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GENERAL RELATIVITY AS A HAMILTONIAN SYSTEM (*)

JeErroLd E. MARsSpDEN and ARTHUR E. FISCHER

1. Introduction.

Recently the authors have obtained results on the structure of
the set of solutions to the constraint equations of general relativity [8].
In the present article we shall explain how these results tie in with
the dynamies of general relativity. Specifically, we want to show
how to make the space of solutions of the full non-linear vacuum field
equations of general relativity into an honest mooth manifold (under
certain technical conditions) and to show how this becomes a sym-
plectic manifold when isometric metries are identified. This makes
use of some very general results of Marsden-Weinstein [11]. This
symplectic structure is analogous to that obtained in classical field
theories; cf. Liehuerowicr {9], Segal [12] Chernoff-Marsden [2] and the
articles of P. L. Gareia and I. Segal in this volume. However the
present case is oompllcflted by the presence of constraints and the
necessity of passing to a quotient space (when isometric metrics are
identified). This necessity of passing to a quotient space is already
recognized in the formal constructions of Fadeev [5].

We shall also mention how the results on the constraint set can
be used to justify linearization of the field equations. In other words,
we establish conditions under which a solution of the linearized field
cquations actually approximates, to ﬁr‘;t order, an exact solution
to the non-linear field equations.

We begin by supplying some necessary background.

2. Dymamics of general relativity.

Let V denote a 4 dimensional manifold and let ¥ denote a Lo-
rentz metric on 1. We use the superseript ¢ to avoid confusion with

(*) I risultati conseguiti in qu(-ﬂo lavoro sono stati esposti nella conferenza
tenuta da J. F. Marspex il 18 gennaio 1973.

13



194 Jerrold 2. Marsden and Arthur E. Fischer
3-metrics used below. The Einstein fielld equations in vacuo ave
(1) Ric(g)= 0, e RB,3=0

where Rie(= R,;) denotes the Riecei tensor of Mg, Arnowitt-Deser-
Misner [1] showed how equation (1) may be regarded as a Hamiltonian
evolution equation for an evolving 3-metric g(f). We can describe
these results, in a special case, as follows; cf. [6]. Let M cV be a
space-like hypersurface. Assume M is compact or else impose appro-
priate asymptotic conditions (|7 ]). If we choose a Gaussian normal
coordinate system i.e. an exponential tubular neighborhood about M,
then in a neighborhood of M, V becomes M < |—e, £] and our metric Vg
takes the form

(2) g ade* dof = — dt* -+ ¢, de' dr

where «*= («',¢). Thus we have induced a 3-metric g(t) on each
hypersurface M x {f}.

Let A6 denote the set of all ¢° riemannian metrics on M. Then M
is an open cone in the linear space 8, of all C* symmetric 2-tensors
on M. Thus the tangent space to M at g€ M is simply given by

T, -/K) == S2 -

For many technieal results one needs to comsider metrics of So-
bolev class H*, (s sufficiently large). One then uses regularity arguments
to reeover the results in C®; cf. § 3 below.

Define a weak pseudo-riemannian metric on A, the De Witt me-
tric, by

Fo: T MXT, M >R,

&olleys he) =f(tr hy-trhy— by hy)dp, ,
»

where trh = ', hky= (R);(k)" and dy, = \/iieTg}, dA...Adx” is the
volume on M induced by the metric g. Here, weak refers to the fact
that § is non-degenerate in the weak sense:

ol hy) =0 for all hy=>h, = 0.

(Non-degenerate in the strong sense would entail that the induced
map of T,J to T5M is bijective, but this is not the case here.)
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As is well known, a metric on a manifold induces a symplectic
form; one pulls back the canonical symplectic form from the cotangent
bundle. Thus § induces a symplectic form 2 on 7M. As F is weakly
non-degenerate, the same is true of 2, so we refer to 2 as a weak sym-
plectic form. (Consult [2] for the general theory).

Define a potential 1: 4 —>R by V(g)= 2[R(g)(l,u,,, where R(g)

M

denotes the sealar curvature of g, and consider the Hamiltonian
H: TM->R, Hg, k) =fk(y, kydu,
k4

where JC(g, k) = L((tr k)2 — L k) + 2 R(g).

