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Abstract. The local mass problem is solved. That is, in suitable function
spaces, it is shown that for any vacuum space-time near flat space, its mass m
is strictly positive. The relationship to other work in the field and some discus-
sion of the global problem is given. Our proof is, in effect, a version of critical
point analysis in infinite dimensions, but detailed L? and Sobolev-type
estimates are needed for the precise proof, as well as careful attention to the
coordinate invariance group. For the latter, we prove a suitable slice theorem
based on the use of harmonic coordinates.

0. Introduction

For some time there has been controversy over the definition and positivity of
the mass of an asymptotically euclidean (vacuum) solution of Einstein’s equations.

Brill [3] established positivity for time-symmetric and axial-symmetric
spacetime. Araki [1] proved the positivity of the second variation of the Schwarz-
child mass of a certain class of time-symmetric solutions constructed by conformal
methods. Finally Brill and Deser [4] outlined a proof of positivity in the general
case.

The method of Brill and Deser is to show that the mass function has only one
critical point, namely at flat space and that the second variation is strictly positive
there. The proof is, however, incomplete for four reasons.

First of all, they assumed the existence of maximal slices (i.e., slices whose
second fundamental form has zero trace), which was open to question. Secondly,
the topology in which the second variation is positive definite is not the same
as the topology on the initial data set, so that it is far from obvious that flat space
is a local minimum. Thirdly, the problems connected with the coordinate in-
variance group require attention on the space of initial data as well as on an
infinitesimal level (the quotient space may well be singular). Fourthly, the global
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assertion that a real valued function with a single non-degenerate critical point
which is a local minimum has that point as a global minimum is not true. Counter-
examples are easly constructed on IR?.

These problems have been pointed out by several authors. For example,
Geroch [20] has a summary of what is known. O’Murchadha and York [22]
have speculated that, because of the first difficulty, negative (and therefore
arbitrarily large negative) mass might exist. Similar problems with the Bondi
mass have been pointed out by Robinson and Winicour [27].

Recently, new interest in the mass problem has been sparked by the proof
that maximal slices do exist (Choquet-Bruhat [12], Cantor et al. [10]). This shows
that the first difficulty above may be eliminated.

We can divide the mass problem into two parts corresponding to the second
and third and the third and fourth difficulties:

(i) local problem: is the mass positive near flat space?

(i) global problem: is the mass positive for a spacetime that can be connected
to flat space?

Up until now, neither question has been answered in rigorous fashion. The
purpose of this paper is to show that (i) has an affirmative answer. We shall also
make some additional remarks on (ii).

Our proof consists of two parts. We must reduce things to a nondegenerate
situation by eliminating the coordinate invariance. For this we construct a local
slice for the action near flat space, using harmonic coordinates. Secondly we
must show that on this space, flat space is a local minimum by making some
estimates. Our procedures are inspired by the use of weak Riemannian structures
in [15,16] and Tromba’s Morse theory for weak Riemannian structures [28, 297.

We wish to thank J. Arms, A. Fischer, R. Sachs, A. Taub, A. Tromba and A. Weinstein for several
useful remarks.

1. Notation and Function Spaces

For 1<p<oo, deR and seZ", let M?,R",IR") be the completion of the C*
functions f :IR"—IR™ with compact support using the norm

1flpss= 2 16" D*f s
Osass
where o(x)=(1+|x|*)"/* and D*f is the (total) derivative of f of order a.

Note that if feM? sthen DfeM?_| ;5. .

These spaces were introduced and studied by Nirenberg-Walker [24] and
Cantor [6,7]. Various properties of these spaces, proved in these references,
will be needed. For example:

L. If p>n/(n—2), 6=0 and s=2, then the Laplacian 4:M? ;—>M?_, 5., is an
isomorphism (onto).

2. If p>1, s>n/p, §20 and 0<I=<s, then multiplication

P P p
M s x MY_) 50> MY, 5.0,

is continuous bilinear.
3. If s>n/p+k, then M? ;C C¥ with the inclusion continuous.
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For purposes of this paper we shall choose n=3, 6=0, 3<p<6 and s=3.
The reason for p>3 is so that property 1 holds. The reason for p<6 is contained

in Lemma 1.3 below.

