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1. Introduction. An important problem in general relativity is the 
question of whether or not a solution of the linearized Einstein field 
equations (relative to a given background solution) actually approximates 
to first order a curve of exact solutions to the nonlinear equations. Here 
we announce that under certain geometrical conditions on the background 
solution the problem can be answered affirmatively; however, in certain 
exceptional cases the answer may be negative. In the affirmitive case we 
shall say that the background metric is linearization-stable. 

Let (4)# be a Lorentz metric (signature —, + , + , + ) on a 4-manifold V. 
The empty space Einstein field equations of general relativity are that the 
Ricci tensor of (4)# vanish : 

(1) Ric(<4>0) = 0. 

By an infinitesimal deformation we mean a 2-covariant symmetric tensor 
field (4)h which satisfies the linearized equations: 

(2) D Ric((4)0) •(4)/* = 0, 

where D Ric(-) is the derivative of the map Ric(). 
Assume that F has a compact orientable space-like hypersurface M and 

let g denote the induced Riemannian metric and k the second funda­
mental form. Our conditions are as follows: 

(i) tr k ( = trace of k) is constant on M. 
( . (ii) If k = 0, g is not flat. 

(iii) There are no nonzero vector fields X such that Lxg = 0 and 
Lxk = 0; Lx denotes the Lie derivative. 

Under these conditions, every solution (4)/i of (2) is tangent to a curve 
{4)g(X) of exact solutions of (1); i.e. (4)#(0) = (4)g in a tubular neighborhood 
of M in V, and d(4)g(À)/dX\À = 0 = (4)/z in this neighborhood. 

The case of noncompact M is rather different. Here asymptotic condi­
tions are necessary. For example, k = 0 and g the usual flat metric on R3 
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is not excluded. Thus the usual Minkowski metric on R* is linearization 
stable in a tubular neighborhood of the hypersurface M = R3. This 
result was obtained independently using other methods by Y. Choquet-
Bruhat and S. Deser [5]. The treatment of the general noncompact case 
is in spirit similar, although there are certain technical difficulties 
associated with elliptic operators which enter the problem. Details of 
this and of the present work will appear elsewhere [11]. 

2. Notation and summary of the method. Let M be a compact oriented 
3-manifold without boundary. Let Ji be the space of C00 Riemannian 
metrics on M, S2 the space of 2-covariant symmetric tensor fields on M, 
S2 the 2-contravariant symmetric tensor fields, C00 the smooth scalar 
functions on M, and X the smooth vector fields on M. 

In the technical proofs it is necessary to use the Sobolev Hs topology 
on these spaces and to pass to C00 by a regularity argument (as in [6]), 
but here we shall work directly in C00 for simplicity. 

As is well known [1], [8], every space-like hypersurface in a Ricci flat 
Lorentz manifold satisfies the constraint equations: 

*{g, n) = (i(tr n)2 » 7i • 7i) + R(g) = 0, 

% , 7 i ) = -7c;j = 0. 

Here g is the metric induced on the hypersurface, R is the scalar curvature 
of g, and n = ((tr k)g — k)'1 e S2 where k is the second fundamental 
form, and - 1 denotes the contravariant form of a covariant tensor. Also, 
% - n = n^Tiij e C00. Note that n is often taken to be a tensor density as in 
[1], [3] and [4] , but here it is a tensor. 

Conversely, every solution (#, n) of (3) gives rise to a Ricci flat space-
time in a neighborhood of the hypersurface; see [9] and references therein. 

The solutions of the constraint equations may be regarded as a certain 
subset % of the tangent bundle of Ji, TJi « Ji x S2 » Ji x S2. Our 
method is to show that in a neighborhood of regular points, i.e., points 
satisfying the conditions (R), ^ is a smooth submanifold of TJi. From 
this it follows that if (/z, œ)e S2 x S2 is tangent to ^ at a regular point 
(g, 7c), there is a à > 0 and a smooth curve (g(À), n(À)) e <€, — ö < X < ô, 
which is tangent to (h, co) at (g, n). 

If (4)/J is a solution of (2), then (4)/z induces a solution (A, co) of the 
linearized constraint equations. Thus if (#, n) satisfies the conditions (R), 
we obtain a curve of solutions to the constraint equations and by the 
existence theory for the Einstein equations, we get our desired curve of 
solutions {4)g(À) to (1) which is tangent to (4)/z. 

3. The constraint submanifold. Let 

^ = ir-\0) = {(g, n) | JTfo, 7i) = 0}, 
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the set of solutions to the Hamiltonian constraint. Note that k = 0 is 
equivalent to n = 0. 