From H and £ one can construet in the usual way a Hamiltonian
vector field Xy on T, Actually since Q is only weakly non-dege-
nerate one must show the existence of X, but this can be done;
cf. [2,6,10). X, is a certain non-linear partial differential operator
of Hamiltonian type. We write down the explicit formula for X,
in a more general case below.

There arise certain constraint equations. These are:

3) ljn——-(),
xX=0,

where 7= (trk)g —k and 6 denotes the divergence with respect to
the metric g. As will be explained below, these are actually conserved
quantities corresponding to invariance under spatial and temporal
coordinate transformations respectively.

One of the main results in the dynamics of general relativity is:

THEOREM 1: Let g(t) and ‘g be related by (2). Then g satisfies (1)
if and only if (g(1), k(t) = g(t)) is an inlegral curve of X, deseribed
above and the constraint cquations (3) hold.

The proof may be found in, for example [6] or [10]. It should be
remarked that }k(t) is just the second fundamental form of M x {ticV.

If one makes a coordinate change in V described by a diffe-
omorphism ¢: V — V then g(1), k() are transformed accordingly. They
still satisfy Hamiltonian evolution equations but now a «lapse» N
and a «shift » X are introduced. Indeed the above theorem is special
in that it corresponds to a special coordinate system in V, namely
Gaussian normal coordinates. This can be generalized as follows. If

g, g dodaf = (X - X — N2)dt: — 2X,dz'dt + g,,do’ d?
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where N: M xR — R is a sealar function and X: M xR —=-7TM is a
vector field, then g,; being Ricci flat is equivalent to the following
conditions on g¢,,:

_—
-‘(7 = No,(k)— 2N Ricg— Lgk + 2 Hess N

Sa=0,

=0,
where S,(k) = kxk-—4% (tvk)k (the spray of the De Witt metric);
(kX kY= kuk';, Hess N = Nyyy;, and Lgg= Xy;+ Xy, is the Lie de-
rivative,

Again the constraints are conserved by these equations and the

equations are « Hamiltonian » with respect to the same symplectic
strueture as before and with energy

and

Hg, ¥)= [(N ~ui )3y, k) dy,

M

where 4, is the flow of the vector field X,. The fact that the symplectic
structure is unchanged is important for us below. Details of the above
are found in [6]. If the constraints arve not imposed, there is an ad-
ditional term (N/4)JC in the equation for ¢kfét.

One refers to N as the lapse function and to X7 as the shift veclor
field. They were first introduced by J. A. Wheeler. Below in §6, 7
we shall see tliat these lapse and shift functions are closely conneeted
with the constraint equations and the invariance groups of general
relativity.

3. Geometry of the constraint set.

We now summarize some basie results on the constraint set defined
by (3).
Let, us begin by supposing M is compact: we consider the following
conditions on a point (g, k)€ TA.
(i) any vector field .U satisfying Lyg= 0 and Lga=0 is
zero (Ly denotes the Lije derivative),
(ii) if % 5% 0 then ¢ is not flat,
(iii) tr (&) is constant .

(4)
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Let €5 denote the set of g, & such that éz = 0 and Cy those for
whieh JC is identieally zero, and let € = C,N Cye, the constraint set.

TuHroREM 2: (i) If (g, k)€ TM satisfies (i) of (1), then Cy is a
smooth submanifold of T in a neighborhood of (g, k).

(i) If (g, k) satisfies (ii) of (4), then Cy is a smooth submanifold
near (g, k).

(iii) If (g, k) satisfies (i), (ii) and (iii) then C is a smooth submanifold
near (g, k).

Furthermore, the tangent spaces of Cy, Cye. Care obtained by linearizing
the equations dm = 0 and = 0. For example regarding d as a map
of TM to vector fields,

T Cy= {(hy )| DO (g, k) - (h, ) = 0}

where D denotes the Fréchet derivative.

The details of proof may be found in [8], but we ean easily explain
the method here. Namely we first replace the space M by the
corresponding Sobolev space M, so that we have a Hilbert manifold.
Let X+ denote the He vector fields on M. Then o: Tull’ - - X1 is g
smooth map for s large enough (s>af241). It is a cortain non-
linear differential operator. We then show that the derivative Dd(g, k):
83 83 =X+ is surjective, where (g, k) satisfies (i) of (4). Here S:
denotes the symmetric two tensors of class Hs. To do this, one uses
elliptic theory; namely one shows that the symbol of Dd(g, k) is
injective and that the adjoint of Dd(g, k) has trivial kernel. Once
this is done, that 0-*(0) is a submanifold then follows from the
implicit funetion theorem; i.e. ¢ is a submersion at and hence. in
a neighborhood of (g, k).