On R’ feM?; has the intuitive meaning that f~%, Df~—13,...,DSf~
r

at oo, provided p>3, §=0. In particular, note that for suchan f, f¢ L,

rs+1

but it is reasonable that D feL,.

Let y denote the standard euclidean metric on R® and let .42 ; denote the set
of Riemannian (positive definite) metrics g such that g—yeM? ;. Then .#? ; is an
open cone in S? 54 {y}, where S? ; denotes the Banach space of symmetric 2-tensors
of class M? ;. Thus, the tangent space to ./#? ; at g is T % ;=57 ;.

Let I:IR*-IR® be the identity map and let 22 ; denote the diffeomorphisms #

of R? such that #—1I and n~'—1I are of class MZ,. Ifs>g+1,5;0, then 27,

is a smooth manifold and a topological group (Cantor [7]).
It is convenient to enlarge %%, 5, somewhat. Let %, ;_; denote those
diffeomorphisms 1 of R* such that diy and diy~* are of class M? ;. Again, Z%, ; ;_,

is a topological group and a smooth manifold if s>"and 020. This and the
p

following can be proved as in Cantor [7] (see Ebin [15] for the case of compact
manifolds instead of IR").

1.1. Lemma. 97, 1,5-1 acts continuously on MY 5 by pull-back: (1, g)=n*g.
This uses the multiplication property 2. above and the fact that composition
M2 5% D251~ M2 53 (fim)=>fon

is continuous.

We remark that the orbit ¢, of flat space need not be a submanifold of .#? ;.
If we were to let 27, ; act on /? ;.,,0, would be a submanifold but .#% ;.
has too strong asymptotic behavior to be useful for present purposes.

1.2. Lemma. If o f € L(R"), then feL, provided p=r>3p/(p+3).
Proof. By Holder’s inequality,
,f‘flrdxé(j|O’|"dx)1/‘1.(fo--rq’dx)uq'

1 1 . . o ..
where g=p/r, 5—'— ; =1. The last integral is finite if rq'=rp/(p—r)>3; ie., if
r>3p/p+3). O

1.3. Lemma. If 2<p<6, =0 and s=2, then fe M?; implies feL and DfeL,.
In fact, if we write | f (3= D[}, (the “energy norm”), we have inequalities

IfllLs = (Constant) || f ||z = ( Constant) | f |55 -
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Proof. If f is in some L, space, we have the inequality || f{l,s<C|Df|l;. (see
Nirenberg [23]). Thus we need only show DfeL? However, cDfeL, so by
Lemma 1.2, DfeL, p=r>3p/(p+3). For p<6, 3p/(p+3)<2, so r=2 can be
chosen. O

2. The Mass Function and Its First Derivative
Define m: ME 5% S?_1 5.1 —R by
1677(g, )= §..(0,9,;— 09, )dS' = [ :(R(g) — k- K+ (tr k*)du(g)
= [3(0:0,9:;;— 0:09;)d*x — [ s(R(g) — k-k+(tr k)*)du(g) .

Here, <f>oo denotes the surface integral at infinity in euclidean coordinates, R(g)
is the scalar curvature of g, trk=tr, k is the trace of k with respect to the metric g
and du(g) is the volume form of g. One may alternatively write

16nimi(g, k)= [gs DR(y)-(g —)du(y) — [z s (R(g) — k- k~+ (tr k)*)du(g)

where DR(y)-h is the derivative of R(g) at y in direction h; R: % s—>ME_, 5.,
is a C® mapping with derivative DR(g)-h= — A(trh)+ d6h—Ric(g)-h where
A=A,=V,A"is the Laplacian and (6h);=(d,h);=V;h' is the divergence — cf. Lich-
nerowicz [21] and Fischer-Marsden [18]. Notice that

Jrs DR(y)- hdu(y)= [ s DR(g)- hdu(g) + [ Ric(g)- hdu(g)

@.1)

since g is asymptotically equal to .

