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Abstract. The local mass problem is solved. That is, in suitable function
spaces, it is shown that for any vacuum space-time near flat space, its mass m
is strictly positive. The relationship to other work in the field and some discus-
sion of the global problem is given. Our proof is, in effect, a version of critical
point analysis in infinite dimensions, but detailed Lp and Sobolev-type
estimates are needed for the precise proof, as well as careful attention to the
coordinate invariance group. For the latter, we prove a suitable slice theorem
based on the use of harmonic coordinates.

0. Introduction

For some time there has been controversy over the definition and positivity of
the mass of an asymptotically euclidean (vacuum) solution of Einstein's equations.

Brill [3] established positivity for time-symmetric and axial-symmetric
spacetime. Araki [1] proved the positivity of the second variation of the Schwarz-
child mass of a certain class of time-symmetric solutions constructed by conformal
methods. Finally Brill and Deser [4] outlined a proof of positivity in the general
case.

The method of Brill and Deser is to show that the mass function has only one
critical point, namely at flat space and that the second variation is strictly positive
there. The proof is, however, incomplete for four reasons.

First of all, they assumed the existence of maximal slices (i.e., slices whose
second fundamental form has zero trace), which was open to question. Secondly,
the topology in which the second variation is positive definite is not the same
as the topology on the initial data set, so that it is far from obvious that flat space
is a local minimum. Thirdly, the problems connected with the coordinate in-
variance group require attention on the space of initial data as well as on an
infinitesimal level (the quotient space may well be singular). Fourthly, the global
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assertion that a real valued function with a single non-degenerate critical point
which is a local minimum has that point as a global minimum is not true. Counter-
examples are easly constructed on R 2 .

These problems have been pointed out by several authors. For example,
Geroch [20] has a summary of what is known. O'Murchadha and York [22]
have speculated that, because of the first difficulty, negative (and therefore
arbitrarily large negative) mass might exist. Similar problems with the Bondi
mass have been pointed out by Robinson and Winicour [27].

Recently, new interest in the mass problem has been sparked by the proof
that maximal slices do exist (Choquet-Bruhat [12], Cantor et al. [10]). This shows
that the first difficulty above may be eliminated.

We can divide the mass problem into two parts corresponding to the second
and third and the third and fourth difficulties:

(i) local problem: is the mass positive near flat space?
(ii) global problem: is the mass positive for a spacetime that can be connected

to flat space?
Up until now, neither question has been answered in rigorous fashion. The

purpose of this paper is to show that (i) has an affirmative answer. We shall also
make some additional remarks on (ii).

Our proof consists of two parts. We must reduce things to a nondegenerate
situation by eliminating the coordinate invariance. For this we construct a local
slice for the action near flat space, using harmonic coordinates. Secondly we
must show that on this space, flat space is a local minimum by making some
estimates. Our procedures are inspired by the use of weak Riemannian structures
in [15,16] and Tromba's Morse theory for weak Riemannian structures [28, 29].

We wish to thank J. Arms, A. Fischer, R. Sachs, A. Taub, A. Tromba and A. Weinstein for several
useful remarks.

1. Notation and Function Spaces

For l < p < o o , δeWL and seZ+, let Mf^(IR",IRm) be the completion of the C00

functions / :IRn->IRm with compact support using the norm

ιmua= Σ \wδ+^f\\LP

where σ(x) = (ί + [x|2)1 / 2 and Daf is the (total) derivative of/ of order a.
Note that if/eMf^ then DfeMp

s_1>δ+1.
These spaces were introduced and studied by Nirenberg-Walker [24] and

Cantor [6, 7]. Various properties of these spaces, proved in these references,
will be needed. For example:

1. If p>n/(n-2), δ = 0 and s^2, then the Laplacian Δ :Mξ>(5->Mf_2tδ + 2 is an
isomorphism (onto).

2. If p> 1, s>n/p, δ^O and 0^/^s , then multiplication

is continuous bilinear.
3. lϊ s>n/p + k, then MξfδcCk, with the inclusion continuous.



Local Mass Problem in General Relativity 285

For purposes of this paper we shall choose n = 35 δ = 0, 3<p<6 and s ^ 3 .
The reason for p > 3 is so that property 1 holds. The reason for p < 6 is contained
in Lemma 1.3 below.