One proceeds with Czx and € in a similar manner. Finally a re-
gularity argument enables one to pass from I+ to C°.

The following is an important but immediate deduction from
theorem 1.

ConoLrany: Let (g, k)€ C let (4) hold and let (hy 1) salisfy the
linearized constraint equations:

Do (g, k) (hy ) = 0
DIC(g, k)-(hy w) =0,

Then there is a curve (g(4), k(1)) of exact solutions to the constraint equa-
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tions tangent lo (h, w):
9Oy —g, KO =k,

dg| h ?
Y = s = .
d a0 ! dl 1o

It the conditions of (1) do not hold then the point (g4, k) may be
genuinely singular; i.e. solutions of the linearized equations need not
correspond to a curve of exact solutions. This is diseussed in [8].

If M is non-compact, say 3 = R3, then as was mentioned above,
asymptotic eonditions are imposed. For example in (i) of (4) only X’s
vanishing at infinity are allowed and (ii) may be dropped. Thus g
the usual metric on R®* and k=0 is allowed, and € is a smooth
manifold near this point. The corollary then reduces to a theorem
of Y. Choquet and 8. Deser (see [8] for this and related references).

4. Reduced phase spaces.

We now deseribe one additional piece of background material that
we shall need. This is concerned with a method for the construetion
of phase spaces when symmetry groups are present, and is taken
from Marsden-Weinstein [11].

Basically, the result is a non-commutative generalization of the
classical fact that if one has % first integrals in involution, then one
can reduee the symplectic manifold to another one in which 2k va-
riables have been eliminated.

Let P, 2 be a weak symplectic manifold and let G be a Tie group
which aets on P by symplectic diffeomorphisms (= symplectomor-
phisms = canonieal transformations), If we let @,: P —> P denote the
action on P corresponding to g€ G, then we are assuming @) 2= 0.

Let g denote the Lie algebra of G and g* its dual (as a vector space).
For feg, let &, denote the infinitesimal generator on P: thus &, is
a vector field on P defined by

d
Ee(p) = at Dy ie(P)e-0 -

Following terminology of J. M. Sourizu, we suppose y: P —-g* is a
moment for this action. This means that for each & € g, &, is a Hamil-
tonian vector field with energy given by pw— yp(p)-&.

For example, it is well known that if &, is the canonical lift of an
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action ¥, on M to P= T%M, then

p: P—=g*,  pla,) &= (o Eylr))

where o, € T; M.
This particular moment just constructed is Ad* equivariant, and
we suppose this is true in general:

e D, = (Ad,-)*cp,

where (Ad;-)* is the coadjoint action of G on g*.

In concrete cases, y corresponds to a conserved quantity such as
angular momentum. It is ecasy to see that y is conserved by any
Hamiltonian vector field X, for which H.®,= H.

Now let peg® be a regular value of y so that yp~'(u) is a sub-
manifold of P. Sel

G,= {geGAdu= 4}

the isotropy subgroup of G for u. From Ad* equivariance it is casy
to sce that G, acts on p-'(u). Thus we can form the space of orbits

PII = '/’_I(I‘)IG;:

called the reduced phase space. Assume P, is a manifold; this will
hold if, for example the action is free and proper and 7, P,=
= T, 9~ u)|T,(G,-p) = ker T, p/T,(G,-p) where [p]=G,-p is the
orhit. of p.

THEOREM 3: P, inherits, in a natural way, a weak symplectic struc-
ture from P, Q.

For example if P is finite dimensional, it follows that P, is even
dimensional, which is not a priori obvious. In [11] we show how this
result unifies many constructions, such as the symplectic structure on
the orbit of a point in ¢* under the coadjoint action (due to Kostant
and Souriau).

In what follows we shall use theorem 3 to give a method of con-
structing a symplectic structure on the space T4 when the symmetries
corresponding to ¢ and J¢ have been divided out; we shall then connect
this up with the set of solutions to Einsteins equations with isometric
metries identified.
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5. The space of solutions to Einsteins equations.