As remarked by DeWitt [14] and emphasized by Regge and Teitelboim [26],
m(g) is the numerical value of the “real” Hamiltonian which generates the dynam-
ical Einstein equations.

It is not hard to check that i is a well defined C* mapping, using our choices
of p, s and 6. On the constraint submanifold of relativity, in coincides with the
usual formula for m in Brill and Deser [4]. (See Choquet-Bruhat and Deser [13]
and Fischer and Marsden [18, 19] for the proof that the constraint set near y is
actually a C* manifold.) Also, m and i are invariant under the action of 27, ;.

The first and second derivatives of m can be calculated in a straightforward
manner using the formulas for the derivatives of R(g) and Ric(g) (the Ricci tensor)
from Lichnerowicz [21]. One obtains

16ndin(g, k)-(h, w)
=I,R3{Ric<g) ~ (R —k-k+(ax k)Z)} hdu(g) 22)

+2 [gs(k—g trk)-wdu(g)

for the derivative of m in the direction (h, w)eS? sx S¥_, ;. at the point (g, k).
Observe that in (2.2) there are no constraints or trace conditions used.
From (2.2) it is obvious that (g, k) is a critical point of m; i.e., dim(g, k)=0, if

and only if k—g trk=0 (i.e., k=0) and Ric(g)— g R(g)=0 (i.e., g is flat).
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Let
C={(9, k) M? 5% S?_ 5:1IR(g)—k-k+(trk)* =0
and d(k—g(trk))=0}
be the constraint manifold. Then the tangent space to € at (g, k) is given by
T €= {(h, w)| — A(tr h)+ 60h—Ric(g)-h—2(k—g trk)-w=0
and dw—dtrw+3k-Vh—%k-dtrh=0}. (2.4)

Since m is invariant under the action of 78 1.5 dim(g, k)-(h, w)=0 if (h, w) is
tangent to the orbit of (g, k) under 272, , ;.

By a theorem of O’Murchadha and York [22], which can be easily proved in
our M? ; context, to every asymptotically euclidean spacetime satisfying the weak
energy condition admitting a maximal slice (i.e., one whose second fundamental
form has zero trace), there is a vacuum spacetime admitting an instant of time

symmetry and smaller, or equal mass. Thus, we can restrict outselves to the case
k=0, since maximal slices exist for spaces satisfying the strong energy condition

(2.3)

([12, 107).

Define

m:MP s—IR,
by

16”"—1-(9) = Cﬁoo (ajgij— aigjj)dSi - ij(g)dﬂ(g) 2.5
so that

167dimi(g)-h = (Ric(g) —g R(g)) -hdu(g), he S? ;. 2.6)

The constraint set becomes ¥ = {ge.#? s|R(g)=0}, which is ([13, 18]) a manifold
with tangent space consisting of he S? ; satisfying

— A(tr h)+ 60h —Ric(g)-h=0. 2.7
Note that if ge %, i.e. R(g)=0 holds, then
16mdm(g)-h= | Ric(g)-hdu(g) . (2.8)

Again, let m be the restriction of i to &, so (2.8) holds for m.
2.1. Lemma. ge.#? 5 is a critical point of m if and only if Ric(g)=0.
Proof. Suppose ¢ is a critical point of m. Then
JrsRic(g)-hdu(g)=0
for all he T, €. For ke S? ; arbitrary, let
h=k—%gtrk+igt 2.9
where 7 is defined by
2 v =56k —1 A trk—Ric(g) k. 2.10)
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A unique such te M? ; exists, since 4:M? ;—M?_, 5., is an isomorphism. Then
one checks easily that h given by (2.9) satisfies (2.7); trh=rt, and d6dh=
80k —% A(tr h)+ 5 4t. Moreover,

[ Ric(g)'h du(g)= [gs Ric(g)-kdu(g).