On IR3, feMp

tδ has the intuitive meaning that f~-9 Df~\, ...,Dsf~

at oo, provided p > 3 , δ = 0. In particular, note that for such an /, / φ L2

but it is reasonable that DfeL2.
Let y denote the standard euclidean metric on IR3 and let Jίp

>δ denote the set
of Riemannian (positive definite) metrics g such that g — γeMP

δ. Then Jίp

jδ is an
open cone in Sp

tδ+{γ}, where SP

δ denotes the Banach space of symmetric 2-tensors
of class Mp

iδ. Thus, the tangent space to Jfξiδ at g is TgJΐp

fδ = Sp

>δ.
Let J:IR3->IR3 be the identity map and let Q)v

δ denote the diffeomorphisms η

of IR3 such that η-I and η'1-! are of class Mp

 δ. If s > - + l, <5^0, then 2p

sδ

P
is a smooth manifold and a topological group (Cantor [7]).

It is convenient to enlarge ®J + 1 > ( 5 _ 1 somewhat. Let ^p

+lfδ-ί denote those
diffeomorphisms η of IR3 such that dη and dη~ι are of class Mp

)δ. Again, @s+i,δ-i

is a topological group and a smooth manifold if s >- and δ ̂  0. This and the
P

following can be proved as in Cantor [7] (see Ebin [15] for the case of compact
manifolds instead of IR").

1.1. Lemma, ^f +1,5-1 acts continuously on Jίp

tδ by pull-back: (rι,

This uses the multiplication property 2. above and the fact that composition

is continuous.
We remark that the orbit ΰy of flat space need not be a submanifold of Jtρ

tδ.
If we were to let @P

+1}δ act on Jtp

iδ + u (9y would be a submanifold but Jίp

iδ+1

has too strong asymptotic behavior to be useful for present purposes.

1.2. Lemma. // σfeLp(W\ then feLr provided p^r>3p/(p + 3).

Proof. By Holder's inequality,

where q = p/r, - + — = 1. The last integral is finite if rq' = rp/(p — r)>3; i.e., if

r>3p/(p + 3). D

1.3. Lemma. // 2 ^ p < 6 , ^ = 0 and s^2, then feMξ>δ implies feL and DfeL2.
In fact, if we write | | / | | | = \\Df\\i2 (the "energy norm"), we have inequalities

\\f\\L*ύ(Constant) \\f\\Eύ(Constant) \\f\\Pti<i.
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Proof. If / is in some Lq space, we have the inequality | | / | | L 6 ^ C\\Df\\L2 (see
Nirenberg [23]). Thus we need only show DfeL2. However, σDfeLp so by
Lemma 1.2, DfeLr, p^r>3p/(p + 3). For p<6, 3p/(p + 3)<2, so r = 2 can be
chosen. D

2. The Mass Function and Its First Derivative

Define m:JΐlδxSξ-ίtδ + ί-+WLby

16πm(g, fc) = k o ( ^ y - digjj)dSi-^(R(g)-kk + (tvk))dμ(g))

= LΛdidjgij-didigjJ¥
3x-^(R(g)-hk+(trk)2)dμ(g).

Here, (j)̂  denotes the surface integral at infinity in euclidean coordinates, R(g)
is the scalar curvature of g, tvk = trgk is the trace of k with respect to the metric g
and dμ(g) is the volume form of g. One may alternatively write

where DR(y) h is the derivative of R(g) at γ in direction h;R:J^P

ίδ-^MP_2ίδ + 2

is a C° mapping with derivative DR(g)-h= — A(trh) + δδh — Ric (g) h where
A = Ag=ViA

i is the Laplacian and (δh)j = (δgh)j=Vih
ί

j is the divergence - cf. Lich-
nerowicz [21] and Fischer-Marsden [18]. Notice that

jR3 DR(y) hdμ(y) = J R 3 DR(g) hdμ(g) + J R 3 Ric (g) hdμ(g)

since g is asymptotically equal to y.
As remarked by DeWitt [14] and emphasized by Regge and Teitelboim [26],

in(g) is the numerical value of the "real" Hamiltonian which generates the dynam-
ical Einstein equations.

