312

Der Beweis stlitzt sich auf eine Formel fiir [ ,(p,). die wir hier nicht
angeben.

3.3. Korollar

Sei ¢ eine geschlossene Geoddtische ; ¢ bezeichne die m-fache Uber-
legung von c¢. Dann gilt :

Index ¢™ = Z 1.(p)

und die Funktion p € S!' - I.(p) ist bis auf eine Konstante (die etwa
durch das Theorem 1 festgelegt ist) bestimmt durch die Poincaré-Abbildung
VOn C.
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DISCUSSION

Pr Marsden — Are these formulas for 1.(p) reflected by any complication in the
formula in terms of conjugate points for closed geodesics ?

Pr Klingenberg — It does not seem so.

Pr Voros — I confirm that, by using the invariance properties of the Maslov index,
it is possible to discard the geodesic nature of the flow and define the index of rotation of
a closed orbit of a hamiltonian flow with an elliptic Poincaré map P (and probably also

if P is the direct sum of a purely elliptic and a purely hyperbolic part).

Pr Klingenberg — D’accord.
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RESUME

Nous considérons quelques propriétés fondamentales des systémes hamiltoniens de
dimension infinie. Les systémes sont linéaires ou non linéaires. Par exemple, dans le cas
des systémes linéaires, nous démontrons une version symplectique du théoréme de M.
Stone. Pour les systémes généraux, nous établissons les théorémes de conservation de
Pénergie et du moment. {Le moment d’'un groupe dynamique a été introduit par B.
Kostant et J.M. Souriau). Pour les systémes de dimension infinie, ces lois de conser-
vation sont plus délicates que dans le cas des systémes de dimension finie, parce que
les équations sont aux dérivées partielles.

ABSTRACT

We consider some fundamental properties of infinite dimensional Hamiltonian systems,
both linear and nonlinear. For exemple, in the case of linear systems, we prove a symplectic
version of the teorem of M. Stone. In the general case we establish conservation of energy
and the moment function for system with symmetry. (The moment function was intro-
duced by B. Kostant and J.M. Souriau). For infinite dimensional systems these conservation
laws are more delicate than those for finite dimensional systems because we are dealing with
partial as opposed to ordinary differential equations.

INTRODUCTION

In this paper we prove a few theorems concerning infinite dimensio-
nal Hamiltonian systems. Further details and examples may be found in
(3,4,7,11, 12].
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It is evident that the notion of a Hamiltonian system plays a funda-
mental role in mathematical physics. One needs only to recall a few
examples : classical mechanics, classical field theory, quantum mecha-
nics, hydrodynamics of a perfect fluid, elasticity, and the dynamical
aspects of general relativity. In view of this, it is useful to set down some
of the fundamental properties of such systems, both linear and nonlinear.

After giving the basic definitions, we prove a symplectic version of
Stones theorem, i.e. the basic existence theorem for linear Hamiltonian
vector fields, and then we prove the basic conservation laws of mechanics
in the presence of a symmetry group in the infinite dimensional case.

1. SYMPLECTIC STRUCTURES AND HAMILTONIAN SYSTEMS

Strong and Weak Nondegenerate Bilinear Forms.

Let & be a Banach space and B : & x & = R a continuous bilinear
mapping. Then B induces a continuous linear map B” : & > 8% , e~ B®(e)
defined by B”(e) - f = Be, f). We call B weakly nondegenerate if B® is
injective ; ie. if B(e, f) = 0 for all f< & then e = 0. We call B nondege-
nerate or strongly nondegenerate if B® is an isomorphism. By the open
mapping theorem it follows that B is nondegenerate iff B is weakly non-
degenerate and B? is onto.

If & is finite dimensional there is no difference between strong and
weak nondegeneracy. However in infinite dimensions the distinction is
important.

Symplectic Forms

Let P be a manifold modelled on a Banach space(*) &. By a symplec-
tic form we mean a two- form w on P such that

a) wis closed : dw = 0

b) for each x €P, w, : TP x T,P ~ R is nondegenerate.

If w, in (b) is weakly nondegenerate, we call w a weak symplectic
form.

