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We give a unified framework for the construction of symplectic manifolds from sys-
tems with symmetries. Several physical and mathematical examples are given; for
instance, we obtain Kostant’s result on the symplectic structure of the orbits under
the coadjoint representation of a Lie group. The framework also allows us to give a simple
derivation of Smale’s criterion for relative equilibria. We apply our scheme to various
systems, including rotationally invariant systems, the rigid body, fluid flow, and general
relativity.

§ 1. Introduction

The purpose of this note is to show that when we have a symplectic manifold on which
a group acts symplectically, we can reduce this phase space to another symplectic manifold
in which, roughly speaking, the symmetries are divided out. This unifies part of Smale’s
program [18] with certain known facts about Lie groups due to Kostant ([10], theorem
5.3.1). We shall give several physical examples, some of which are known; for example,
it is a classical fact that one can reduce a given phase space to a “smaller” symplectic
mainifold when one has first integrals in involution. (See, for instance, [22], [4], [16], and
references therein.)

When one has a Hamiltonian system on the phase space which is invariant under the
group, there is a Hamiltonian system canonically induced on the reduced phase space.
Fixed points of this reduced system are called relative equilibria, we are able to give a very
sitaple derivation of Smale’s criterion for them using the above ideas. We easily obtain
Arnold’s criterion for stability of relative equilibria for systems on a Lie group; the rigid
body is an example. Numerous other physical situations will be presented as well.

We use standard or self-explanatory terminology. For background, see {11, [3], [20]
and [21]. Conventions on forms are as in [3].

We thank J. Robbin, S. Smale and J. M. Souriau for stimulation and help.
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§ 2. Construction of the reduced phase space

Let (P, Q) be a connected symplectic manifold and let G be a Lie group acting on P
(from the left) by symplectic diffeomorphisms. [Here P or G may be infinite dimensional
and in this case £ may be only weak; i.e., the map of TP to T*P induced by 2 may be only
" injective. This generality is needed only for examples 6 and 7 of § 4 below and will be dealt
with at that time.]

For each & e G, the Lie algebra of G, we let &p denote the corresponding vector fieid
on P; & is the generator of the action of R corresponding to the subgroup exp (&), Since
the action is symplectic, the one form 7., Q=¢, _1Q is closed.

By a moment for the action we mean a C® map y: P—®* such that if w denotes the dual
map from ® to the space of smooth functions on P, we have

ie., {T,yv,E=0,&(p),v) for £€®, ve T, P. In other words, each infinitesimal
generator- &, has t//(é) as a Hamiltonian function. A moment, if it exists, is defined up
to an arbitrary additive constant in G*. The notion of a moment is due to Souriau [20].

Souriau [20] has shown that the moment y is equivariant with respect to a certain
affine action (depending on w) of G on &*, the linear part of which is the dual of the adjoint
action. In many cases, for example, if G is semi-simple or if G leaves invariant a one-form
6 with Q=d0, we may choose y to be equivariant with respect to the co-adjoint action.
In this case, if @,; P—P denotes the action of g € G, equivariance asserts that

yo®,=(Ad,-)*oy.

In the case Q=d0, it is easy to see that one can choose w(p)- &= —i, 0(p).

In the general case, for u e G*, let G, denote the isotropy group of x with respect to
the above action of G on ®*. By equivariance, y~*(u) is invariant under G, so the orbit
space y~*(u)/G, is defined. Note also that, by equivariance, if p € y~'(u) and &, (p)e
y~1(u), then g € G,. We let

P,=y~'(w/G,

and call P, the reduced phase space.

§ 3. The symplectic structure on P,
It will be useful to have the following notion:
DErFINITION. If f: M—N is a smooth map, n e N is called a weakly regz)lar value of fif
() f~(n) is a submanifold of M and
(b) for every mef~'(n) the inclusion T,,[f~(n)lcker T, f is an equality.

Note that a regular value (wherein T, f is surjective) is always a weakly regular value,
but that there are interesting weakly regular values which are not regular; such as zero
angular momentum in the two-body problem.
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Let us recall that G acts freely on M when each point m € M has a trivial isotropy group
or, equivalently, each orbit (which is always an immersed submanifold) in M is in one-to-
one correspondence with G. The action is proper when the map (g, m) =(m, (bg(m)) is proper
(inverse images of compact sets are compact). This holds if, for instance, G is com-
pact, or if M=G and the action is group multiplication. If G acts freely and properly
on M, then M/G is a manifold such that the projection n: M—M/G is C* (see Bourbaki
3], p. 63). Coordinates for M/G are provided by a “slice” for the action. Letting G-m
denote the orbit through m e M, we may identify T, (M/G)~T,, M|T,, (G-m). More-
over, T, (G-m)={&; (m) ]é € G}, where &, denotes the infinitesimal generator for the
action on M.

