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1. Introduction. Several authors, e.g. [2], [9], [10], [12], [17], have shown 
by perturbation techniques that the Hopf theorem (see [8], [16]) on the 
development of periodic stable solutions is valid for the Navier-Stokes 
equations; in particular, solutions near the stable periodic ones remain 
defined and smooth for all t ^ 0. The principal difficulty is that the Hopf 
theorem deals with flows of smooth vector fields on finite-dimensional 
spaces, whereas the Navier-Stokes equations define a flow (or evolution 
operator) for a nonlinear partial differential operator (actually it is a 
nonlocal operator). 

The aim of this note is to outline a method for overcoming this difficulty 
which is entirely different in appearance from the perturbation approach. 
The method depends on invariant manifold theory [6], [7] plus certain 
smoothness properties of the flow which actually hold for the Navier-
Stokes flow. 

While the statements of the results are relatively simple, the proofs are 
somewhat complicated in their details. They will not be presented in full 
here, because all the details of the relevant invariant manifold theory have 
not yet been published (several details on the applications became clear 
only after conversations with M. Hirsch). We expect to write out these 
proofs at a later date. Nevertheless, the summary presented here should 
give a picture of the method and some idea of the proofs. We hope that the 
nature of the hypotheses allows our formulation to be fairly readily 
applicable. There are some indications that this is so. (This is based on 
conversations with N. Kopell who is working on the bifurcation of 
periodic solutions in certain chemical systems.) 

We shall be considering a system of evolution equations of the general 
form 

dx/dt = Y(x), x(0) given, 

where Y is an operator on a suitable function space J f and will eventually 
depend on a parameter /x. For example, Y may be the Navier-Stokes 
operator and \x the Reynolds number. This system is assumed to define 
unique local solutions x(t) and thereby a flow Ft which maps x(0) to x{t). 

The key thing we need to know about the flow Ft of our system is that, 
for each fixed t, Ft is a C00 mapping on a suitable Hubert space Jf (Ft is 
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only locally defined in general). This can be verified by fairly general 
criteria and holds, in particular, for the Navier-Stokes equations ; here one 
uses J f = Hs divergence free vector fields, i.e., divergence free vector 
fields on a bounded domain with L2 derivatives of order :gs (see [3], [5], 
[13], [14]). Actually this is not quite accurate and the Navier-Stokes 
equations probably do not define a smooth semigroup. However, this 
can be remedied by passing to Lagrangian coordinates and there the 
semigroup is smooth; cf. [3]. (Periodic solutions to the Navier-Stokes 
equation do not appear periodic in Lagrangian coordinates ; but this does 
not destroy the essence of the method—below we shall ignore this 
complication.) 

One could push the analysis further to include the theory of turbulence 
as proposed by Ruelle-Takens [16] and in particular see that the solutions 
remain defined and smooth for all t ^ 0 even after turbulence has set in 
(cf. [10], [17]). But on the other hand, this mechanism of bifurcation is not 
well understood—in particular it is not known if "actual" turbulence 
occurs this way (cf. [10]). 

See [15], [18] for general background and further references. 

2. Some notation and assumptions on the flow Ft. Fix a (separable) 
Hubert space J f and let Ft be a nonlinear semigroup on Jtf. By this we 
mean the following (cf. [1]) : 

(a) Ft(x) is defined on an open subset of 

R+ x jtr9 R+ = {teR\t ^ 0 } ; 

(b) Ft + S = FtoFs (where defined); 
(c) Ft(x) is separately (hence jointly [1]) continuous in t, xeR+ x Jf7. 
We shall make two standing assumptions on the flow. The first of these is 
SMOOTHNESS ASSUMPTION. Assume that for each fixed t, Ft is a C00 map 

of (an open set in) J f to J^. 
This is what we mean by a smooth semigroup. Of course we cannot have 

smoothness in t since, in general, the generator X of Ft will only be densely 
defined and is not a smooth map of J f to Jf. However it is known [1] that 
the derivatives DrFt(x) are automatically jointly continuous in t and x 
using the strong operator topology. For general conditions under which 
smoothness holds, see [4], [14]. For the Euler equations and the Navier-
Stokes equations, it is valid in Lagrangian coordinates; see [3], [5], [13], 
[14], [15]. The simplest situation in which one has smoothness is the case 
in which the generator Y of Ft is obtained as 7 = (linear generator) 
+ (smooth, everywhere defined operator). This situation was considered 
by Segal [19]. Despite the fact that the perturbation is like a bounded 
operator, this circumstance does apply in a number of problems such as 
nonlinear wave equations, some chemical reactions involving diffusion, etc. 
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The second condition is 
CONTINUATION ASSUMPTION. Let Ft(x), for fixed x lie in a bounded set 

in Jffor all tfor which Ft(x) is defined. Then Ft(x) is defined for all t ^ 0. 
This merely states that our existence theorem for Ft is strong enough to 

guarantee that the only way an orbit can fail to be defined is if it tends to 
infinity in a finite time. This assumption is valid for most situations and in 
particular for the Navier-Stokes equations; see e.g. [3], [15]. 

