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1. Introduction. Throughout, M will denote a C00 compact connected 
oriented «-manifold, ri^.2. Let p:M-+R be a C00 func t ion ,^ the space of 
C00 riemannian metrics on M and 

where R(g) is the scalar curvature of g. As in Ebin [3], a superscript s will 
denote objects in the corresponding Sobolev space, £>w/2+l (one can 
also treat W8,p spaces in the same way), and we also allow s= oo so *^°° = 
Jl'. Sign conventions on curvatures are as in Lichnerowicz [10]. 

Two of our main results follow : 

THEOREM 1. If p is not identically zero or a positive constant, then *Jlp
B 

is a smooth submanifold of<JK8. 

We can also treat the case p = 0 . Let 3F8 denote the set of flat metrics in 
Jl8. Then we have 

THEOREM 2. Assume J * V 0 . Writing Ut8
Q=(jea

o\0
r9)U&r8

9 J(\ is the 
disjoint union of closed submanifolds. 

REMARK. If d i m M = 2 , e^J=^" 8 , and if d i m M = 3 , the hypothesis 
that 1F*J£0 can be dropped. 

The proof of Theorem 1 also allows us to conclude that a solution h of 
the linearized equations DR(g0) • h=0 is tangent to a curve of exact 
solutions of R(g)=p through a given solution g0, provided p is not a 
constant ^ 0 . In the terminology of [4] we say the equation R(g)=p is 
linearization-stable at g0. From Theorem 3 below the equation R(g)=0 is 
still linearization-stable about a solution g0 provided Ric(g0) is not 
identically zero. 

For the singular case p = 0 , Theorem 2 incorporates an isolation theorem 
inspired by the work of Brill and Deser [2], namely, that the flat metrics 
are isolated solutions of R(g)=0. As a corollary one has: If g(t) is a 
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continuous curve in Jt', R(g(t))=0 and ifg(0) e J^, then g(t)e^. In the 
course of proving Theorem 2, we shall also prove that the space !F has the 
structure of a homogeneous fiber bundle with finite-dimensional fiber 
(Theorem 4). 

Details and extensions of the present work will appear in [5]. We thank 
J. Bourguignon, D. Ebin, J. Kazdan, R. Palais, F. Warner, A. Weinstein, 
and J. A. Wolf for useful conversations, 

2. Local surjectivity of the scalar curvature map. In the following we 
let H8 denote the H8 maps from M to R, and SI the H8 2-covariant sym­
metric tensors. It is easy to see that R:<Jf8^H8-2 is a C00 map. 

Theorem 1 is a special case of part (ii) of the next result in case p is not a 
positive constant (see Remark 1 below). 

THEOREM 3. Let g e ̂ M8 and suppose that 
(i) ifR(g)=0 then Ric(g), the Ricci tensor, is not identically zero and 
(ii) R(g)l(n—l) is not a positive constant equaling an eigenvalue of Afl, 

the Laplace-Beltrami operator on functions. 
Then R:^8->H8~2 maps any neighborhood of g onto a neighborhood of 

m-
SKETCH OF PROOF. We shall assume s<co; the case s= oo requires a 

regularity argument as in Ebin [3]. It then suffices by the standard implicit-
function theorem to show that yg = DR(g):Sl-+H8~2 is surjective. 

A classical computation (see. e.g., [10]) gives 
yg(h) = A(trA) + ôôh - h • Ricfc), 

where tr is the trace, ôô is the double covariant divergence, and A=AP. 
The L2-adjoint of yg is y*:H8->Sl~2, 

y*(f) =gAf+ H e s s / - /Ric(g), 

where Hess/=VV/is the Hessian of/. Since y g has injective symbol, 
from elliptic theory it suffices to show that y* is injective (see, e.g., 
Berger and Ebin [1]). Assume y*/=0. The trace of this yields (n—1) A/= 
R(g)f Thus R(g)=Q implies ƒ is constant and so y*/= —ƒ Ric(g)=0. Since 
Ric(g)7*0, ƒ=(). This takes care of case (i). Consider now (ii). Taking the 
divergence of ytf=0 and using the identities ô Hess ƒ— d Af+df- Ric(g)= 
0 and ô(Ric(g))=-id(R(g))9 we get */rf(J?(g))=0. Suppose / ^ 0 . I f / i s 
never zero, dR(g)=0 so R(g) is a constant, which, together with («—1) A/= 
R(g)f, contradicts (ii). Thus find x0eM such that ƒ (x0)=0. We must have 
df(x0)^0; indeed, if df(x0)=09 let y(t) be a geodesic starting at x0 and 
h(t)=f(y(t)). From y*/=0 and (w-1) Af=R(g)f we find Hess/= 
(Ric(g)—ll(n—l)gR(g))f and hence h(t) satisfies the linear second-order 
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differential equation 