Darboux’s theorem in the infinite dimensional case is due to J. Moser
and A. Weinstein and is the following (the proof is given in Lang [8]).

Let w be a symplectic form on the Banach manifold P. For each
x € P there is a local coordinate chart about x in which w is constant.

Corollary — If P is finite dimensional and w is a symplectic form then

(*) See [8]. The tangent space to P at x € P is denoted T_P.
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a) P is even dimensional, say dim P =m = 2n
b) locally about each point there are coordinates

x! ,x" Lyt .., Y7 such that

n
w =Y dx' ndy
1

Such coordinates are called canonical.
For Darboux’s theorem for weak symplectic forms, see Marsden [10]
and Tromba [15].

Hamiltonian Vector Fields

Let N be a Banach manifold, with D C N. A vector field with domain
D is a map X : D =~ T(N) such that, for all x € D, X(x) lies in T, (N), the
tangent space to N at x. An integral curve for Xisamapc : Ja, bl CR—>D
which is differentiable as a map into N and satisfies ¢’ (1) = X(c(1)). A
flow for X is a flow F, on D such that, for all x € D, the map £~ F.,(x)
is an integral curve of X. (Semi-flows and local flows for X are defined
analogously).

A subset D of a Banach manifold N is a manifold domain provided

1) D is dense in N ;

2) D carries a Banach manifold structure of its own such that the
inclusion i : D = N is smooth ;

3) for each x in D, the linear map T,i: T,D~ T,N is a dense
inclusion.

(The linear prototype of such a domain is a dense linear subspace D
of a Banach space & such that D is complete relative to a norm stronger

than that of &).

Definition — Let P, w be a weak symplectic manifold. A vectolr field
X : D = TP with manifold domain D is Hamiltonian if there is a C* func-
tion H : D = R such that

w, (Xx), v) = dH(x) - v (1)
for x€D,veT,DCTP (From this it follows that, for each x.€ D,
the linear functional dH(x) on T, D extends to a bounded linear functional
on T, P).
As usual, we shall write Xy for X.

Because w is merely a weak symplectic form, there need not exist 'a
vector field Xy corresponding to every given H on D. Moreover, even if
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H is a smooth function defined on all of P, Xy in general will be defined
only on a subset of P. It is, of course, uniquely determined by the condi-
tion (1) on the set where it is defined.

Here are two infinite dimensional examples (both linear).
a) The Wave Equation(*) : P = H'(R") x L,(R"),
W($,9), (W, ) =<y,¢>—<$, y>

where <, > is the L,-inner product, D = H?(R") x H'(R"),andH : P > R
is defined by the formula

. | 1
H(¢,¢)=5<¢,¢>+5<V¢,V¢>~

The vector field X,; : D > P is given by
Xu(d,9) = (9, A0)

b) The Abstract Schrodinger Equation : P = #€, a complex Hilbert
space 5 w(Y,,¥,) =Im <y, y,> ; H,, a self-adjoint operator with
domain D C ¥¢ ; then

Xy (9) =~ iH,, ¢

1
H) = <H,, ¢,6>.

‘ Note that in (a), H is defined and smooth on all of P ; while in (b),
H is defined and smooth only on D (equipped with the graph norm).

Poisson Brackets

IfX,: D, > TPand X, : D, > TP are two Hamiltonian vector fields,

we define the Poisson bracket
{f.g}:D, ND, >R
by
{f. g ) = w (X;x) , X, (x)).

Even in the linear case, it is very important to pay attention to domains
qf definition when trying to deduce global consequences from formal iden-
tities involving Poisson brackets. However, the following result-which is a

trivial consequence of the definitions-shows that there is no problem in
deducing conservation laws if the conserved quantity is everywhere defined.

(*) H? denotes the Sobolev space (Yosida [16]).
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Let Xy be a Hamiltonian vector field with domain D. Assume that
Xy has a C? flow F,:D—>D.Letf:P>Rbea C' function, and suppose
that
{H,f}=df- Xy = 0.

Then fo F, = f. That is, f is constant on the trajectories of the flow of X,.