THEOREM 1. Let (g9n)e^^> satisfy condition (ii) of (R). Then in a 
neighborhood of (g9 n)9 ^V is a smooth submanifold of TJt. 

SKETCH OF PROOF. Consider 2tf\TJl -> C00. We show that D^T(g9 n) 
is surjective so that ^f is a submersion at (g, n). It follows from the implicit 
function theorem (using Sobolev spaces here) that ^f_1(0) is then a 
smooth submanifold in a neighborhood of (g9 n). 

From A. Lichnerowicz [12] we have the classical formula 

(4) DR{g) • h = A(tr h) + ööh - h- Ric{g) 

and from this one finds 

DJtT{g9 n) • (h9 co) = A(tr h) + ööh - h- Ric(g) 
( ' + 2{^(tr n)n - n x TE} • h + 2{£(tr 7i)6f_1 - TI} • co 

where 7i x n = nikn[. Using elliptic theory, it follows that Dj^(g9 n) is 
surjective provided that its adjoint D3tf{g9 n)* is injective and has injective 
symbol. A straightforward computation shows that Dj4f(g9 7r)*:C°° -* 
S2 x S2 is given by 

DjP{g9 TT)* • N 

(6) = (gAN + Hess N - N Ric(g) + 2{£(tr 7Ü)TÜ - n x TT}" N, 

2{Ütr7r)<r1 ~n}N) 

where b denotes the co variant form of a contravariant tensor. 
The symbol of Djf?{g9 n)* is 

<r£DJir{g9 n)*)s = ((-gU\\2 + Ç ® £)s, 0), 

£ G 7 .̂*M, s e / ? , which is injective. Thus one has the L2 orthogonal 
splitting C°° = ker DJtf{g9 TC)* © range DJff(g9 it); see [2]. Thus if 
ker DJf(g9 TC)* = {0}, DJP(g9 n) is surjective. So let We ker DJP(g9 it)*. 
Then JV satisfies 

(7) gAN + Hess W - NRic(g) + 2&tr 7C)TC - n x rc)*W = 0 

and 

(8) 2(^trn)g-1 -n)N=0. 

Taking the trace of (8) gives (tr n)N = 0, so (8) gives Nn = 0. Thus, from 
(7), 

(9) gAN + Hess N - NRic(g) = 0 
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whose trace gives 

(10) 2A7V - NR{g) = 0. 

Using J^(g, n) = 0 and Nn = 0, (10) becomes AN = 0, so Wis constant. 
If % # 0, Nn = 0 implies N = 0. If TT = 0, then from (7), TV Ric(#) = 0. 
Since (g, n) satisfies condition (ii), g is not flat, so that Ric(#) ^ 0 as we 
are on a 3-manifold and so again N = 0. Thus DJ^(g, rc)* is injective so 
that Dj^(g, ri) is surjective. • 

If (ii) of (R) is not fulfilled, i.e., if % = 0 and if g is flat, then DJf(g, %) 
is not a submersion. In fact the behavior near these points is rather 
different. For example, using an idea of Brill-Deser [3] one can show that 
'\ig is flat, solutions of R{g) = 0 near g are also flat [10], [11]. 

Next we investigate the divergence constraint. Let (€b a TM, 
<gb — {(g? TC) | Sn = — 7t{j = 0}, the set of solutions to the divergence 
constraint. Using the expression tr Lxn = X • d tr n — n • Lxg, condition 
(iii) is easily seen to be equivalent to 

(iii)' For a vector field X, Lxg = 0 and Lxn = 0 implies X = 0. 

THEOREM 3. Let (g,n)e(^ô satisfy the condition (iii)'. Then <€b is a 
smooth submanifold in a neighborhood of (g, n). 

SKETCH OF PROOF. One computes that Dô(g, n):S2 x S2 —• Misgiven 
by: 

(11) Dó(g, n) • (h, co) = ôco + W ' - nJkh'M - \itij(ir h)v 

and its adjoint Dô(g, n)* :9C -»• S2 x S2 is: 

Dô(g, n)* • X = ({-\Lx7t + ${3X)n - | (X ® on + on ® X)}» 

+ \(Lxg • n)g - ±(X • ôn)g, W^T\ 

The symbol of Dö* is again injective, so it suffices to show DS(g, n)* • X = 0 
implies X = 0. Since on — 0, the condition Dô(g, n)* • X = 0 reads: 

(13) {-\Lxn + &X)nf + &Lxg • n)g = 0 

and 

(14) L r f = 0. 

From (14), ÔX = 0 so (13) gives Lxrc = 0. Thus X = 0 by (iii)'. D 
The regular points satisfying (iii)' are just those (#, n) having discrete 

isotropy group under the action of the diffeomorphism group acting on 
TM « Jl x S2 by pullback. 

