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ABSTRACT

An outline of recent applications of modern infinite-
dimensional manifold techniques to general relativity is
presented. The uses, scope, and future of such methods
are delineated. It is argued that the mixing of the two
active fields of general relativity and global analysis
provides stimulation for both fields as well as producing
good theorems. The authors' work on linearization stab-
ility of the Einstein equations is sketched out to sub-
stantiate the arguments.

The past few years have seen new branches of mathematics ap-
plied to problems in general relativity. One of the most impor-
tant of such applications has been to the study of the topology
of spacetimes in the works of Geroch, Hawking and Penrose. For
example, using techniques of differential topology and differen-
tial geometry, they prove, under reasonable mathematical hypotheses
on the spacetime involved, various incompleteness theorems from
which one may infer the existence of black holes. See W. Kundt
[11] for a recent survey and a bibliography for this subject.

The techniques used in the above are taken from the study of
the topology and geometry of finite-dimensional manifolds. However,
the theory of Znfinite-dimensional manifolds has been considerably
developed over the past fifteen years and the time is ripe for
its application to general relativity. The purpose of this essay
is to outline some applications which have been made and to point
out some directions for future work in this field.

There have already been some significant applications of the
theory of infinite-dimensional manifolds to other fields. Perhaps
the first of these was given by Eells, Palais and Smale to the cal-
culus of variations (cf. Smale [16]). Their ideas and methods have

t+ Editor's Note: This was the prize winning submission in this
year's Gravity Research Foundation essay contest.
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been a great stimulation to other workers in non-linear analysis.
Another application has been given in fluid mechanics by Ebin and
Marsden [6]. In these applications, analysis on the infinite-dim-
ensional spaces involved is not superficial, consisting merely of
a rehash of old ideas in fancy language. Rather, the methods re-
flect a fundamental change of policy with the new analysis being
used in an essential way.

That infinite-dimensional manifold theory is relevant for gene-
ral relativity was first pointed out by J.A. Wheeler (cf. [17]).
He stressed the usefulness of considering superspace 8. & consists
of Riemannian metrics on a given three-manifold M, with metrics
which can be obtained one from the other by a coordinate transforma-
tion identified. This space & is important for we can view the
universe as an evolving (or time dependent) geometry and hence as
a curve in 8. The geometry and topology of & has been investigated
by several people. See for example Fischer [7].

Recall that the Einstein equations of general relativity state
that outside of regions of matter, the metric tensor ggg must be
Ricci flat; i.e. Rgg = 0. This is a complicated coupled system of
non-linear partial differential equations. One can regard the Ein-
stein equations as a Hamiltonian system of differential equations
on & in an appropriate sense. This idea goes back to Arnowitt,
Deser and Misner [1] but was put into the setting of & explicitly
using infinite-dimensional manifolds by Fischer-Marsden [8].

The above applications of infinite-dimensional analysis to
general relativity can be regarded as 'soft' in the sense that in-
finite-dimensional manifolds are involved mostly as a language con-
venience and as a guide to the theory's structure. While this is
important, it is perhaps not critical to the development of the
theory.

The first substantial 'hard' theorem using infinite-dimensional
analysis (at least in an informal way) is due to Brill and Deser
(3]. They establish the important result that any non-trivial per-
turbation of Minkowski space leads to a spacetime with strictly
positive mass (or internal gravitational energy). The technique
they use is an adaptation of methods from the calculus of varia-
tions. The idea behind the proof is rather simple; they show that
on the space of solutions to Einstein's equations, the mass func-
tion has a non-degenerate critical point at flat, or Minkowski,
space. Their investigations have inspired a number of recent re-
sults; cf. [13,15].

An important feature of the work of Brill and Deser is that the
infinite-dimensional techniques employed are natural, useful, and
indispensable.

