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The following theorem answers a question raised by J. A. Wolf, [6] page 95.

Theorem. Let M be a compact pseudo-riemannian manifold. Let G be a Lie
group which acts transitively on M by isometries. Then M 1s geodesically complele.

This result was proved by Hermann [1] in the special case of a semi-simple
compact Lie group carrying a left invariant pseudo-riemannian metric, It
should be noted that in the statement of the theorem neither the homogeneity
nor the compactness may be dropped. For example it has become well-known
to relativists that there are incomplete Lorentz metrics on the two torus. These
were constructed by Y. Clifton and W. Pohl. Cf. [2], p. 189. An incomplete
metric on the noncompact group SO(2, 1) is constructed in [1] although this
is a special case of a whole class of incomplete pseudo-riemannian manifolds
constructed by J. A. Wolf. Sce [5] and [6].

To prove the theorem we shall show that the tangent bundle T3 of 3 is
the union of compact subsets S, parametrized by elements « of the dusl o*
of the Lie algebra of G, with S, invariant under the geodesic flow. Since a vector
field whose integral curves remain in s compact set has a complete flow, this is
clearly enough to prove the theorem.

The construction of S, comes from mechanics; S, is defined to be a level
surface of the conserved moment for the geodesic flow. We now summarize
the appropriate definitions.

Let £y be the infinitesimal generator (Killing vector field) on A7 corresponding
to £ e ©. Since we have & homogeneous space, for each m e M the vectors £2(m)
span the tangent space T..M. Define the moment for the action by

P:TM — &% P@):={(, Ex(m)), ve T M.

It is a fundamental fact from mechanics that P is conserved by any Hamiltonian
flow on T'M invariant under the tangent action of G and in particular by the
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geodesic flow. See, for example, [3, 4]. This result is one geometric aspect of
the classical Noether theorem. Furthermore, P is Ad*-equivariant; i.e.,

PoT®, = (Ad,-)*o P forall ge@

where ®, denotes the action of ge¢ G on M, Ad, = TR,-.TL, : ® — § is the
adjoint action and (Ad,)* is its dual. This is an easy verification; see [3]; or [4],
Prop. 4.4.

Set S, = P~'(a) for each « ¢ G*. By the above, these sets are invariant under
the geodesic flow. Obviously TM = Wa.s* Sa . The following lemma will thus
complete our proof.

Lemma. Each of the sels S, is a compact subsel of TM.

Proof. Certainly S, is closed. Furthermore, the restriction of the canonical
projection w : TM — M to S, is one-to-one because from the fact that the £x(m)
span T, M, we sce that S, intersects each fiber in at most one point.

We claim first of all that #(8S,) is closed and hence compact. Indeed z ¢ #(S.)
means that « is not in the range of the linear map obtained by restricting P to
T_M. Thus « is not in the range of P|T,M for y in a whole neighborhood of z.
Hence #(S.) is closed.

Now let v, , v, ¢ S, , 80 (v, , £x(2)) = (v, , Ex(¥)) = a(}) for all ¢ ¢ ®. From
the fact that £,(m) span T.M and non-degeneracy of {, ), we may conclude
that v, is close to v, if z is close to y. Hence the inverse 7~ : (S8.) — S, is
continuous. Thus S, is compact. 0O

Remarks. 1.If dim G = dim M, then S, is actually a submanifold because
P : TM — ®* is a submersion in that case (the derivative of P along the fibers
is one-to-one and hence surjective).

2. Of course we have actually proved more. We only require that the infini-
tesimal generators span at each point, and that we have an invariant Hamiltonian
system. Clearly conservation of energy, which is the basis of the proof for the
Riemannian case (sece [6] p. 89), plays no role here.

We thank J. A. Wolf for several useful remarks.
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