It is not hard to check that in is a well defined C00 mapping, using our choices
of p, s and δ. On the constraint submanifold of relativity, in coincides with the
usual formula for m in Brill and Deser [4]. (See Choquet-Bruhat and Deser [13]
and Fischer and Marsden [18,19] for the proof that the constraint set near y is
actually a C°° manifold.) Also, m and m are invariant under the action oϊί$p+ltδ-v

The first and second derivatives of in can be calculated in a straightforward
manner using the formulas for the derivatives of R(g) and Ric(g) (the Ricci tensor)
from Lichnerowicz [21]. One obtains

16πdin(g, k)-(h, w)

= LjRic(g)-^(R(g)-k-k + (tΐk)2)\-hdμ(g) (2.2)

for the derivative of m in the direction (h, w)eSξ\δ x Sf_x tδ + ί at the point (gf, fe).
Observe that in (2.2) there are no constraints or trace conditions used.
From (2.2) it is obvious that (g, k) is a critical point of in; i.e., dm(g9 k) = 0, if

and only if k - g tr k = 0 (i.e., k = 0) and Ric (g) -1 Λ(gf) = 0 (i.e., gf is flat).
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Let

%={(g,k)eJέp

s>δxS^Uδ+ί\R(g)-k-k + (Xrk)2=0

<xndδ(k-g(trk)) = O}

be the constraint manifold. Then the tangent space to ί? at (g, k) is given by

and δw-dtrw+^k'Vh-^k dtrh = O}. (2.4)

Since m is invariant under the action of @ip+ 1 ( 5, dm(g, k)-(h, w) = 0 if (h, w) is
tangent to the orbit of (g, k) under 2P

+ 1>δ.
By a theorem of O'Murchadha and York [22], which can be easily proved in

our Mp

tδ context, to every asymptotically euclidean spacetime satisfying the weak
energy condition admitting a maximal slice (i.e., one whose second fundamental
form has zero trace), there is a vacuum spacetime admitting an instant of time
symmetry and smaller, or equal mass. Thus, we can restrict outselves to the case
fc=0, since maximal slices exist for spaces satisfying the strong energy condition
([12,10]).

Define

by

16πm(g) = §„ {djQij - d^μs, - JR 3 R(g)dμ(g) (2.5)

so that

16πdfn(g).h = ̂ 3[Ric(g)-ΪR(g)j hdμ(g), heS^. (2.6)

The constraint set becomes ($={geJ?P

)δ\R(g) = 0}, which is ([13,18]) a manifold
with tangent space consisting oϊheSP

δ satisfying

-A(trh) + δδh-Ric(g)-h = O. (2.7)

Note that if gεtf, i.e. R(g) = 0 holds, then

ΐ6πdm(g) h = ̂ 3Ric(g) hdμ(g). (2.8)

Again, let m be the restriction of m to <&, so (2.8) holds for m.

2.1. Lemma. geJίP

δ is a critical point of m if and only if Ric(g) = 0.

Proof. Suppose g is a critical point of m. Then

for all he T<β. For keSξιδ arbitrary, let

h = k-±gtvk + ±gτ (2.9)

where τ is defined by

. (2.10)
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A unique such τeMξtδ exists, since Δ :Mξiδ-+Mξ_2,δ + 2 *s a n isomorphism. Then
one checks easily that h given by (2.9) satisfies (2.7); tr/z = τ, and δδh =
δδk—%A(trh) + ̂ Aτ. Moreover,

Since R(g) = 0; this vanishes for all keSP

δ only if Rk%) = 0 and so the lemma
follows. D

2.2. Lemma. // 5^3, geJip

>δ and Ric(#) = 0, then ge&γ9 the orbit of flat space
under @p

+ίδ_ί (see Lemma 1.1).

Proof. Since g is flat and asymptotically euclidean, its exponential map will be a
diffeomorphism. As in Fischer-Marsden [18], §4, this map will be of class
@p

s+i,δ-i- ( S e e a l s o Lemma 5.2 below.) It follows that geΘr D

3. The Second Derivative of fh

From now on, assume 5^3, δ=0 and 3<p<6, and recall from Lemma 1.3 that
if feMp

sδ then feL6 and DfeL2.