THEOREM 1. Let G be a Lie group acting symplectically on the symplectic manifold (P, Q).
Let w be a moment for the action. Let u e &* be a weakly regular value of w. Suppose that
G, acts freely and properly on the manifold y~'(w). Then if i, w~ Y (w)—P is the inclusion,
there is a unique symplectic structure Q, on the reduced phase space P, such that Q= i;f Q,
where m, is the projection of w~'(u) onto P,.

To prove this we shall make use of the following:

LemmA. For p € w=(u) we have

() T, (G, p)=T,(G-p) 0 T, (w~*(w), and
Giy T, (w=*(p)) is the Q-orthogonal complement of T, (G"p).

Proof: (i) Let £€®, so &p(p)e T, (G p). We must show that & (p)e T, (=1 (w)
iff {e®, the Lie algebra of G,. Equivariance gives T,y &p (p)= (g (,u) so (e 6, iff
lor (W)= Olﬁ’éjp (p)eker T,y= T (v~ (W)

(iiy For £ € ®, ve T, P we have Q(&p (p), v)=<{T, wv, &), since y is a moment. Thus
veker T,y iff Q& (p), v) Oforallée®.

In finite dimensional spaces, it is easy to check that the Q-orthogonal complement
of the Q2-orthogonal complement of a linear subspace F= T, P is again F. Thus by the above
lemma, T, (y~*(u)) and T, (G-p) are orthogonal complements of each other. We shall
use this in the proof of Theorem 1. In the infinite dimensional case, the appropriate assump-
tions are given in the following lemma. We are grateful to R. Graff and P. Chernoff for
pointing out the proof given here.

LeEmMA. Let E be a reflexive Banach space. Let w be a continuous alternating bilinear form
on E. For McE a closed subspace, define M= {y € E: w(x,y)=0 for all x e M}. Define B:
E—E* by

{Bx,yy=w(x,y).

Assume that B is one-to-one with closed range. (This is a condition intermediate between
weak and strong nondegeneracy of w.)
Then for every closed subspace M, we have M=(M*)".
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Proof: The hypothesis on B implies that B is a homeomorphism onto its range. So
BM is closed in E*. Suppose that x ¢ M. Then Bx ¢ BM. The Hahn-Banach theorem
together with reflexivity then yields the existence of a vector y € E with (Bx, y>#0 but
{Bz,y)>=0 for all ze M. In other words, o(x, y)#0 but y e M*. Thus x is not in (M™)",
and so (M*)*< M. The reverse inclusion is trivial. []

Proof of Theorem 1: Forve T, (w~ (1)), let [v] € T, wu(p) Pu denote the corresponding
equivalence class in T, y~'(1)/T, (G, p), so [v]=Tn,-v. The assertion 7 Q,=iy 2 be-
comes

Q#([v],[w])=52(-v,w), U,W(:‘Tpt//_l(u).

Thus £, is unique. Moreover, Q, is well-defined because of the Lemma. @, is also smooth
because quantities on a quotient M/G are smooth when they have smooth pull-backs
to M. Thus £, is a well-defined smooth two-form on P,.

To show that 2, is symplectic we first show that 2, is non-degenerate; 2, ([v], [w])=0
for all we T, w~'(u) implies v € T, (G,'p) by the Lemma, or [v]=0. It remains to show
that @, is closed. But from 7, Q,=i Q and dQ2=0, we conclude that 7 (d2,)=0, so
dQ,=0 since Tr,, is surjective. []

Remarks: Even if Q=d0 and the action leaves 0 invariant, Q, need not be exact. For
u#0, 0 does not project to a one-form on P, because 0(¢p) (p)=w(p) £#0.

As a consequence, observe that P, is even-dimensional. If y is a submersion, then
dim P,=dim P—dim G—dim G,.

If x is a regular value of w, the action is always locally free near ().

§ 4. Examples

1. If G acts on a manifold M, we obtain a symplectic action on T*M which preserves
the canonical one-form 6 on T*M (see [1], [20]). A moment for this action is given by
v T*M—6*:

<W(U)5£>=<U>£M(m)>> _O(ETmM.