Since R(g)=0; this vanishes for all keSE; only if Ric(g)=0 and so the lemma
follows. U

2.2. Lemma. If s=3, ge /!, and Ric(g)=0, then ge(,, the orbit of flat space
under 9%, 1 5_, (see Lemma 1.1).

Proof. Since ¢ is flat and asymptotically euclidean, its exponential map will be a
difffomorphism. As in Fischer-Marsden [18], §4, this map will be of class
PP, 51 (See also Lemma 5.2 below.) It follows that ge @,. O

3. The Second Derivative of m

From now on, assume s=3, §=0 and 3<p<6, and recall from Lemma 1.3 that
if fe ME s then feLsand DfelL,.

3.1. Lemma. The second derivative of m is given by
16nd*m(g)(h, h)=% [ s Vh-Vhdu(g) + [ { —3(d trh)
—(8h)* —(d trh)-6h— (tr h)(Ric(g)- h)
+Ric(g)-h x h}du(g)
+ [s GER(g)(tr h)> — R(g)(h- h) }dp(g) (3.1)
where - is contraction of tensors and (h x h);;=hyh’.
Proof. Again, a straightforward though tedious computation. O

If Ric(g)=0, trh=0 and 6h =0, (3.1) reduces to (twice the square of) the energy
norm for the inner product

Chy kY y= (s Vh-Vkdu(g) . (3.2)

We already know this is well defined; see Lemma 1.3.
As in Ebin [15], p. 19, one proves the following (using the properties 1 and 2
of M? 5 spaces from § 1).

3.2. Lemma. {, ), defines on JM?E; a smooth weak Riemannian structure which
has a smooth connection V.

As noted in 1.3, we shall let || | denote the energy norm in the Euclidean
metric; ||hz=<h, h), = [gs|0h;,1*d>x.

4. Local Positivity of m in a Slice

Let S={ge.?,|g"I'’;=0}; ie, metrics for which euclidean coordinates are
harmonic. This condition arises in the study of the initial value problem for
general relativity (Choquet-Bruhat [11]).
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4.1. Lemma. SC.#?; is a C* submanifold in a neighborhood of y. Furthermore,
S is modelled on the Banach space
E,={h,eS?;|0,h, —3d tr,h; =0} .
Proof. We first show that S?; splits as a {, ), orthogonal topological sum
S?;=E, ®E,

where E, = {(h2)ij = _%A'y_l(aiuj + ajui) + %(Ay_lalul)éijlquMg—l,é+1}CS€,6'
Indeed, let heS?; Let a;=0dh;—50hyeM?_; 5., and let u;=—2a; +
30,4, ' d,a. Note that du;= —3d,a; since 4,= 0,0, and ¢; and 4, commute since

we are at flat space. (V; and 4, ! do not, in general, commute for g+7.) Define h,
as above and let h; =h—h,. Then h, € E; since
5yh1 _%d tr, hy= aihij_%ajhii - 6i(h2)ij+%aj(h2)ii
= aihij_%ajhii_]_%aiAy— l(ai”ﬂ' ou;)
— 50,4, N(0u)d;;—50;4; 1(Ou;+ )
+%aj(A;—lalul)5ii
=a;+3u;—%0;,4; 1 0a;+%0,4; ' o
'I‘%a}Ay_ L Qai —%'% ajAy_ 1(aia,~)

=a;+%u;—%0,4; ' 6,a,=0

by definition of u;.
If h,eE{h,eE,, and L, denotes Lie differentiation,

Chys hyy = Vhy-Vhydu(g)
=—[hyAhydx=—[{—%5h,-Liy+% tr,h, 6u}dx
= —[(0,hy —Ld tr, b udx=0.