3.1. Lemma. The second derivative of fh is given by

16πd2m(g)(K Λ)=4fR3 Vh Vhdμ(g) + ̂  {-$(d tr/z)2

- (δh)2 - (d tr h)-δh- (tr ftXRic (g) h)

+ Ric(g) hxh}dμ(g)

+ \^UR(g)(trh)2-R(g)(h.h)}dμ(g) (3.1)

where is contraction of tensors and (h x Λ)ίi7 = /ίiZftJ .

Proof. Again, a straightforward though tedious computation. D

If Ric(#) = 0, tΐh = O and δh = O, (3.1) reduces to (twice the square of) the energy
norm for the inner product

<Kk>g = L^h Vkdμ(g). (3.2)

We already know this is well defined; see Lemma 1.3.
As in Ebin [15], p. 19, one proves the following (using the properties 1 and 2

of Mξiδ spaces from § 1).

3.2. Lemma. <(, }g defines on Jiv

iδ, a smooth weak Riemannian structure which
has a smooth connection V.

As noted in 1.3, we shall let || \E denote the energy norm in the Euclidean

metric; ||Λ||i = <A,A>y = J R 3 |δ z Λ i /d 3 x.

4. Local Positivity of m in a Slice

Let S={geJip

sJ)\gljrk

ij = 0}\ i.e., metrics for which euclidean coordinates are
harmonic. This condition arises in the study of the initial value problem for
general relativity (Choquet-Bruhat [11]).
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4.1. Lemma. ScJίξ^ ' s a C°° submanifold in a neighborhood of γ. Furthermore,
S is modelled on the Banach space

Proof. We first show that Sfό splits as a <, ) y orthogonal topological sum

w h e r e E2 = {(h2)υ = - ^ Δ ^Uj + djuj + h i Δ ^ δ ^ δ ^ ^ l
Indeed, let heS*tδ. Let aJ=dihij-%δJhi,eMξ-Uδ+1 a n d let u}= -2a} +

f djΔy^dfii. Note that δμ— —^djOj since Δy = δiδi and δ} and A'1 commute since
we are at flat space. (Fj. and Δ~ι do not, in general, commute for gφy) Define h2

as above and let h1 = h — h2. Then h1eE1 since

δyh, -\d tryh, = dihiJ-^djhii-dι(h2)iJ+^dβ2)ii

; \diUj+ djUi)

by definition of Uj.
\ϊhίeEίh2eE2, and Lu denotes Lie differentiation,

= -$h1Ayh2dx= -§{-jhί Luy+jtryh1δu}dx

Thus Eι and E2 are <, ) y orthogonal. Thus the splitting is algebraic. Since E2

is the image of a continuous linear map and Ex is closed, E2 is closed and the
sum is topological (see, e.g.: [2], Lemma 4.5).

In a neighborhood of γ any g can thus be uniquely written g = y-\-h1 + h2

where h^E^ Consider the mapping ψ of a neighborhood of zero in E1®E2 to
#?-i,a + i (vector fields of type M f _ l f ί + 1 ) by (/zl5/z2)^(7 + /z1+/z2) Γ(7 + /zi + /z2).
By the earlier properties of Sobolev spaces, ^ is clearly C00. The partial derivative
with respect to h2 at (0, 0) is the map u ^ - ^ f - i ^ - i given by h2^δγh2—jdtryh2.
This map has kernel zero since Ex and £ 2 are <, >£ orthogonal and the map is
onto since given ajeS£^liδ+v define Uj= —la^^djA^d^ as above and let h2

be as in the definition of E2. Then δyh2 —\d tryh2=a as in the above calculation.
Thus, by the implicit function theorem (ψ is a submersion), S is a manifold

near γ. D

The same type of reasoning will prove that near y, ^ n S is a submanifold of
However, since we shall need the <, }g orthogonal decomposition for the

subspace T (ΉnS) explicitly, we shall give some additional details.
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4.2. Lemma. There is a neighborhood V of y in Jiv

Sib such that for ge.V, Sξ.δ admits
the < , }g orthogonal decomposition as a topological sum

where

B1(g)={h1eSξJAg(hι)^-Λgtrgh1 + δgδβh1

H ^ O and αβ(Λ1) = δ βA 1-i

and

B2(g)={h2eSξιδ\ there is a C/eMf_a and ue&p

s-Uδ+ί

such that

h2 = h2(U,u)= -gU + Δ;1 (Hess9L/ - R i c

In fact, ΉΓΛSΓΛV is a submanifold of Jip

s<& with tangent space given by

i.e.,heTg<$nSiff

and - W + «fcRicto)*0 ,
δhkd{th)hΓ() O

Proof. First of all we note that B^g) and B2(g) are < , }g orthogonal. Let
and h2eB2(g). Then

β U-Zi! -Ric(g)U

= 0.