This moment is Ad*-equivariant. This result is due to Souriau [20], but was also obtained
by Marsden [11] and Smale [18].

We conclude from Theorem 1 that if G, acts freely and properly on w~'(1)= {oc eT*M f
Loy Eyp (m)y=Lu, & forall é e GS}, then w~* (1)/G, is a symplectic manifold. If the & (m)
span a space of dimension =dim & at m, then it is easy to see that each point of 7 M
is regular. '

2. If we specialize Example 1, taking M=G with G acting on itself by left multiplica-
tion, then the moment y: T*G—G* is given by

w(@)=(TR)* -0 TiG=6% «cT,G,

where R, denotes right translation (see [2], [13], [9]). Thus each u € G* is regular and
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w~Y(w) is the graph of the right invariant one-form w, whose value at e is u. Now G,
={g € G| L} w,=w,}, so the action of G, on y~*(u) is left translation on the base point.
Thus y~*(u)/G,~G/G,~G ucG*. Thus the reduced phase space is just the orbit of w&
in G*. That this is a symplectic manifold then follows from Theorem 1. The rather special
construction in this case is due to Kirillov-Kostant; see [10]. If one traces through the
definitions, one finds for fe G-, y.=(ad u;)*p and y,=(ad u,)*p, that

Qu(yl ’ ')’2)=ﬁ([u2 > ul]) L

When viewed directly, the symplectic structure on G-uc ®* seems rather special. How-
ever, it becomes natural when viewed in the context of reduced phase spaces. Moreover,
the proof becomes more transparent. This example is studied further in §§ 6, 7 below.

3. If G acts on M and leaves a given closed two-form F on M invariant, then we get
a symplectic action on 7%*M with the symplectic form Qp=Q+z*F, where Q is the cano-
nical form and z: T7*M— M the projection. Such a situation arises when one has a particle
moving in the “electromagnetic field” F (cf. [19]). Now suppose that F=dA4 is exact and
4 is invariant. Then the moment is given by

Sy (@), & =Ca—4, Sy (m))

 (this corresponds to the classical prescription of replacing p by p—(e/c) 4 in an electro-
magnetic potential 4). The verification is the same as in Example 1. Thus again, if u is
a weakly regular value and G, acts freely and properly on y~ (), we can form the reduced
phase space P,.

4. Let G=S0(3) and P a symplectic manifold. Here G~ R* and the adjoint action:
is the usual one. For u e R?, pu#0, G,=S* corresponding to rotations about the axis .
Since G is semi-simple, a symplectic action of G on P has an Ad*-equivariant moment
¥ by Souriau [20]. One refers to y as “angular momentum” in this case. The reduction
of P to y~1(u)/S* is a generalization of the procedure called “elimination of the nodes™
(cf. Smale [18] and Whittaker [22], p. 344).

5. Suppose we have the situation of Theorem 1, and in addition G is Abelian. Ad*-
equivariance means that the generating functions 1/7(5) are all in involution on P. Further-
more, G,=G for each u e G*. If the action is free and u is a regular value, we can form
P,=y~%(u)/G. In this case dim P,=dim P—2dim G. The reduction to P, represents
the classical reduction of a Hamiltonian system by integrals in involution.

As a special case, let X5 be a Hamiltonian vector field on P, so that the flow of Xy
yields an action of R on P. The moment is just H itself so we get a symplectic structure:
on H~1(e)/R which is just the space of orbits on each energy surface (we assume that e
is a regular value of H).

6. Let 9 denote the grbup of C*-diffeomorphisms of a finite dimensional Riemannian
manifold M. Suppose that M is compact, or restrict to diffeomorphisms which are
“asymptotic to the identity” ([7]). Now T, @ =% (M)=the vector fields on M ([2], [6])
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and we put on & the L, metric which is obtained from % (#) by right invariance. Thus
@ acting on T9 on the right is a symplectic action. As in Example 2, we conclude that
for each X € & (M), the set {y*X|ne D} =% (M) is a weak symplectic manifold. The sym-
plectic structure is

Qx(*Ly, X, 0" Ly, X)=A£ X, [Y,, Yi]pdx.

‘One may similarly restrict to volume preserving difffomorphisms and divergence free
vector fields. This symplectic manifold is important in fiuid mechanics. See Arnold [2]
and Ebin-Marsden [6].

Here the manifolds are Fréchet. Properly, one should use Sobolev spaces, as in [6].
‘One can show that the orbit of X above is a smooth submanifold by using techniques
-of Ebin [5].