2. LINEAR HAMILTONIAN SYSTEMS

In this section we shall look at linear semigroup theory in a Hamil-
tonian setting. Thus let & be a Banach space (real or complex), and let
w: & x & > R be a symplectic bilinear form. Then w determines a diffe-
rential form £ of degree two, as follows. Because we can identify the
tangent space T, & with & in a canonical way, we define

Q T, &xT, >R by QU e, )= wle,I/)
Note that df2 = 0 because £ is constant as a function of x. If S : & > &
is a linear map, so that D, S = S, we have
(S*Q), (e, f) = g, (Se , Sf) = w(Se, (). (N

Hence S is symplectic (that is, S$*Q = Q) if and only if the bilinear form
w is invariant under S.

Now let U, = ¢’* be a one-parameter group (or semigroup) with
generator A. We know [16] that the domain @ (A) is a dense linear subs-
pace of & We may regard A as a (linear) vector field if we make the usual
identification Ax € & = T &.

Theorem 1 — Let & be a real Banach space and let w be a weak symplectic
form on &, with Q) the corresponding differential 2-form. Let A generate
a one-parameter group (or semigroup) U, on &, Then the following are
equivalent :

i) A is a locally Hamiltonian vector field(*) : i, is closed

i) A is skew-symmetric with respect to w ; that is,
w(Ae, f)=—wle, Af) for e,fED(A) (2)

iiiy A is globally Hamiltonian-with energy function

H(e) =% w(Ae, e),e ED(A) (3)

(*) 1,2 = A JQ is the interior product of A with §2. It is a one form on® (A),
and is defined in the usual way [1].
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iv) U, is symplectic : that is, as remarked above, U, preserves w.

Moreover, under these conditions energy is conserved : Ho U, = H
on M(A).

Proof : (i) « (ii) : Write & = i,£2. Thus if x € D(A) we have
alx) - f = w(Ax, ).
We say A is locally Hamiltondan iff do = 0. Now, by definition, if e , f SD(A)
do(x) - (e, f) = (Da(x) - e) f — (Da(x) - fle

-4 (WA + te), ) — w(Alx + 1), )]
dtl 1=o

= w(Ae,f) — w(Af , e).
Thus da= 0 ¢ A is skew-symmetric relative to w.

(ii) = (iii) : Assuming (ii), we wish to show that A = X, that is,
that «(= i,82) = dH. But if x, f € @ (A) we compute

E % WA + 1), x +tf)

d
Hx , + 1)l = ar

dH@) - f=

Il

%w(Ax,f)+%w(Af,X)

| 1
3 w(Ax, f) — Ew(x,Af): w(Ax, f) by (ii)

= (i, Q),f.
(iii) = (i) : If (iii) holds, i, & = dH. That d(dH) = O is clear.

il

(i) @ (iv) : If e, f € D(A) we have
%w(U,e, U,f) = w(AU,e , U,f) + w(U,e, AU,f),

which vanishes if (ii) is true. Hence w(U,e , U, f) is constant, that is, equal
to wle, f). As® (A) is dense the same is true for all ¢, f € &. Conversely,
if (iv) holds and e, f € D(A), we have the relation

d
0 =;,7w(Ut€rsz)lr=o = w(Ae, f) + wle, Af) ;

thus (ii) is true.
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Finally, if A is Hamiltonian and ¢ € M (A), we have

1 1
H(U,e) = 5 w(AU,e , Use) = 5 w(U,Ae , U,e)

= % w(Ae, e) = H(e).

In the case of a group of isometries on Hilbert space, Stone’s theorem
implies that the generator is not merely skew-symmetric, but skew-adjoint.
We turn now to the symplectic analogue of this fact.

Theorem 2 — Ler w be a weakly non-degenerate symplectic form on &.
Let A be the generator of a group U, of symplectic transformations on &.
Then A is skew-adjoint relative to w.

Note : If B is any linear operator on &, with dense domain @ (B), we define
the adjoint B of B relative to w in the following way [16]. The domain
of BT is the set of all f € & to which there corresponds a g € & such that

w@Be, )= wle,g) forall e€& DB).

We write g = BTf. It is easy to see that Bl isa well-defined, closed linear
operator.