Now define for geJίp

s>δ the linear mapping

Λg(U,

where

and

u)=(Lg(U,

U))J=0Δ;

-(Γ

u),lg(U,u))

\VtdjU-RtjU

ui)-VΔ;1(r'ίf

h2(U,u))j.

)-VΨ{Δ~

'jUi-ΓfjUk)

uk)+idjΔ;

iRtjV)

1Vιu
ι
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As in [18], § 3, one sees that Λg is a C00 function of g with values in the Banach
space

s-1,(5+1? ^s-2,δ + 2 X^s-l,δ+l)

of continuous linear maps.
The maps L, / are defined so that

Ag(h2) = Lg(U,u) and ag(h2) = lg(U,u)

where h2 = h2(U,ύ) is given in the definition of B2(g). This can be verified by a
straightforward calculation.

For g = y we have

Ly(U9u) = 2ΔyU-diui

and

(ly(U, u))j= djU-ΪUj-idjA 'dto.

Since Ly(U, u) = F and ly(U, u)=f have a unique solution, namely

U = Δ;1$F-2δf)

and

we see that Λy is an isomorphism.
Therefore, since the isomorphisms are open, there is a neighborhood V of γ

such that for geV, Λg is an isomorphism.
Given heS% geV, let (U9u) = Λg~

1(Aβι)9ag(h)) and h2 = h2(U,u)eB2(g). Then
h1 = h — h2 clearly belongs to 2^(0), since Ag(h1) = Ag(h) — Ag(h2) = Lg(U,u) —
Ag(h2) = 0 and similarly, α^(/i1) = 0.

Thus we have an algebraic splitting and, as in Lemma 4.1, the splitting is
then topological as well.

Finally, we consider the map

) = (R(g),g.Γ)

As above, Σ(g) is C00 and has derivative DΣ(g) given by

DΣ(g) = 0 on Bx(g)

(Ag,αg) on B2(g).

Therefore, by the above, DΣ(g) is an isomorphism on B2(g) for ^e V. The lemma
therefore follows. D

This argument also contains the proof that ^ is a manifold near γ ([13,18]).
In the sequel, ^ n S will stand for

4.3. Theorem1. There exists an ε > 0 such that for ge^nS, \\g — y\\Mpδ<ε
y, m(g)>0. In fact, m(g)^C\\g — γ\\l for a constant C>0.

This result can also be proved using the Morse lemma on Banach manifolds, in the formulation
given by Tromba [28] (see also [18], Lemma 5, p. 543). However, it seems simpler to give a direct proof.
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Proof. Let Vε={gE^nS\\\g — γ\\MPδ<ε} and let g(ή be a smooth curve in Vε

joining y to geVε, O ^ ί ^ l . Since y is a critical point of m, m(g) = m"(g(τ))/2 for
some τ, 0 < τ < 1. However, if we let h = g'(t) and k = g"(t), then

m"{g(t)) = d2m(g(ή)(K h) + din(g(ή). /c.

Since g(t)e<#nS, h satisfies (4.1). From 3.1, writing j -^(dtrh)2dμ(g) = Ji(trft)
Λ(tvh)dμ(g), using (4.1) and replacing <)/2 by jdtΐh — h-Γ from 4.1, we get:

x ft)

} d ^ ) . (4.2)

In order ;to estimate (4.2) we use the following estimate noted in Lemma 1.3.

ll/llz.Uc!|/||£ (4.3)

from which we get, by Holder's inequality,

|fR3/V3*l^llelL3/2|l/llί^c||ρ||L3/I||/||I. (4.4)

The following lemma estimates the Ricci tensor:

4.4. Lemma. If geJip

sδ and ρ = Rk%), then

(4.5)