Let V be a fixed four manifold and let &, denote the set of Lorentz
metrics g on V whieh are Ricei flat. Identify Vg, and g, if there is
a diffeomorphism @: V — ¥ such that ¢*¥9g, = g,. Let &, denote the
resulting quotient space. This construetion ean be franseribed in
terms of intitial data as follows. Pick a hypersurface M ¢ V7. Then
diffeomorphisms of 17 leaving M invariant induce an equivalence
relation on Cc TM.. Let & denote the space of equivalence classes of
theso (g, k). One refers to § as the space of « true gravitational degrees
of freedom ». The space § corresponds to identifying those (g, k) which
are related by a new choice of lapse and shift funetion; i.e. by o coor-
dinate change on V. The spaces §, §, inherit from ZU( a symplectic
form Q. That this form is independent of M follows from the fact
that the Hamiltonian evolution equations preserve the symplectic
form.

It is to be noted that 2 is a well-defined weak symplectic form on §,
but on &, degeneracies and ambiguity arise.

The above approach has several difficulties. In particular that 2
is a well defined weak symplectic form on § is a little awkward, but
not impossible to show. More serious, it is not at all clear that &,
or § are in any reasonable sense smooth manifolds. In fact, in general,
they are probably highly singular with the formal tangent space being
spurious. (However a recent conjecture of D. Ebin suggests that
while C has singularities, § may not.)

If however, we combine the ideas from § 2-4 we can obtain a more
satisfactory solution. This is done in the next sections.

6. The dynamical group of general relativity.

Let us again fix M and consider the dynamics on TAG as explained
above. There is a basic invariance group for this dynamics, namely
9 x 3 which we now wish to explain. Here D denotes the group of all
diffeomorphisms of M and J denotes the additive group of real valued
functions on M. Now D acts on J by t>7cy! for yeD. On
Dx I we put the semi-direct praduct structure, so group multiplica-
tion is

(1)l )=y 707"+ 0).
The tangent space to O at the identity, ¢, is the space of veetor

fields Y € ¥ (these correspond to shift functions), while that of J at ¢
is the space J itself (N e J corresponding to lapse functions).
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The group 9D x 3 acts on T4 as follows: for e D, map (g, k) to
Mgy k). If 7, is the flow of X and g(t), k(2) is the solution with
N=1, X =0, then (5.9, n. k) is the solution with ¥ =1 and X as
the shift.

Let J act on g, k as follows. Fix N and let t={N. Let v map
g, k to g(t), k(?) the solution of the evolution equations with lapse N
and shift 0.

THEOREM 4: The above defines a symplectic action of D% 3, with
the semi-direct product structure, on TM.. Furthermore, this action has
a moment given by

p: TA— (X 3)%,

Plgy k) (X, N) =2 f X-dxdp, + J NiCdy, .

pig u

Instead of giving the details of the above, we shall confine our-
sclves to a few remarks pertinent to the proof.

(¢) One needs to use the semi-direet product structure, for if
g(t), k() is a solution with given N and shift zero and if X is given
with flow #,, then the solution with lapse N ;" and shift X is . 9(1),
N h(2).

() The action is symplectic in J because of the Hamiltonian
character of the equations and it is sympleetic in D by propertics of
pull back.

{¢) The action may actually be defined only near 0 in J be-
cause initial data may be propagated only a finite amount, but this
does not affect the argument.

(d) That we have an action is actually not trivial and requires
some cormputation. In any ecase, that p is the momenf is computed
from standard formulas (see [6], [10]). The infinitesimal statement
that we have an action is expressed by the following commutation
relations: setting P(X) = 2[X-éndyu, T(N)=[NIdu, we have

M M
l {P(‘I)’ P(Y)} = P([‘Ya 1-]) ’
{T(x), (@)} =0,
I {T(X), P(X)} = T(X(X)).

Here the first expression is clear from general properties of momentum
functions (cf. [2]). The Poisson brackets are, of course, computed
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in our symplectie structure on 46, The second commutation relation
reflects the fact that J is abelian and the last corresponds to the semi-
direct product structure on 9D xJ (ef. Fadeev [5]).

