =0, then X =0 ; here Ly denotes
Lie differentiation with respect to the vector field X. If condition Cy is sa-
tisfied, then C; is a smooth submanifold in a neighborhood of (g, , 7).

As in 1.3, & x {0} is also a submanifold of T*OIC.
Thus
Ca= (Cpe— (Fx {0}) U (F x {0})
is the disjoint union of submanifolds. However, because of the kinetic terms

in #¢(g, ), 5 x {0} is not an isolated set of solutions to the hamiltonian
constraint. In fact, we have :

[1.3.3 : Theorem : Let (gg, 0) = F x {0} Then in every neighborhood

U, o CT"

(&g,
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of (gp, 0), there exists a (g, m) € U(gl_-,()) such that (g , m) = 0, 6g7r =0,
but (g, m &3 x {0}.

As a consequence of 1.3.3., €4 — (¥ x {0}) is not closed so that Cu
itself need not be a submanifold. Moreover, since the divergence constraint
does not have any isolated solutions, we can conclude that : There are no
isolated solutions to the empty Space constraint equations of general rela-
Hyity.

In order to insure that € =C, N €; is a submanifold at those
(g, m which satisfy Cgz and C;, we need the additional assumption that
tr #' = constant.

I11.3.4. Theorem : Let (g,,m,) € € satisfy conditions Cg, Cy, and tr:
m, = constant. Then € is a smooth submanifold in a neighborhood of
(go , My) with tangent space T(g, , my) C = (ker @ F (g, , 7y), ker Dé(g,, 7))
thus the equations8€ (g, m) = 0, 8 (g, ) = O are simultaneously lineariza-
tion stable at (g, , 7).

The above is proved by showing that the intersection Cu N C; is
transversal in a neighborhood of those (g, 7) that satisfy the above condi-
tions. We do not know if the tr o' = constant condition is necessary ;
indeed it would be an important result if this condition could be dropped.

11.4. Integration infinitesimal deformations of the Einstein equations

As explained in I1.2, we can use theorem II.3.4 to prove that the
FEinstein equations are linearization stable about a solution (4)g which
satisfies certain mild conditions.

II.4.1. Theorem : Let ((4)g , V) be a smooth Lorentz Ricci-flat manifold,
and let Ph € S, (V) be an infinitesimal deformation of (4)g,
D Ric (Mg . Wy = 0.

Assume that V has a compact connected oriented spacelike hypersur-
face M with induced riemannian metric g, second fundamental form k, and
momentum m™ = (kK — (tr k) g) Mg which satisfy the conditions

a) (g, m ¢ x {0}
b IfLyg=0and Lynm =0, then X =0
¢) tr @ = constant.

Then there exists a tubular neighborhood V' C V of M and a smooth
curve (4)g (\) of Ricci-flat Lorentz metrics on V' such that (4)g(()) = (4)g r v
and Wg'0) = Dn.r v,
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Thus under certain weak conditions on the background solution (4)g and
in a tubular neighborhood of M, a solution of the linearized Finstein equa-
tions actually approximates to first order a curve of exact solutions to the
non-linear equations. Because these conditions are so weak, presumably
any spacetime which has compact spacelike hypersurfaces has a hypersur-
face M satisfying these conditions and thus is linearization stable in a tubular
neighborhood. Moreover, by using standard arguments and by considering
the maximal development of the Cauchy data of the curve of spacetime
(4)g()\) [4], there will be a maximal common development (which appro -
ximates the maximal development of (4)g(0)) for which the spacetime is
linearization stable.

Finally we emphasise that the similarity of the linearization stability
question of Einstein’s equations for a Lorentz metric and of the scalar cur-
vature equation of a riemannian metric is due to the fact that the question
for the Einstein equations reduces to the question for the constraint equa-
tions ; these in turn are to a large extent dominated by the behavior of the
scalar curvature terms for the induced riemannian metric g. Thus because of the
dynamical aspect of Lorentz manifolds, the study of Ricci-flat Lorentz ma-
nifolds are in some ways more manageable than the study of Ricci-flat rieman-
nian manifolds. Indeed, we have not been able to establish whether or not
Ric(g) = 0 is linearization stable about a nonflat solution (providing such a
metric exists).
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DISCUSSION

Pr Tarski — In this lecture and on various previous occasions, the degeneracy of the
system of FEinstein equations was emphasized. Now, in classical mechanics, there are
systems which are be described in terms of parameters which yield degenerate systems,and
alternately in terms of parameters which yield nondegenerate systems. Would there be a
corresponding (nondegenerate) description of the Einstein system ? Would it have some
advantages ?

Pr Fischer — There is presumably a corresponding nondegenerate description of the
Finstein equations and it would be of great advantage to have such a description at hand.
This aspect of the Finstein equations is under very active investigation. Perhaps the most
promising approach is that due to A. Lichnerowicz, J. Math. pures et appl. 23 (1944) 37-63,
Y. Choquet-Bruhat, Commun. Math. Phys. 21 (1971) 211-218, and N. O’'Murchadha and
J.W. York, J. Math. Phys. 14 (1973) 1551-1557.

The main idea is to consider the space of (g, m) with 7 = 0, tr# = Oand (g, 7) equi-
valent to (g, m) if they are conformally equivalent (these includes a coordinate transforma -
tion) as the dynamical space of ‘“‘true degrees of gravitational freedom”.

In a related approach using the methods of J. Marsden and A. Weinstein, Reports on
Math. Phys. 5§ (1974) we have been able to show (a publication in preparation) thatthe
above quotient space can be obtained by factoring Cs M C,, by asuitable symmetry group.
The resulting space is a nondegenerate symplectic manifold, and the program now is to
construct a non-degenerate hamiltonian system on this space for which the coordinate
degeneracies of the Einstein equations have been factored out.

Pr. Kostant — Do your results on scalar curvature overlap with results of Kazdan and
Warner on scalar curvature ?
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Pr Fischer — Our results are complementary rather than overlapping. We do not con-
sider the question of whether or not these is a given metric with a prescribed scalar curva-
ture p but rather the structure of the space JC ={g €N : R(g) = p} which may pos-
sibly be empty. However, Karzdan and Warner have pointed out to us that by utilizing an
approximation lemma in the W spaces, local surjectivity of R(-) can be used to prO\_'e
many of their results concerning what functions can be realized as scalar curvatures in
dimensions > 2 ; see J. Kazdan and F. Warner, A Direct Approach to the Determination of
Gaussian and Scalar Curvature Functions, fnv. Marh. 28 (1975) 227-230.