Proof. One uses the explicit expression for Ric(g) = .R/7 , Rij-=kgkι{—ffki9ij~
%jQki+ %fin+ ftg^-guΓUg-Γf + g^mnnΠj. The terms in braces can be
estimated as follows:

L e t / = 3^0oeMf_2 ,5+2, so that with <7 = -y> ^ = , Holder's inequality gives

If we choose ψ(x) = (l + \x\2)3/2, we get

\\f\3t2d3xSC{\σ2p\f\pd3xγt(l

(px

since σ(x) = | / l + |x|2, and J - 2 3qt/2 < GO if qf>l. Therefore,
(1 -r x )

from the definition of the MP

>δ norm.
Since \\g — y\\co^ C\\g — y\\Mpδ, we have the required estimate on the terms in

braces. For the remaining terms, we must estimate H^/c/^mJlL3/2- Taking
f^digkleMp_Uδ + 1, and Φ=djgmnεMp_uδ+v we have (using |xj/|^(|:>c|2 + b;|2)
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Now we choose q=pβ to arrive at, as above,

These estimates prove Lemma 4.4. D

Combining (4.4) and (4.5), we see that the second and third terms of (4.2) are
ύ C\\Q —y\\Mf όW^Wί The fourth and fifth terms can be similarly estimated, and
j Vh-Vhdμig) differs from ||/z||| by terms of the same sort.

Lemma 4.2 proved that < , ) g has a smooth orthogonal projection

Combining this with 3.2, we get (see [15,16]):

4.5. Lemma. The weak Riemannian structure induced on ΉnS by < , }g has a smooth
connection.

If g(ή is a geodesic curve for <, }g, then as the connection is smooth in the
Mξ\δ topology we can shrink Vε to assure that g(t)e V& i.e., there is a < , }g normal
coordinate neighborhood about γ which lies in the Mξtδ ε-ball. Therefore, \\h\\E

is equivalent to \\g — y\\E or the E-distance from g to y, in a neighborhood of y.
We shall need to expand on these points somewhat. A geodesic g(t) for <, }g

on ΉnS satisfies the equation obtained by differentiating Σ(g(t)) = 0 twice:

dg
with g(t)ec£nS,—-eBι(g). In the usual way, the acceleration is orthogonal to

at

Recall that Σ{g) = {R{g\g Γ{g)\ DΣ(g)e2$% Mf_2>,+2 x^ζ.ltδ+1) and
D2Σ(g)e£?2(Slδ, Mf_2 δ + 2 x&p

s_ίδ+1) (the continuous bilinear mappings).
We shall use these remarks to prove the following, which deals with the last

term of m".

4.6. Lemma. If g(t) is a geodesic in ΉnS from y to g9h= — and k= —=-, then
dt at

\lR3Ric(g).kdμ(g)\SC\\g-γ\\sίJh\\2

E.

Proof. Since keB2(g) we can write
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for VeMp

s>δ and ve^P^1>δ+1. Using R(g) = 0, we have:

where A = V^Δ'^R^-R^Δg xRij and μj= V{Δ~ 1Rii-Γ\mΔg 1Rlm.
By Lemma 4.2 and the remarks above, {V9υ) = Λ~ί(Ag(k),ag(k)) =

Λ;\DΣ(g) k) = A-\D2Σ{g){Kh)) = Λ;\DgAg(h) hDgag(h) h). Let F = DgAg(h) h
and f=Dgag(h) h, and let Mf δ denote functions whose difference with a constant

is in Mξ)δ. From the expressions for Ag and ag (see Lemma 4.2), i7 is a linear combina-
tion of terms h cPh, dh-dh, h dh and h-h with coefficients (depending on g) in
Mξfδ, Mξ}δ, MP_1>δ + 1 and MP_2fδ + 2 respectively. Similarly, / i s a linear combina-
tion of terms h-dh, and h h with coefficients in Mp

δ and Mf_x δ + 1 respectively.
Write2

The function (A*)~ι(λ, μ) is a smooth function in Mξ>δ of geJίp

Siδ. Then the terms
from F involving dh - dh, for example, have the form

for ρ(g)eMp

iδf ρ(γ) = Q, ρ(g) depending smoothly on g. Since ||ρ(#)||Loo^ C\\g-γ\\MPδ

we get a bound of the form C\\g — y\\Mp ό\\h\\\. Similarly, terms from F or /o f the
form ^ρ(g)h 6hdx are bounded by ||Λ||L6||Λ||£||ρto)||L«^C||Λ||I||ρ(flf)||Mp_lid + 1

(since s^3) ^ C||/z|||||^ — y||M/d. Terms of the form h h are handled as in Lemma
4.4 and terms involving h &h are reduced to those just treated by integration
by parts. This yields Lemma 4.6. D

Theorem 1 follows, for putting these inequalities together,

so if \\g — y\\Mpδ is small enough,

m"(g(t))^C\\h\\feC\\g-γ\\2

E.