Proof of Theorem 2. We assert that AT = — A. Because A is skew-symmetric
we have AT D — A, For the opposite inclusion, suppose that f & DA
with ATf = g. Then for any ¢ € M (A) we have
t
Ue=e +f AU,e ds.
0
So

t
w(Ue, f) = wle, +f0 w(AU,e, f) ds

il

t
wle, )+ [ w(U,e, g) ds.
o
Now U, is invertible and symplectic, so UI = U_,. Thus
t
wle, U_ ) = wie, N+ [ wle, U_, g ds.
0
Because W (A) is dense and ¢ is weakly non-degenerate it follows that

T
U_,f:f+f0 U_, g ds
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Accordingly, f € @(A) and — Af = g = A'lf,
Theorem- 2 is the analogue of the “easy” half of Stone’s theorem. It

is natural to ask whether its converse is true. Unfortunately, this is defi-
nitely not the case(*). However this can be recovered as follows.

Let & be a real Banach space with a weakly nondegenerate skew
form w. Let A be a densely defined linear operator, and suppose that
AT = — A : that is, A is skew-adjoint relative to w. Define the “energy”’
inner product by

[e, f] = w(Ae, f) (4)

for e, f €MD (A). Note that [-, -] is a symmetric bilinear form. Suppose
in addition the energy is positive definite in the sense that there is a
a constant ¢ > 0 with

[e,e] = w(Ae, e) = c lel?. 5

(Here I-1l'is the norm of &). Then in particular - , -] is a positive definite
inner product on W(A). Let J€ be the completion of M (A) with respect
to this inner product. Then &€ is a Hilbert space, and the inclusion
map i: P(A) C & extends to a continuous map i : J€ > &, because of
(5). (Here we use the fact that & is complete).

Lemma — The map i . 3~ & (defined above) is one-to-one, Thus 8€ can
be identified with a subspace of &, with i the inclusion map.

Proof — Suppose x € € with i(x) = 0. We shall show that x = 0. Since J€
is the completion of M(A) with respect to the inner product (4), we can
find a sequence {x,}T in @(A) which is Cauchy relative to this inner pro-
duct, and which converges to x inJ€. Also, as n = oo,
x, =i(x,)>ikx)=0. (6)
Now @D (A) is dense in J€. If y € D(A) we have

[x,y]= lim [x,,y] = lim w(Ax,,»)
n—+oco

n—+o

=— lim w(x, , Ay) = 0, by (6).

n—+oo

Conclusion : x = 0, as claimed.
Let A, be the restriction of A to the domain

D A) ={ecdA): Ae < 5} (7

"""""" T 01
(*) For instance, consider the operator associated to the wave equation : A = (A 0>

onL, xL,.
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We can regard A, as an operator on J€.

Theorem 3(*) — Under the condition stated above, A, is a skew-adjoint ope-
rator on 3, Accordingly it generates a one-parameter group Ur of isometries
on 8. This group preserves w,, the restriction to 3€ of the symplectic
form w. (moreover A, has a bounded inverse).

Proof — First note that A, is skew-symmetric relative to the inner product
of #€. Indeed if e, f € @(A,) we have

e, A, f]l=[e, Af]
w(Ae, Af) = — w(Af, Ae)
=—1f,Ael=—1[Ae,f]l

Let j: & > J¢* be the adjoint of i: ¥ — & relative to w. That
is, if e € & and x € ¥€ we define

. (Je)x = wle, ix) = wle, x). (&
Now if y € ®D(A) C ¥ define Ay = jAiy. We have, then,
(Ay)x = w(Aiy, ix) = w(Ay, x) = [y, x]. )

In other words, if y € @ (A) then Ay = 0y where 6 : 3¢ — ¥e* is the cano-
nical map identifying a Hilbert space with its dual.

Suppose now that e € & ; then 6x = je for some x € &. Thus, if
y EMD(A) C I we have

[x,y]1=(ey =wle,y)

and
y,x] = w(@Ay,x) = —wlx, Ay).
Thus for all y € @(A) we have the relation
w(x, Ay) = — wle, y).