7. Let M and 9 be as in Example 6. Let .# denote the space of all Riemannian metrics
on M. Define the DeWitt metric on .# by

,(h, k)= | [<h, ky—(tr ) (tr k)] dpy
M

where h, k € T, /# =the symmetric 2-tensors on M, <{h, k) is the inner product of 4, k
using the metric g, tr denotes the trace, and y, is the volume element associated with
g. %, is a weak metric and gives a (weak) symplectic structure on T./Z.

The space T.# is a basic (weak) symplectic manifold used in general relativity. We
shall now describe its reduced phase space in the presence of the symmetry group 9.
{See [7], [12] for the connections of these ideas with general relativity.) & acts symplectically
on T.# by pull-back. The moment for this action is not difficult to compute (see [7], [12]).
It is: '

w(g, k)X =2] (X, om)dy,,
M

where n=k—1(tr k)g and ¢ is the divergence taken with respect to g. Of particular in-
terest is the case y~(0)={(g, k) € T.#| 6n=0} (referred to as the divergence constraint
in general relativity).

The isotropy group is all of 9, so the reduced phase space is w~1(0)/2. If we work
near a metric with no isometries (asymptotically the identity if M is not compact), then
w~Y0)/2 is a manifold by the Ebin-Palais Slice Theorem [5], using [8]. We conclude
by Theorem 1 that y~*(0)/2 is a (weak) symplectic manifold. This is the basic space one
uses for a dynamical formulation of general relativity. It is related to the ‘“‘superspace”
J|% in that all “geometrically equivalent” objects have been identified.

By making a further reduction by dividing out by the “relativistic time translation
group” (see [7] or [12]) and passing to the surface of zero energy, one obtains a symplectic
structure on the space of solutions of the four dimensional Einstein field equations with
solutions leading to the same spacetime identified. Details of this will be given elsewhere.
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§ 5. Hamiltonian systems on the reduced phase space

THEOREM 2. Let the conditions of Theorem 1 hold. Let K be another group acting symplectic-
ally on P with a moment ¢. Let the actions of K and G commute and ¢ be invariant under G.
Then

(i) K leaves v invariant,

(ii) the induced action of K on P, is symplectic and has a moment which is naturally
induced from the moment ¢.

Proof: (i) is a standard fact. To prove (ii), let ¥} denote the action of k € K on P. By
(), w~*(p) is invariant under this action, and since the action commutes with that of G,
we get a well-defined action on P,. Also, if ¥, is the induced action on P,

my PrQ,=Vink Q, =ik Q=i via=ita.

Hence, 5[7,"" Q,=8,. Similarly, from the definition of the moment we see that the induced
. moment is a moment for the induced action: namely, the induced moment ¢ satisfies
¢ om,=p, thus for [v]=Tn,ve TP,, & € G, we have

<T¢[D] ’ §>=<T¢'U: 6>=~Q(€P’ U)=Qu(£P/u [U])

since, as easily seen, the generators &p, &p, on y~*(u) and P, are related by the projection
7, [

For example, if we consider Example 2 of § 4 and let G=K acting on T#G by lifting
the right action, we can apply Theorem 2 to conclude that the natural action of G on the
orbit G-uc®* is a symplectic action. The induced moment is easily seen to be just the
identity map: @(Ad} p)=Ad} 1 e G*.

The fact that G acts symplectically on the orbit G-y, so that G- is a “homogeneous
Hamiltonian G-space”, is a known and useful result. See Kostant [10] and Souriau
[20], p. 116.

Taking K=R in Theorem 2, we are led to:

CoROLLARY 3. Let the conditions of Theorem 1 hold and let Xy be a Hamiltonian vector
Jield on P with H invariant under the action of G. Then the ﬂow of Xy induces a Hamiltonian
Slow on P, whose energy H is that induced from H; ie., Ho n,=Hoi,

For example, if <, ) is a left invariant metric on a group G, the Hamiltonian H(v)
=3<v, v), which yields geodesics on G, induces a Hamiltonian system on the orbits in
G*~®. Note that the original Hamiltonian system on P is completely determined by the
induced systems on the reduced spaces pP,.

Similarly, in each of the other examples of § 4, if we start with a given Hamiltonian
S8ystem on P, invariant under G, then we can, with no essential loss of information, pass
to the Hamiltonian system on the reduced phase space.
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§ 6. Relative equilibria and velative periodic points

DerINiTION. In the situation of Corollary 3 above, a point p € P such that =, (p) € P,
is a critical point [resp. periodic point] for the induced Hamiltonian system on P, is called
a relative equilibrium [resp. relative periodic point] of the original system.