/i"(0 = ( H e s s / ) y U ) - ( / ( 0 , / ( 0 ) 

= ^Ric(g) - — ^ gR(g))yit)(rV), yf(t)))h(t) 

with h(0)=0 and A'(0)=0. Thus A(0=0 and hence ƒ=(). Thus 0 is a regular 
value off and hence d(R(g))=0 on an open dense set and hence everywhere. 
Thus again R(g)=constant, contradicting (ii). Thus f=0 and y* is 
injective. D 

Note. We thank J. P. Bourguignon for pointing out that y*/=0, f7*0, 
implies R(g)=constant. Previously we had (ii) replaced with the condition 
that R(g)^0. 

REMARKS. 1. If Ric(g)=0, the kernel of y* is the set of constant 
functions so surjectivity of yg fails. Similarly, on a standard sphere in Rn+1 

of radius r0, the first order spherical harmonics (solutions of A/=«//ro) 
also satisfy 

H e s s / = (Ric(s) - R(g)gl(n - 1 ) ) / = -gflrl 
and so again yg is not surjective. 

It is in fact reasonable to conjecture that these are the only cases in 
which yg fails to be surjective. For example, among the spaces whose scalar 
curvature is a positive constant, it follows using a theorem of Obata's [13] 
that for those spaces with parallel Ricci tensors (e.g., products of Einstein 
spaces), yg is surjective unless the space is a standard sphere. 

2. J. Kazdan and F. Warner have pointed out that Theorem 3 for Ws,p 

spaces can be used to yield some of their results concerning what functions 
can be realized as scalar curvatures ([8], [9]). This will be carried out in a 
note following [5]. A variant of this technique yields: Ifn^.3 and there is 
age *J(8 with R(g)=0, Ric(g)7*0 then R:^fs-+Hs~2 is surjective; i.e., every 
function can be realized as a scalar curvature of some metric. This follows 
from local surjectivity of R, together with [9, Theorem 4.3]. For n=29 the 
map g*-*R(g) cannot be onto a neighborhood of R(g0)=0, since then 
M— T2 which by the Gauss-Bonnet theorem has no metric with Gaussian 
curvature strictly positive or strictly negative. 

3. Note that we are not making any statements about whether or not 
J(s

p is empty. For example, Lichnerowicz [11] has shown that for certain 
spin manifolds, *Jfs

p=0 if p is positive. However, Kazdan and Warner 
([8], [9]) have shown that if n^.3 and p is negative somewhere, or if « = 2 
and p satisfies a sign condition consistent with the Gauss-Bonnet formula, 
then ^#p 5*0. 

Set ( fo={g e ^ s - R i c (g)==0}, the space of Ricci-flat metrics. Then 
Theorem 3 implies that -#J\<^o is a C°° submanifold ofJKs. From Fischer-
Wolf ([6], [7]) we have that if / V 0 , then ê%=3f*\ i.e., every Ricci-flat 
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metric is flat. Thus the essential assertion of Theorem 2 is that ^* \#" s = 
*#J\#J is closed and that SF8 is a manifold. This is discussed next. 

3. Flat metrics and metrics with zero scalar curvature. We begin with 
the structure of SF8. Let Jf*-1 denote the H8~x flat riemannian connections 
on M. For He^8~x let / g ^ ^ + i (the H8+1 diffeomorphisms of M) 
denote the Lie group of affine transformations of H. Let J^jy denote the 
H8 flat riemannian metrics whose Levi-Civita connection is H. Then Iff1 

acts by pullback on ^S
H, AII^X^H-^^H* a n d the action is continuous. 

THEOREM 4. The space £?8~1 is homeomorphic to the homogeneous space 
^ s + 1 / / ^ 1 . Using the above action A, the associated homogeneous fiber 
bundle is 

*:&*-+ 2tf8-x ™ @s+1ir+\ 

where Tr(g) is the Levi-Civita connection of g, and the fibers TT~\H)^SF8
H 

are finite-dimensional manifolds. Thus 3F8 is the total space of a homo­
geneous fiber bundle, and moreover, S*8 is a smooth submanifold ofJ(8. 