Conclusion : since AT = — A, it follows that x € @(AT) =®W(A) and
Ax = e. In particular A maps @(A) onto &.

Since A maps @ (A) onto & it follows immediately that A, maps
®(A,) onto € C &.

But now we can show that A, is skew-adjoint. First, we check that
@(A,) is dense in €. Suppose that z € ®(A))*. Then for all x € @D (A)),
0=[x,z). Nowz = A,y for some y. Hence 0 = [x , A, y] = — [A;x, )]
for all x € W(A)). As A, is surjective, y must be O.

(*) Unfortunately this result is false if we only assume ¢ = 0. (See Chernoff-Marsden

K2
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Now suppose u € D(A]). Then for all x € ®(A,) we have
(A, x, u]l =[x, ATul.
But Afu = — A,v for some v € @(A,). Hence, for x € DA

(A, x,v]=—[x, Av] = [x,ATu] =[Ax, ul.

Hince U = u, again because A, is surjective. That is, u<€®A,) and
Aju = — Ayu. This completes the proof that A, is skew-adjoint.

Finally, we verify that the skew form w, is left invariant by U, = 'L,
If x,y € W(A,) we have

W (Ax,y) = wlAx,y) =[x, y] = [y, x]
=w, Ay, x) =—w(x, A ).

Thus A, is skew-symmetric relative to w;, and so Theorem 2 implies that
U, leaves w, invariant.

Remark — Theorem 3 was motivated by the modern treatment of “Friedrichs
extensions” in terms of so-called scales of Hilbert spaces.

Poisson brackets and commutators

Let & be a Banach space with skew form w. Let A and B be two skew-
symmetric linear operators on &, with corresponding energy functions H,
and Hg, as in Theorem 1. There is an interesting formal relation between the
Poisson bracket {H, , Hg} and the operator commutator [A , B] = AB — BA.
(It is easy to check that [A,B]is skew-symmetric if A and B are ; but
in general [A, B] will not be skew-adjoint, except in the trivial case when
A and B are bounded. In fact, in general [A, B] will not even be densely
defined or closable).

Let A and B be skew-symmetric relative to . Then if x is in the
domain of [A , B] we have the relation

{H, , Hg} (x) = Hia 5 (0).

This is easy to check.

Symmetry groups and conservation laws (linear case)

As above, consider &, equipped with a weak symplectic form w.
Let A generate U,, a group (or semigroup) of symplectic transformations.
Also let B generate a group V, of symplectic transformations. Let H,, Hy
be the corresponding energy functions.
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Theorem 4 — Suppose that V, is a symmetry group of the energy H, in
the following sense : each map V, leaves W (A) invariant, and H, o V, = H,.
Then Hy is a constant of the motion ; that is, U, leaves D (B) invariant
and Hg o U, = Hg. Moreover, the flows U, and V, commute ; that is,
UV, = V,U for all s, ¢

One can give a straightforward proof of this result in the context of
semigroup theory. However we shall prove a nonlinear generalization of

it shortly.

Note : In order to conclude that the flows U, and V, commute, it is
not enough to have {H,,Hy} = 0, i.e. [A,B} = 0. In fact Nelson has
given a well-known counter-example : two skew-adjoint operators A, B
such that [A,B] =0 on @(AB) N M (BA), but such that e¢** and ¢'® do
not commute. Thus the infinite dimensional case is much subtler than the
finite dimensional case and it is well to be wary of reliance on formal
calculations alone.

3. A GENERAL CONSERVATION THEOREM

In infinite dimensional systems, conservation laws require rather deli-
cate handling. In most cases (as in example (b) above) the putatively conser-
ved quantity f is defined only on a dense subset of phase space. Moreover,
formal calculations are usually not sufficient to imply the desired conclu-
sions. A very simple example occurs in quantum mechanics : if H is a
symmetric, but non-self-adjoint, operator then energy can ‘“leak out” of
the system. There are a number of rigorous general conservation theorems
that can be established ; the following one seems to be optimal, since the
conditions on the flow are mild. The main requirement is that f and H
have a common manifold domain of definition.