Thus E, and E, are {, ), orthogonal. Thus the splitting is algebraic. Since E,
is the image of a continuous linear map and E, is closed, E, is closed and the
sum is topological (see, e.g.: [2], Lemma 4.5).

In a neighborhood of y any g can thus be uniquely written g=y+h,+h,
where h;e E,. Consider the mapping y of a neighborhood of zero in E;®E, to
ZP_ 1 s5+1 (vector fields of type MZ_, ;. 1) by (hy, hy)—=(y+hy+hy)-T'(y+hy +hy).
By the earlier properties of Sobolev spaces, v is clearly C*. The partial derivative
with respect to h, at (0, 0) is the map E,—>%7_, ,_, given by h,—d,h, —%d tr, h,.
This map has kernel zero since E; and E, are <, )y orthogonal and the map is
onto since given a;eX?_, ;,,, define u;= —2a;+30;4; ' ,a; as above and let h,
be as in the definition of E,. Then d,h, —%d tr,h, =a as in the above calculation.

Thus, by the implicit function theorem (i is a submersion), S is a manifold
near y. Ol

The same type of reasoning will prove that near y, NS is a submanifold of
A ;. However, since we shall need the {, ), orthogonal decomposition for the
subspace T,(¢NS) explicitly, we shall give some additional details.
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4.2. Lemma. There is a neighborhood V of vy in M~ ; such that for geV, St 5 admits
the {, », orthogonal decomposition as a topological sum

8% 5=B(9)@® B1(9)
where
B,(9)={h,eS? ;| A(h;)= — A, tr by +0,0,h,
—Ric(g)-h,=0 and a,h,)=0,hy —3d tr,hy —h,-T'(g)=0}
and

B,(g)={h,eSE,| thereisa UeMEf; and ueZ?_, ;.

such that
hy=hy(U,u)= —gU+ 4, ' (Hess, U —Ric(g)U)
345 (Lg—gou)— 45 (I(g)-u)} .
In fact, €nSNV is a submanifold of MY 5 with tangent space given by
T(¢nS)=B4(9),
ie, he T, NS iff
and hA if;ﬁf ;Z(Sjlh.lr{(l;)(i)oh 0 @.1)
gt 2M g :
Proof. First of all we note that B,(g) and B,(g) are <, ), orthogonal. Let h, € B;(g)
and h,e B,(g). Then
Cys 1D = s Vs -Vyhadug)
= _jma hy - Aghydp(g)
= — s {—trhy4,U+h, -Hess, U — h, -Ric(g)U
— 3y Lug—tr,hy -8,0)— hy -(T(g)-w)}dug)
= —f (AU +aylhy)-uldulg)
=0.
Now define for ge.#? ; the linear mapping
Ay M s X XYy 511 ME 5 5402 X X5 1 541
AU, u)=(L(U,u), [,(U,u)
where
LU, w)=A4,U+ViV' 4, (V,0,U)— ViVi(4; 'R;,U)
—ViVA;  GVu+5Vu,— Ty
and
(U, w);= ViAg_ 1(l7i6jU —R;U ——%Viuj
—3Vu) = VA7 (Thu)+50,4; vl
—(I-hy(U,w);.
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As in [18], § 3, one sees that A, is a C* function of g with values in the Banach
space

LME s} Ly 501 ME_ 2 502X X% 1 54 1)
of continuous linear maps.
The maps L, | are defined so that
Ay hy)=L,(U,u) and ayhy)=1(U, u)
where h,=h,(U, u) is given in the definition of B,(g). This can be verified by a

straightforward calculation.
For g=7 we have

L(U,u)=24,U— du,
and
(LU, w);= ;U —su;— 50,4, * du; .
Since L (U, u)=F and L(U, u)= f have a unique solution, namely
U=4;'3F-25f) '
and
u;=2{0,4;'F — 0,47 '6 f— f}}

we see that A, is an isomorphism.

Therefore, since the isomorphisms are open, there is a neighborhood V of y
such that for ge V, A, is an isomorphism.