Poincaré [14] considered relative periodic points in the n-body problem on an equal
footing with ordinary periodic points. Indeed, in general, the only “true” dynamics is that
taking place in the reduced phase space P,.

The following shows that our definition coincides with the standard ones (Smale [18],
Robbin [15]).

THEOREM 4. (i) p € P is a relative equilibrium iff there is a one-parameter subgroup g(t) € G
such that for all t € R, F,(p)= P, (p), where F, is the flow of Xy and @ is the action of G.

(ii) p e P is a relative periodic point iff there is a g € G, and ©>0 such that for all t = R,
Ft+t(p) = gpg(‘Ft(p))

Proof: (i) p is a relative equilibrium iff 7,(p) is a fixed point for the induced flow on
P, iff 7,(F,(p))=m,(p). If this holds there is a unique curve g (r) € G, such that F,(p)= @,(p)
since the action of G, on w~'(u) is free. The flow property F,, (p)=F, o F,(p) immediately
gives g(t+s)=g(t) g(s), so g(t) is a one-parameter subgroup of G,. Conversely, if F,(p)
=®,,(p) where g (¢) is a one-parameter subgroup of G, we must show g(z) € G,. But this
follows from invariance of w~!(u) under F, and equivariance (see § 2 above)

One proves (ii) in a similar way. []

As a result of our definition we have the following theorem of Smale, whose proof has
also been simplified by Robbin [15] and Souriau. We present another proof.

THEOREM 5. Let u be a regular value of w. Then p € w~*(y) is a relative equilibrivm iff
_ pis a critical point of w X H: P-G*XR. v
Proof: By our definition (and Theorem 1), p is a relative equilibrium iff 7,(p) is a critical
point of H, the reduced Hamiltonian. Since we have invariance under G, this is equivalent
to p being a critical point of H ll//‘l(,u). This in turn is equivalent to p being a critical point
of wx H (Lagrange multiplier theorem.) []
Thus the advantage of passing to P, is that relative equilibria really become equilibria
and, moreover, we have a Hamiltonian system on P, with a (non-degenerate) symplectic form.
In Theorem 5, it is necessary that u be a regular value. For example, in the n-body
problem (where G=S0(3)), if all the bodies are lined up with velocities headed towards
the center of mass, we have a critical point of w X H but the bodies do not travel in circles .
(Theorem 4 (i) fails). This was pointed out by J. Robbin.

§ 7. Stability of relative equilibria

DerINITION. Let p e P be a relative equilibrium of the Hamiltonian vector field Xy
as above. We call p relatively stable if the point p is (Liapunov) stable on the quotient
space P/G, where p appears as a fixed point.



REDUCTION OF SYMPLECTIC MANIFOLDS 129

THEOREM 6. Let the conditions of Theorem 1 and Corollary 3 hold and let p € P be a relative
equilibrium. Let H be the induced Hamiltonian on P,. If d*H is definite at m, (p), then p
is relatively stable.

Proof: The condition tells us that 7,(p) is a stable fixed point on P, by conservation
of energy. Thus we conclude that within each y~'()/G,,, p is stable. But by openness of the
conditions, the same is true of nearby reduced phase spaces P, x’ near p. Thus p is actually
relatively stable. [

If G is a Lie group with a left invariant metric, a relative equilibrium represents a fixed
point v in the Lie algebra, or a one-parameter subgroup of G. We can use Theorem 6 to
test its stability. If we do so, we recover a result of V. Arnold [2] (who proved it dlrectly
by an apparently more complicated procedure) as follows. The quadratic form d*H at
ve ® is, in this case, worked out to be—after a short straightforward computation:

Qv(wl s W2)=<B(U, Wl)s B(U, W2)>+<[Wl s UJ H B(U’ W2)> >

where {(B(u, v), w)={[u, w], v). Thus the condition requires Q, to be definite. In case of
a rigid body (G=S0(3)) this yields the classical result that a rigid body spins stably about
its longest and shortest principal axes, but unstably about the middle one. For fluids
(G=group of volume-preserving diffeomorphisms) the situation is complicated by the fact
that the metric is weak so the criterion is not directly applicable. In celestial mechanics
stability of the relative equilibria often depends on stability criteria much deeper than that
above, such as Moser’s “twist stability theorem”; cf. [1].

Note. The authors have learned that some results similar to those in this paper were
obtained by K. Meyer [23], However the approach and the applications are rather
different. '
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