Theorem 5 — Let P, w be a weak symplectic manifold. Let X,; : D - TP
be a Hamiltonian vector field with manifold domain D. Assume that Xy
has a C° flow F,:D—=>D.Let f: D> K bea C! function, and assume
there is an associated Hamiltonian vector field X, a continuous map from
D to TP. Then

d
Zf(, F,={f,HoF, onD.

In particular, if {f, H} = O then f o F, = f on D.

The crux of the present theorem is that we do not know a priori
that /o F, is differentiable in f, so that we can’t simply apply the chain
rule.
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Proof of Theorem 5 — Given u, € D, we shall show that
d
— FE uoDlog = {F, ) ().

This will establish the theorem. Choose a local chart(*) so that u, = 0.
Abbreviate F,(«,) by u,. Then from df = ixfw, we have the local formula

1
flu,) = £(0) + fo @, (X, (ruy) | u,) dr.

Hence
1 1 5
5 U = o3 = o, (Xt 52 ) ar.

Now, as 2 =0, u, >u, =0 in the topology of D. Therefore, since
Xf : D> TP is continuous, X(tuy,) ~ Xf(O) = Xeuy) uniformly for
0 <7< 1. Also.

u U, —u
no_ Yy 0
= Xy (Uy)

e
as 7 = 0. Accordingly, the integrand w,uh<Xf('ruh) ,L;l—"> converges uni-
formly to
wo(Xf(uO) , Xy W) = wuo(Xf(uo) , Xy (ug)) as h— 0.
Thus

1
hhgz) p {fu) — flug)t = j:qu(Xf(uo) s Xy (ug)) dr

w,,o(Xf(uo) , Xy (1))
={f, H (uy).

Remark — The hypothesis that Xy has a C° flow on D is not unreasonable.
It will certainly hold (assyming that D and P are modelled on separable
Banach spaces) provided that Xy has a C° flow F, on P such that each F,
maps D continuously into itself ; cf. Chernoff-Marsden [2]. In concrete
examples this is very often the case.

The same argument yields the following.

(*) To be perfectly honest, we are assuming here the existence of a local chart
which simultaneously “flattens” D and P. The existence of such charts does not automa-
tically follow from our definition of manifold domains. On the other hand, in many appli-
cations P and D will be linear spaces to begin with.
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Corollary — Let H: D C P = R be defined and smooth on the manifold
domain D, and let Xy exist on O. Let f: D, C P = R be defined and
smooth on the manifold domain Df, and let Xf be defined and continuous
on Df.

Suppose that D, C D, and that Xy has a flow F, which leaves Dy
invariant, Moreover, assume that for x < Df, the mapping t+ F (x) < Df
is continuous.

IF{f H =0 on Dy, then f o F, = f on D,.
Note — We do not assume that the inclusion Df C D is continuous.

As a special case, we have conservation of energy.

Theorem 6 — Let P be a weak symplectic manifold. Let H: D CP—R
be defined and smooth on a manifold domain D, and let Xy be defined
and continuous on D. Suppose that Xy has a flow F, on D, and that, for
x € D, the map t~ F,(x) € D is continuous. Then He F, = H on D.

In concrete situations one needs to know that the Hamiltonian H
and the putatively conserved quantity f have a suitable common domain
of definition, as in theorem 5. We turn to this question next and begin
with the following proposition.

Proposition 7 — Let P, w be a weak symplectic manifold, D C P a mani-
fold domain, and H : D = R a C' function. Assume that there is a Hamil-
tonian vector field X,y : D = TP for H, and that Xy has a unique (local)
flow F, : D > D.

Let & : P~ P be a symplectic C' diffeomorphism such that (D) C D
and @ is C' on D. Finally, assume that H o & = H.

Then & o F, = F, o &,
Proof . Let x € D. Since @ is symplectic, we have the relation
W, (X (X) 4 1) = gy (TR(X) - Xy (), TO(x) - )
=dH(x) - v
=dHo ® o TEP(x) - v.