SKETCH OF PROOF. That 3>8+1 acts transitively on Jfs_1 follows as in 
Wolf [14, Theorem 3.3.1]. To see that #"# is finite-dimensional note that it 
is in one-to-one correspondence with the T^-invariant inner products on 
TXM, where xeM and XFX is the linear holonomy group of H at x (Wolf 
[14, Theorem 3.4.5]). The last assertion follows from the fact that !F8 is 
the orbit of &% under @8+1. D 

Our next theorem shows that near a flat metric, there exists no 
metric with scalar curvature R(g) è 0, R(g) ^ 0 , and that the flat 
solutions of /?( g) = 0 are isolated solutions. This result extends to 
a full neighborhood of the flat metrics the "second order" version 
of these results in [2] and [9]. 

THEOREM 5. Let gFÇï. ^ \ Then there exists a neighborhood U (Z^$ 

of gF such that if gÇzU and R( g) ^ 0, then g is also in ^ ' . 

SKETCH OF PROOF. Let du9F denote the volume element of gF, and 
let H denote its Levi-Civita connection. Let >£:^*—>ƒ?, ty(g) = 
f R(g)dn9F. Then ^ / is a critical submanifold of ¥ , and at the 
critical point gf G ^f/, the Hessian of ^ is given by 

d2*(gF) • (h,h) = - \ f(Vh)2dngF - i ƒ (Vtrh) 2 dn g ,+ƒ (*h)*dv„. 

Let Ss
gF be a slice at gF (Ebin [3]), and let ¥ s ; = ¥ r ££,. Then 

gF is also a critical point for tys'tF> and for AG TgFSgF = {/*G*SJ :dh = 0}, 
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d2*s;e (gF) •(/»,h) =dH(gF) -(h,h) 

= -i J(V/«)2d%, - I J(Vtr/»)2d/v. 

Thus d2^s; (</F) is negative-definite on a complement to TgF^H = 
{h G Si : VA = 0} in T^ S;,. Thus there exists a neighborhood V C Sf, 
of gfF such that ¥ s; ^ 0 on V, and if ^ (fif) = 0, then gE^iî-

Let £/ = ^* + 1 ( V) be the saturation of V. By the Slice Theorem 
[3], U fills out a neighborhood of (/F- Thus if ( / £ (/ and /?(</) è 0, 
there exists a ¥ ? £ ^ * + 1 such that the pulled back metric <p*gÇz 
VCS'9F, and thus ¥«;(**») ^ 0. But ƒ?(*>*£) = /?(£)<>*> §; 0, so that 

*s;(**ff) = f R(<p*g)dngF = fR(g)o<pdn9F ^ 0 . 

Thus * s ; (*>*£) = 0, so that *>*£ G ^ / , and g G («p"1) * ^ r is flat. D 
Theorem 2 is an immediate consequence of our work in §2 and 

of Theorems 4 and 5. 
REMARKS. 1. For dim M = 2, Theorem 5 (without restricting to 

a neighborhood U of gF) is an immediate consequence of the Gauss-
Bonnet theorem and the fact that R(g) = 0 =#• g is flat. 

2. Note that a solution h of the linearized equations DR(gF) • h=0 
around a flat metric g> is not tangent to a curve of exact solutions of # (g )= 
0 unless h satisfies V/*=0, a condition not implied by the linearized 
equations. In this case where there are nonintegrable "tangent" directions, 
the linearized equations are said to be unstable. However, if the condition 
V/z=0 is satisfied, the curve g(t)=gF+th e^8

H, \t\ small, h5*0, is an 
explicit integration of the linearized equations to a tangent curve of non-
isometric flat metrics. 

3. If J r s = 0 , then there may exist nonflat Ricci-flat metrics on M. The 
singular set ê0, if not empty, has unknown structure. For example, the 
linearized equations are again unstable around such a metric, but we do 
not know if the natural extra condition on infinitesimal deformations 
arising from the above analysis would allow them to be integrated up to a 
tangent curve. This extra condition is j h ALh=0, where AL is the 
Lichnerowicz Laplacian [10]. 
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