To show that <% = ^ n ^ is a submanifold, we need additional 
restrictions because there may be points at which the intersection is not 
transversal. At this point it is necessary to assume that (g, n) satisfies the 
tr n = constant condition (which is equivalent to tr k = constant). 
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THEOREM 4. Let (g, n) e <€ satisfy conditions (R). Then in a neighborhood 
of (g,n),^ is a smooth submanifold. 

SKETCH OF PROOF. Consider O = (jf, b)\TM -» C00 x 9C. We want 
to show DQ>(g,7c) is surjective for (g, n) e <& and satisfying conditions (R). 
We know DQ> from (5) and (11). The adjoint map is given as follows: 

D<D(#, TtfiC00 x 3C -+ S2 x S2; (N, X) 
M> ((AAOgr + Hess AT - N Ric(g) 

Q5\ + {2(|(tr 71)71 - 7i x 7i)N — \Lxn 

+ £(<5A> - i(X ® on + on® X)Y 

+ i(Lxflf • n)g - \{X - ôn)g, 

2{\{tv n)g'1 -n}N + &Lxg)-1). 

The symbol of this map, a^(DQ>{g, TT)*), Ç e T*M, may be shown to be 
injective. Thus it remains to show that DQ>{g, it)* is injective. Let 
(TV, X) e ker(D<D(#, n)*). Since on = 0, (15) gives 

(AN)g + Hess N - N Ric(g) 
(16) . 

+ {2&tr 71)71 - n x n)N - \Lxn + &öX)ny + ^ ( L ^ • 71)0 = 0 
and 

(17) 2&t r n)g~' - n}N + ^ L ^ ) " 1 = 0. 

Taking the trace and using JP(g, n) = 0 gives: 

(18) 2AN + 2{TI • 7i - i(tr 7i)2}iV - i(rf tr TC) • X = 0 

and 

(19) 2&t r Ti)^"1 - 7i}iV + ^Lxg)-' = 0. 

If n = 0 then (18) gives N — constant and (16) gives TV Ric(#) = 0 so 
N = 0, as Ric(gf) # 0 in this case. By (19), and (iii) of (R) we obtain 
X = 0. 

If 7i # 0, tr 7i = constant, so (18) gives 

2A7V + 2{TT • 7i - i(tr TT)2}JV = 2A# + 2(TT - fttr TI)^)27V = 0. 

Since (71 — |(tr 7i)0r)2 = (71 — J(tr 71)0) • (71 — |(tr 71)0) > 0, we conclude 
that N = 0. Thus from (19), Lx^ = 0, so from (16), Lxn = 0. Thus in 
either case, X = 0, so that DO(#, 7i)* is injective. • 

4. Integration of infinitesimal deformations of Ricci flat spacetimes. 
As explained previously, we can use Theorem 4 to prove the following 
main result. 

THEOREM 5. Let {4)g be a Lorentz metric on V satisfying Ric((4)#) = 0. 
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Let (4)/z satisfy the linearized equations; i.e. 

(19) D Ric(<4)0) • <4V* = mL™h - a(4)g S(^h - Ktr(4)/*)(4)0)) = 0, 

where ag(X) = Lxg and D L is the Lichnerowicz d'Alembertian [12]. 
Let M be a compact oriented space-like hypersurface in V with induced 

metric g and second fundamental form k. Assume (g, k) satisfy the conditions 
(R). 

Then there exists a ö > 0 and a smooth curve (4)gf(A) of exact solutions of 
Ric((4)^(A)) = 0,-<5 < A < ô,suchthati4)g(Q) = i4)gandd{4)g{X)ldX\À=0 = 
(4)/z in a tubular neighborhood of M. 

SKETCH OF PROOF. In Gaussian coordinates in a neighborhood of M, 
{A)h induces a deformation (h, co) by 

K = (%, 
a> = D(7 t%,g) ) - (M) 

= i H * x j + j x A ) + ( i - (tr % ) + dh • g)g + (tr g)h)}-1 

where the momentum n in Gaussian coordinates is 

„ = wy = ^ V f a - (tr g)g% 

g = WgtJ = &*>9iJ/dt, h = < % = ô(4>AlV/5r. 

This induced deformation h, co satisfies the linearized constraint equations : 
D J % , n) - (h, co) = 0, Dô{g, n) • (h, co) = 0. Thus by Theorem 4, we can 
find a curve (g(X), n(X)) e <fë tangent to (A, co) at (g, n). This gives us space-
times (A)g{X) defined on a neighborhood of M by the existence theory 
which by a transformation of coordinates can be chosen to have the 
desired properties. • 
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