Given heS?;, geV, let (U, u)=A, *(A,(h), a,(h)) and h,=h,(U,u)eB,(g). Then
hy=h—h, clearly belongs to Bi(g), since Ay h,)=A, h)— A, h;)=L,(U,u)—
A,(h,)=0 and similarly, a,(h;)=0.

Thus we have an algebraic splitting and, as in Lemma 4.1, the splitting is
then topological as well.

Finally, we consider the map

2iME oML g 512 X EL 1 541
2(9)=(R(g)g-T).
As above, Z(g) is C* and has derivative DXZ(g) given by
DX(g)=0 on Blg)
DX(g)=(A,a,) on Bs(g).

Therefore, by the above, DX(g) is an isomorphism on B,(g) for ge V. The lemma
therefore follows. O

This argument also contains the proof that € is a manifold near y ([13, 18]).
In the sequel, ¥ S will stand for #nSnV.

4.3. Theorem!. There exists an ¢>0 such that for ge¥€nS, |g—7| My, <& and
g=+7, m(g)>0. In fact, m(g)= C||g—y| for a constant C>0.

This result can also be proved using the Morse lemma on Banach manifolds, in the formulation
given by Tromba [28] (see also [18], Lemma 5, p. 543). However, it seems simpler to give a direct proof.
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Proof. Let V,={ge€nS||g—7yluz,<e} and let g(¢) be a smooth curve in V,
joining y to ge Vs, 0<t=<1. Since y is a critical point of m, m(g)=m"(g(z))/2 for
some 1, 0<t< 1. However, if we let h=g'(t) and k=g"(¢), then

m'(g(t))=d*m(g(t))(h, h)+dim(g(t)) k.

Since g(1)eénS, h satisfies (4.1). From 3.1, writing | —3(d trh)*du(g) = [ 3(tr h)-
A(tr h)du(g), using (4.1) and replacing 6h by 3d trh—h-I" from 4.1, we get:

m"(g(t)) = fs {3Vh-Vh—Jtr h Ric(g)-h+Ric(g)-(h x h)

+3d(trh)-(h-T')—(h-T')(h-T')+Ric(g)-k}du(g) - 4.2)
In order to estimate (4.2) we use the following estimate noted in Lemma 1.3.
171 S CI S 43)
from which we get, by Holder’s inequality,
fgof2ed®x|= llells2 |l fIZs= Cllel o S - (“.4)

The following lemma estimates the Ricci tensor:

4.4. Lemma. If ge #? ; and ¢=Ric(g), then

lellsn=Cllg=7linmz, - (4.5)

Proof. One uses the explicit expression for Ric(g)=R;, R;;=3¢"{— dug;;—
B+ Ongu+ gy — 9l 59 TV + "9, %I The terms in braces can be
estimated as follows:

“gij hkglm|3/2d3x§Sup|gij|3/25|5%kglm|3/2d3x .

2p . 2p
3’q'—2p_37

JIfPPE<{J il fPPP X[~ T dx M
If we choose y(x)=(1+|x|*)*'%, we get
JIfPPEx< C{fo?| fIpd®x )

Let f = dyg;,€ M?_ 5 5., so that with g= Hoélder’s inequality gives

d3
since a(x)=]/1+|x|*, and jw < o if ¢ > 1. Therefore,

1f 152 = Cllo? f s = Clg—7ylne,

from the definition of the M? ; norm.

Since [|g—7yllco= Cllg—7lmz,, We have the required estimate on the terms in
braces. For the remaining terms, we must estimate |0,y 0gymllrs2. Taking
f= 6igklEM€—1,a+ 1» and ¢= ajgmneMg—l,M 1» we have (using |XY|§%(IX|2 + |,V'2)

J1fo1PPdx <3(J1 fPdx + [ |9 d>x)

<30 /o) a0 d )
+3(fa PP a3 x) ([ o 39 dPx) e
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Now we choose g=p/3 to arrive at, as above,

SIfoPPdx< o f s+ llod L)
=Clg—=7llmz,-

These estimates prove Lemma 4.4. O

Combining (4.4) and (4.5), we see that the second and third terms of (4.2) are
<Clg—lI Mgéllhllfg. The fourth and fifth terms can be similarly estimated, and
[ Vh-Vhdu(g) differs from |/h||} by terms of the same sort.