7. Construction of & as a quotient manifold of C.

THEOREM 5: Let g on V have a space like hypersurface M on
which ®g, Mk satisfy the conditions (4). Then in a sufficiently small
neighborhood of M and restricting to melrics sufficiently close to g,k
we have

& C/(DxI)

and C[(9) X 3) has the structure of a smooth manifold. Moreover, & has
a smooth weakly nondegenerate symplectic form naturally inherited from
that on TM and whieh coincides with that in § 5.

The important feature to note here is that it is essential to pass
to the quotient in order for the symplectic form to be non degenerate.
It may be degenerate on §, or C alone.

Granting our previous work, the proof of theorem i is not difficult.
Indeed, §2 shows that 0e (X xJ)* is a proper value of p defined in
theorem 4 and correspondingly C= »~*(0) is a manifold; since the
isotropy of 0 is the whole group DxJ, we conclude from §3 that
C/(DxJ) is indeed a symplectic manifold if it is a manifold. To sce
the latter one can show the action is free since g, & have no infinitesimal
isometries (cf. Ebin [4]) for D and from the dynamics for J. Thus
C/(D =) is a smooth manifold.

Finally, one must show that & and C/(9 X ) are identifiable. This
is easily shown by fixing M and mapping [*g]€ &, (| ] stands for its
equivalence class) to (g, k)], where g,% is the induced metric and
second fundamental form on M. If one now traces through the de-
finition carefully, it is seen that this is a bijection from & to C/ x J.
This then completes theorem 5. This construetion seems to be analogous
to that given by De Witt [3].

Fadeev [5] uses his formal construction to discuss quantization of
general relativity (see also the article of Segal in this volume). There
renniiins the task of using the precise manifold structure on § obtained
above to justify his calculations. Unfortunately the faet that & is
only a «local manifold »; i.e. for metrics near a given one and in a
neighborhood of M, and might have severe singularities in general,
may hamper this program.
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8. Linearization stability.

A common practice in general relativity is the following perturba-
tion procedure. One starts with a given spacetime V and ¢ on V
satisfying the field equations:

Ricthg= 0.
One then linearizes about g and seeks to solve the linearized equations:
D Rie(Mg) - Dh =0

for a tensor ‘YA, Then g +- A% for A small is supposed to be a first
order approximation to an exact solution. Written out, the linearized
cquations are:

Ik — a(tg) -89k — § tr (Wh)g) = O

where [, is the Lichnerowicz d’Alembertian computed from g (sce
Lichnerowicz [9]) and where a(g) - X = Lgg.

The results of § 3 can be used to justify the above procedure in
many cases (this result is one of the motivations for the results of § 2
and also was for Y. Choquet and 3. Deser who obtained a special case
as we have mentioned).

THEOREM 6: Let Wg be a Lorentz melric on 1V satisfying B,;=0
and let ““h be a solution of the linearized equations. Let M be a space-
like hypersurface with induced metric g and second fundamental form k.
Assume (for M compact) that g, k satisfy (4) of § 3. T'hen there exists a
smooth curve “Y'g(A) of exact solutions of R,z= 0 such that

Wg(0) = g
and

d .
i3 9 A e = Wh .

Here g(2) are defined in some neighborhood of M in V.

The proof is simple. Namely we choose, say Gaussian normal co-
ordinates around M for (Vg; i.e. work with lapse 1 and shift =0. The
solution % induces on M solutions to the linearized constraint equa-
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tions (h,w) since solutions g to R,; always induce solutions (g, k)
to the constraint equations. But from § 3, C is a manifold near (g, k),
80 (h, ) is a tangent veetor to € at (g, k). This (b, w) is tangent to
a curve g(4), k(A) in C. But any point in C defines an exacl solution
of K,3=0 near M by the existence theory for the Cauchy problem
in general relativity (cf. [7]). This defines the Wg(2) we wanted.

As an example we conclude that Minkowski space is lincarization
stable; i.e. satisfies the conclusions of theorem 6,

Tnterestingly the analogous results for the Riemannian (s opposed
to Lorentz) case are rather different. Indeed solutions of Rie=10
may often be isolated; for example the flat metrie in R* is geometrically
isolated. The Lorentz ease is more tractible because the problem can
be reduced to a consideration of the constraint equations. The latter
involves just the sealar curvature, and this is a much more flexible
object. 1o work with,

The authors thank 1. Ebin and V. Monterief for useful conversations.

Testo pervenuto il 22 gennnio 1973,

Bozze licenzinte il 28 marzo 1974,
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