5. Local Positivity of m

To show m>0 in an Mξtδ neighborhood of γ, we shall actually show S is a slice
in the sense of Ebin and Palais (see [15]), using the action of @ξ+ίtδ-v

5.1. Theorem. There is an Mp

s>δ neighborhood of y in which m > 0 ; m = 0 only on
metrices isometric to y.

It suffices, by 4.2, to prove:

2 The adjoint here is taken, in the usual L2 sense and exists since Λg is a pseudodifferential operator.
It can be calculated explicitly from the expression for Λg
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5.2. Lemma. // ε is sufficiently small and \\g — y\\Ms ό<ε, then φ*geS for some
φ®

Proof. Let, in Euclidean coordinates, φ have components xι+fι(xj). Then φ*geS
if Agφ

ι = 0, i.e., Δgf
i = Ti^k. Now Γι

jkg
jk is not in Mξ_2>δ+2 necessarily, so we

cannot yet apply A'1. However, we can differentiate, letting F be the differential
of/1, so Fι is a one form, and denoting by Δg the Lapalce-DeRham operator on
forms, to obtain3

where Ui = Fi^kg
ik. Since Δg is an isomorphism of Mξtδ to Mξ_2,δ + 2> there is a

unique solution FιeMξ}δ. However, since s^3 we can assert AgdF^dAF1

ι) = 0, so dFι = 0. Thus F^df1 for some f\ (Explicitly, we can choose

from the proof of the Poincare lemma.) Since FieMp

δ we see that dfιeMP

δ, so
for gjkΓ)k small in Mj_ 1 ) ( 5 + 1, df will be small in M(δ so φ will be a C1 diffeo-
morphism. Thus φe@ξ+ ltδ-x. D

Remark. The coordinate invariance and the slice problem are discussed in an
interesting manner in [9] using the ideas of York (see [22]). This might lead to an
alternative method to that here.

One can deduce a number of corollaries which are implicit in the literature
cited. For example (see [1]), if geJ(*tδ, φeMlδ + {l} and Agφ + 8R(g)φ = 0 (so
that R(φ4g) = 0), then if φ4g is near flat space, but φ^g + Θy, φ4g — y cannot fall
off faster than ί/r at oo, since the mass of φ4g is positive.

6. Remarks on Global Positivity

Let Y be the <, > gradient of —m on V. It is the projection on V of -gradm =
Δ~ι Ric(#) (see 4.1,4.2)4. Then Y is a smooth vector field on ̂ , in the Mp

Stδ topology.
From the above work, it follows that Θy is an attracting set for 7; i.e., there

is a neighborhood U of Θγ such that if ge U, the 7-trajectory of g tends to Θy as

If we could show | |F(g)| |£^ε>0 for g outside such a neighborhood U, then
m would be >0 globally. Indeed, it is not hard to see that A = {#|the Y trajectory
of g^ΘΊ as t-* + oo) is both open and closed in that case.

One can contemplate more sophisticated methods as well, such as the minimax
principle (cf. Palais [25]); however, there seem to be serious technical obstacles.
For example, we did not prove that there is an ε>0 such that along any curve
g(t) emanating from γ, m must reach the value ε. Such a property would seem to
be crucial for the use of the minimax principle.

3 φ is a harmonic map from (IR3, g) to (IR3, y) so general invariant formulas from Eells and Sampson
([17]) are available. However, it is just as easy to proceed directly in this case
4 One can also use Y(g)ij = A~ίRij-jgιJA~1(RhkA~1Rhk-VhVkA~1Rhk) which is a pseudo-gradient:
d 1 ~ι Rk%)> g>Oif Rk%)=#0
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