Lemma 4.2 proved that {, >, has a smooth orthogonal projection

Py T ME s~ T(ENS), gebNS.

Combining this with 3.2, we get (see [15, 16]):

4.5. Lemma. The weak Riemannian structure induced on €S by {, ), has a smooth
connection.

If g(t) is a geodesic curve for (, ), then as the connection is smooth in the
M? ; topology we can shrink V, to assure that g(t)e V,, i.e, there is a {, ), normal
coordinate neighborhood about y which lies in the M? ; e-ball. Therefore, |A| g
is equivalent to ||g—y|l or the E-distance from g to 7, in a neighborhood of 7.

We shall need to expand on these points somewhat. A geodesic ¢(t) for {, ),
on ¥nS satisfies the equation obtained by differentiating X(g(¢))=0 twice:

dg dg
2 —_ —_—
+D Z(g)( b dt)

d*g
dt?

DZ(g)

d .
with g(t)e €nS, EgieBl(g). In the usual way, the acceleration is orthogonal to

dZ
€nS :;h—fe B,(9).

Recall that 2(g)=(R(g),g-I(9)), DX(9)e L(S{s5 ML 5 5+2% %% 1 5+1) and
D*3(g)e L*(S2 5 MP_, 5., X% 4 5+4) (the continuous bilinear mappings).

We shall use these remarks to prove the following, which deals with the last
term of m”.

2

d d
4.6. Lemma. If g(t) is a geodesic in €nS from yto g, h= d_i and k= d—tg’ then

|[z2 Ric(g)- kdu(g) < Cllg—7ylisz, k] -

Proof. Since ke B,(g) we can write

k= —gV +4; *(Hess,V —Ric(g)V
—5L,g+%96,0—I(g)-v)
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for Ve M? s and ve Z%_, 5. ,. Using R(g)=0, we have:

I=ys Ric(g)- kdu(g)
= {54, ' Ric(g)4 kdu(g)

= [ (AV + pv)dp(g)
where 2 =V,74; 'RY—R;,A; 'RY and @/ =V,A; 'RY — T}, 4; 'R™.

By Lemma 4.2 and the remarks above, (V,v)=4, 1(Ag(k), a, (k)=
A, (DX(g)-k) = A;‘(DZZ(Q)(h, h) = A, '(D,A,(h)-h, D,a,(h)-h). Let F=D,A,(h)-h
and f=D,a,(h)-h, and let M? ; denote functions whose difference with a constant
isin M% ;. From the expressions for 4, and a, (see Lemma 4.2), F is a linear combina-
tion of terms h-&*h, oh-6h, h-0h and h-h with coefficients (depending on g) in
M?P g, MP s, M?_ | 5., and M?_, ;. , respectively. Similarly, f is a linear combina-
tion of terms h-dh, and h-h with coefficients in M?; and M?_| ;. respectively.

Write?

I=[g2 (s p)-(A5 ' (F, /)dpu(g)
= {3 ((A5) " (A w)-(F, Ndulg) .

The function (A3) (4, w) is a smooth function in M2 ; of ge.#? ;. Then the terms
from F involving dh- 0h, for example, have the form

[g30(9)0h- dhdx

for o(g)e M5 0() =0, ¢(g) depending smoothly on g. Since [je(9) == Cllg —7lluz,
we get a bound of the form Cllg—7| vz, ||h]|2. Similarly, terms from F or f of the

form fys0(g)h-ohdx are bounded by 1] sl @)l s = ClIAIE Ie@yz-., .
(since s=3) < C|h|3llg— |z . Terms of the form h-h are handled as in Lemma
44 and terms involving h-&*h are reduced to those just treated by integration
by parts. This yields Lemma 4.6. O

Theorem 1 foliows, for putting these inequalities together,
Im"(g(0)—1/21lhlIEI = Cllg— 7]z, b1
so if ||g—7|yz, is small enough,

m'(g0)= Cllh|z=Cllg =yl -

5. Local Positivity of m

To show m>0 in an M?; neighborhood of y, we shall actually show S is a slice
in the sense of Ebin and Palais (see [15]), using the action of P2, ;_;.