Another fundamental problem in general relativity which has been
solved using techniques from global analysis is that of lineariza-
tion stability. This problem may be explained as follows. Suppose
we have a given spacetime, for example the Schwarzschild metric,
and then wish to consider a slightly perturbed situation, for in-
stance the introduction of a slight irregularity or a small planet.
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To consider such situations directly is not easy because of the
non-linear nature of Einstein's equations. Instead, it is common

to linearize the equations around the given solution, solve these
linearized equations, and assert that the linearized solution is

an approximation to the 'true’ solution of the non-linear equations.

It is perhaps surprising that the assumption made — that the
solution of the linearized equations approximates the solution of
the full equations — is not always valid. Such a possiblity was
indicated by Brill [2], and has been established rigorously by the
authors in the case the universe is 'toroidal', i.e. 73 x R where
T3 denotes the flat 3-torus. If the above assumption on the given
spacetime is valid, that spacetime is called linearization stable.

Our theorem below shows that Brill's example is exceptional and
that most spacetimes can be expected to be linearization stable.
Although it would be unpleasant if this were not so, the example
and the delicacy of the result show that caution is to be exercised
when such sweeping assumptions are made.

Theor. Suppose that the ('background') spacetime with metric
tensor gqg satisfies the following conditions: there is a
space-like hypersurface ¥ with induced metric g and second
fundamental form k% such that:

(i) there are no infinitesimal isometries X of both g and k
(if M is not compact, X is required to vanish at infin-
ity);

(ii) if k = 0 and ¥ is compact then g is not flat;

(iii) if ¥ $# 0, tr(k) = trace of k is constant on ¥ if M is
compact, and tr(k) = 0 if ¥ is non-compact;

(iv) if M is non-compact, g is complete and in a suitable
sense asymptotically Euclidean.

Under these conditions, the spacetime metric gyg is lineariza-
tion stable in a tubular neighborhood of M.

Brill's example fits in because condition (ii) fails for M = T3,
the flat 3-torus.

The following corollary was obtained by Choquet~Bruhat and Deser
[6] independently of the authors.

Cor. Minkowski space is linearization stable.

Although the proof is complicated in details, we can endeavor
to give the main ideas here. It is a simple and elegant applica-
tion of the theory of infinite-dimensional manifolds.

In order to solve the Einstein equations, one can regard them
as evolution equations with g, k¥ (as given in the statement of the
theorem) as initial, or Cauchy, data. However, there are some non-
linear constraints involved called the divergence constraint, writ-
ten én=0, and the Hamiltonian constraint 3 = 0 which g, k must
satisfy. This defines a certain non-linear subset & of ZM, the
space of all g's and k's on M. The principal method is the follow-
ing: near those g, k for which the conditions of the theorem are



76 ARTHUR E. FISCHER AND JERROLD E. MARSDEN

satisfied, the set 8 is a smooth infinite-dimensional submanifold
of the space TM. At those g,k that do not satisfy conditions (i)
and (ii), the set 8 is singular.

The smoothness of the set € entails that tangent vectors to 8
are closely approximated by points in -8 itself (which would not be
the case if € has corners or other singularities). This remark
together with existence theorems for the Einstein equations (cf.
[4,9]) yields the desired result.

Fortunately, establishing the smoothness of 8 can be done by
techniques which have been previously developed in infinite-dimen-
sional manifold theory (these are found in, for example, Lang [12]).

We suggest that there are several other problems which can be
attacked by the methods of infinite-dimensional analysis. Specif-
ically we suggest the following:

(a) Rigorously establish the claims made in Brill-Deser (&)
concerning the global positivity of the mass function;

{(b) Study conditions on initial data which guarantee condi-
tions under which the resultant spacetime will be free of
singularities and hence free of black holes (cf. [13]);

(c) Study stability properties of solutions to Einstein's
equations in the same sense as the solar system is
stable in classical mechanics.

It seems in view of our experience in these matters that such
goals for the immediate application of global analysis techniques
to general relativity are not unreasonable ones.

The techniques of global analysis are appropriate for general
relativity because of the non-linear nature of the problems in-
volved. Since the field equations are non-linear, the spaces of
solutions will also be non-linear and so infinite-dimensional man-
ifold techniques are appropriate for their study. There is a
promising future for the development of this bridge between non-
linear analysis and general relativity.
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