Thus g,y (TP(x) - Xy (x), w) = d(Ho P71 - w for all w < Ty, P.
Since H o 7! = {, we conclude that

Xy (@(x)) = TP (x) - Xy (x). (D
Now define G, = & o F o @7! Then for x € D we have
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d ~ p—
= G0 = T - Xy (F (7' (x))

fl

Xy (PF(P7H (%)) by (1)

= Xy (Gy(x)).
It follows that G is a flow for the vector field X,;. Since the flow of
Xy Is unique, G (x) = F (x).

We are now ready for our main conservation theorem.

Theorem 8 — Ler P, w be a weak symplectic manifold. Let Xy :D—> TP
be a Hamiltonian vector field with flow F, as in the hypothesis of Propo-
sition 7. Assume in addition that F,isa C° flow on D and that each map
F,: D~ DisC.

Let @, be a flow of C' symplectic diffeomorphisms on P. Assume
that each ®, satisfies the hypotheses of Proposition 7. Then, in particular,
®, :D—>D is a flow on D. Let Y be the generator of this flow, and
assume that its domain Dy is dense in D. Moreover, assume that the graph
of Y is a submanifold of TD. We equip Dy with the graph manifold struc-
ture.

Finally, suppose there is a C' function K : Dy = Rsuch that Y = X,
Le. Y is the Hamiltonian vector field on Dy associated with K.

Conclusions :

a) F, leaves Dy invariant and gives a C° flow on Dy
b)F, 0o ® =& oF, foralls, ¢
¢) FoF, =K on Dy.

Proof — Conclusion (b) follows immediately from Proposition 7.

To prove (a) : Let x be an element of Dy. Because
D, (F,(x)) = F (®(s))

it follows that s+ @ (F,(x)) is differentiable relative to D : here we use
the hypothesis that F, : D - D is C'. Hence F,(Dy) C D,. Moreover, we
have the relation

Y (F,(x)) = TF,(x) - Y(x).
It follows that F, is continuous on Dy relative to the graph topology, so
it induce a C° flow on D, .

From the relation H(x) = H(®,(x)) we deduce that, for x € Dy,
dH(x) - Y(x) ; that is, {H,K} = 0 on D,. We can now apply Theorem 5
of § 3 to the flow F, on Dy, concluding that K o F, = K.
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Remarks —

1) The strong smoothness hypothesis that F, is C' on D was needed
only to establish (a). If (a) can be verified by other means(*) then we can
drop this smoothness condition.

2) The above form of the conservation theorem is useful primarily
because (a) is one of the conclusions, rather than one of the hypotheses.
In practice, the symmetry group @, will usually be given explicitly, while
F, is known only implicitly as the flow of some differential equation.
Accordingly it may be difficult to write down an explicit domain for K
which is invariant under the flow F,. This difficulty is avoided above.

3) In many applications ¢, is linear. In such cases the hypotheses
on the manifold structure of Dy will be satisfied automatically.

Symmetry Groups on Tangent Bundles.

As an example, we spell out the above result in the special case of
a symmetry group acting on a tangent bundle.

Recall that the second tangent bundle T(TM) = T?M carries a cano-
nical involution s (see Godbillon [6]). In a local chart, TM =~ U x &
where U is an open subset of & ; then T°M = (U x &) x (& x &), and
s is given by the formula s(x,e;e; ,e,) =(x,e,;e,e,;)

Proposition 9 — Let M be a weak Riemannian manifold. Equip TM with
the associated weak symplectic form. Let ®, be a continuous flow of
smooth mappings, each of which is an isometry of M, so that the tangent
flow T®, is symplectic.

Let X be the generator of ®,. Suppose the graph of X is a submanifold
of TM. Put on Dy the associated manifold structure.

The generator Y of T®, is an extension of s o TX. Assume Y = s o TX.
Then I'y = s(I'yy), so that the graph of Y is a submanifold of T°M, and
Dy = TDy.

Finally, Y = XP(X) where P(X) : Dy = TD, = R is given by the for-
mula P(X) (v,) = <v,, , X(m)>.

This momentum function P(X) is a special case of the moment of a
dynamical group introduced by Kostant and Souriau. See [14] and also
(91, {13].

We now want to apply the conservation theorem 8.