5.1. Theorem. There is an M? ; neighborhood of y in which m>0; m=0 only on
metrices isometric to 7.
It suffices, by 4.2, to prove:

> The adjoint here is taken, in the usual L, sense and exists since A, is a pseudodifferential operator.
It can be calculated explicitly from the expression for 4,
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5.2. Lemma. If ¢ is sufficiently small and |g—ylly, ,<é& then ¢*geS for some
PeDli 51

Proof. Let, in Euclidean coordinates, ¢ have components x' + f(x’). Then ¢*geS
if 4,0'=0, ie, 4,f'=I"%g"* Now I',g’* is not in M?_, ,,, necessarily, so we
cannot yet apply 4, However we can differentiate, letting F' be the differential
of f% so F'is a one form and denoting by A the Lapalce-DeRham operator on
forms, to obtain?

4,F' =dH'

where H'= F‘kgf" Since A is an 1somorphlsm of M¥;to ME_, 5., there is a
unique solutlon F'e M? , However, since s=3 we can assert A ng i=dA F‘
d(dH)=0, so dFi=0. Thus Fi=df' for some f*. (Explicitly, we can choose

Si(x)=[§ Fi(tx)  xdt

from the proof of the Poincaré lemma.) Since F ‘eMg’ 5 we see that df'e M?,, s
for g*I"y small in M2_, ;. ,, df' will be small in MZ?, so ¢ will be a C' dlffeo-
morphism. Thus 2?2, | ;_;. O

Remark. The coordinate invariance and the slice problem are discussed in an
interesting manner in [9] using the ideas of York (see [22]). This might lead to an
alternative method to that here.

One can deduce a number of corollaries which are implicit in the literature
cited. For example (see [1]), if ge.#? ;, peME;+{1} and 4,46 +8R(g)p=0 (so
that R(¢*g)=0), then if ¢*g is near flat space, but ¢*g=+0,, ¢p*g—y cannot fall
off faster than 1/r at co, since the mass of ¢*g is positive.

6. Remarks on Global Positivity

Let Y be the <, ) gradient of —m on %. It is the projection on ¥ of —gradim=
A, ' Ric(g) (see 4.1,4.2)* Then Y is a smooth vector field on %, in the M2 ; topology.

From the above work, it follows that ¢, is an attracting set for Y; i.e., there
is a neighborhood U of @, such that if ge U, the Y-trajectory of g tends to ¢, as
t— 0.

If we could show |Y(g)|z=&>0 for g outside such a neighborhood U, then
m would be >0 globally. Indeed, it is not hard to see that A= {g|the Y trajectory
of g—0, as t— + o) is both open and closed in that case.

One can contemplate more sophisticated methods as well, such as the minimax
principle (cf. Palais [25]); however, there seem to be serious technical obstacles.
For example, we did not prove that there is an ¢>0 such that along any curve
g(t) emanating from 7, m must reach the value e. Such a property would seem to
be crucial for the use of the minimax principle.

3 ¢ is a harmonic map from (R3, g) to (R?, y) so general invariant formulas from Eells and Sampson
([17]) are available. However, it is just as easy to proceed directly in this case

*  One can also use Y(g);;=47'R;;—%9,,4 *(Ryd ™~ 'R"™—F,V,4~'R™) which is a pseudo-gradient:
dm-Y =<4~ Ric(g), 4~ * Ric(g)»,>0 if Ric(g) +0
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