Theorem 10 — Let M be a weak Riemannian manifold, as above. Let
V:Dy CM—=> R be smooth on a manifold domain D,. Let D be the
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restriction of TM to Dy and construct Xy on a domain N (the restriction of
TD, to N, C© D), where it exists and where

1
E(v)=5<v,v>+ Vx),v&e T M.

Suppose Xy has a flow F, : N = N which extends to a continuous
flow of c* mappings of D to D, k =2 1.

Let ®, be a continuous flow of smooth isometries of D, (relative
to the metric obtained from M). The tangents thereby extend to symplec-
tic diffeomorphisms of D to D. Suppose Vo @, = V. Let X be the gene-
rator of &, on Dy, and Y that of TP, on D. Assume the graphs of X
and Y are submanifolds.

Then

a) F, =T®, =Td o F, on D,

b) F, leaves Dy invariant

¢) P(X) o F, = P(X) on Dy, (and hence on D restricted to Dy).

For further details and examples see Chernoff-Marsden (3, 4].
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DISCUSSION

Pr Bleuler — 1) May 1 ask about the difficulties with respect to the non-linear
cases. Are there counter exemples, i.e cases (with higher powers of the interaction)
in which there are no solutions ?

2) May I also ask about the possibilites of second quantization e.g can the well-
known results of Glimm and Jaffe be reproduced ?

Pr Marsden — 1) For the non linear wave equations the situation is not comple-
tely settled. For example Segal has shown global weak solutions exist (for positive
interaction energies), but uniqueness is not known. Existence of strong solutions holds
for short time always and global for p = 3, n = 3 or even p (2, 4, n = 3) if the initial
data is small enough.

2) Hopefully so, but those results are probably several years off.

Pr Voros — In the Glimm-Jaffe constructive field theory, the classical limit (Goldstone
picture) predicts qualitative but not quantitative features (like anomalous critical exponents)

of the quantum theory.

Pr Raczka — It was recently proved by Glassey that for a large class of non linear
wave equations (0 +m?) ¢ =€\p? (p =2, 4 etc) the global solution does not exist
even for very smooth initial conditions.

Pr Marsden — Yes, but I believe the initial data is not small in H' norm, at least
forn =3, p = 2.

Pr Tarski — With regard to the previous questions and remarks on constructive
field theory, 1 would like to phrase the question of the applicability of the theory in
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this way to your examples you generally assumed a Hilbert space L*(R™). In field theory
one has a Fo_ck space, whigh is a Hilbert space, but not of the above form. But I suppose
that the particular form L (R™) is not necessary for most of the discussion — is this so ?

- Pr Marsden — Yes. For example, in the Hamiltonian formulation of fluid mecha-
nics the spaces W% = L, are very useful.
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RESUME

Dans cet article, nous examinons en quel sens la linéarisation d’un systéme d’équations
aux dérivées partielles non linéaire approche le systéme complet. Nous appliquons ces
idées a I’étude des déformations de [I’équation de courbure scalaire et des équations
d’Einstein en relativité générale, ainsi qu’d I’étude des ensembles de métriques rieman-
niennes a courbure scalaire donnée. On montre que ces systémes sont linéairement
stables sous des hypothéses trés générales : nous étudions aussi les cas exceptionnels d’ins-
tabilité linéaire.

ABSTRACT

In this article we examine in what sense the linearization of a system of nonlinear
partial differential equations approximates the full nonlinear system. These ideas are applied
to study the deformations of the scalar curvature equation and Einstein’s equations of gene-
ral relativity, as well as the set of metrics wirth prescribed scalar curvature. We show that
these systems are linearization stable under general hypotheses ; in the exceptional cases of
instability, we study the isolation of solutions.

0 — INTRODUCTION
Let M be a compact manifold, let X and Y be Banach manifolds of
maps over M, such as spaces of tensor fields on M and let
. XY

be a non-linear differential operator between X and Y ; we assume @ itself is
a differentiable map. Thus for given y, €Y,
@ (x) =y, (D

as an equation for x € X, is a system of partial differential equations. If
Xo € X is a solution to (1), we will say that a differentiable curve x (A),