Suppose we have a fixed point of Ft, which we may assume to be 0 e J f ; 
i.e., Ft(0) = 0 for all t ^ 0. Letting DFt denote the Fréchet derivative of Ft 

for fixed t, Gt = DFt(0) is clearly a linear semigroup on Jf. Its generator, 
say X, is therefore a densely defined closed linear operator which repre­
sents the linearized equations. Our hypotheses below will be concerned 
with the spectrum of the linear semigroup Gt, or equivalently, of X. 

3. Bifurcation to periodic orbits. Our object now is to give a theorem 
which not only contains the Hopf theorem as a special case (wherein the 
vector fields involved are smooth and everywhere defined on Jf ) but is 
sufficiently general so as to apply to the case of smooth nonlinear semi­
groups. Basically, we have replaced smoothness of the generator with the 
smoothness assumption described above. The plan of the proof is to follow 
the proof of Hopf's theorem in Ruelle-Takens [16] but replacing, at the 
appropriate places, bifurcation theorems for vector fields Y by bifurcation 
theorems on maps, namely the time t-map Ft. This is outlined below. 

We summarize our assumptions as follows : 
HYPOTHESES ON THE SPECTRUM. Assume we have a family F? of smooth 

nonlinear semigroups defined for \i in an interval about OeR. Suppose Ff(x) 
is smooth in x for fixed t, u and is jointly continuous in t, x, JA. In addition to the 
requirements in §2, assume 

(a) 0 is a fixed point for F f ; 
(b) for \x < 0, the spectrum of G1} is contained in D = {zeC:\z\ < 1}, 

where G? = DxF?(x)\x = 0; 
(c) for \i = 0 (resp. fi > 0) the spectrum ofGÇ at the origin has two isolated 

simple eigenvalues X(JJ) and T(M) with |A(/J)| = 1 (resp. |A(ju)| > 1) and the 
rest of the spectrum is in D ; 

(d) (d/dOI^(M)ll|i = o > 0 (tne eigenvalues move steadily across the unit 
circle). 

(e) 0 is an attracting fixed point for fi = 0, i.e., there is a neighborhood V 
of 0 such that F?(x) -> 0 as t -> + GO for each xeV. 

These hypotheses require a few remarks. First of all, the continuity of 
F{*(x) in t, x, \x can be verified by fairly general assumptions on the genera­
tors, as is discussed in [14]. We certainly can assume smoothness only in 
the variable x. Condition (b) means that, for \i < 0, the fixed point 0 is 
strongly attracting (or "stable") in the sense that the linearized equations 
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are attracting, i.e., Gf (x) -» 0 as t -• + GO for each x. Assumption (c) means 
that, at the critical value fi = 0, the linearized terms just fail to be attracting. 
Finally, (e) means that we assume 0 is still attracting for the nonlinear 
system, but the attraction is due to the higher order (cubic) terms. This last 
point is discussed in [11] and in [16]. The same sort of assumption—often 
difficult to check—occurs in perturbation theory (cf. [10]). N. Kopell has 
found that in some applications, one does not expect (e) to hold and in 
that case the periodic solutions one gets are not attracting (or stable) for 
all nearby solutions. Stability of 0 for /x = 0 implies, in particular, by the 
continuation assumption that the nonlinear flow Ft° is automatically 
defined for all t ^ 0 in a neighborhood of 0. 

THEOREM. Under the above hypotheses, there is a fixed neighborhood U 
ofO in 2tf and an s > 0 such that FÇ (x) is defined for all t ^ Ofor JJ, e [ — 8, s] 
and xeV. There is a one-parameter family of closed orbits for Ff for \x > 0, 
one for each \i > 0 varying continuously with \i. They are attracting and 
hence stable. Solutions near them are defined for all t ^ 0. 

The idea of the proof is first to apply the results (Remark 5.3 on p. 177) 
of [16] to the maps Q>^ = F\ to conclude the existence of a family of 
invariant 2-dimensional manifolds parametrized by ii and then to use 
Theorem 7.2 of [16] on this restricted family of manifolds to conclude the 
existence of a unique family of attracting invariant circles for the maps cD .̂ 

The proofs of the theorems referred to in [16] are not complete because, 
first of all, the invariant manifold theorem is needed for a Hubert space 
and for maps (not necessarily diffeomorphisms) and this has not yet been 
published ; but the modifications needed are not difficult and have been 
described in a private communication by M. Hirsch and C. Pugh. (See also 
[16, p. 189].) A second technical point is that ^ ( x ) as we have defined it, 
while smooth in x, need not be smooth in the variable /i, so the version of 
the theorems referred to is not applicable as it stands. However, if one 
only insists that the resulting manifolds and invariant circles vary con­
tinuously in JU, continuity of OjU(x) in JJL is enough. This requires a careful 
examination of the proofs since the theorems are not stated in a form con­
venient for this deduction. 

Having found unique invariant circles c^ for O^ it follows that cM are 
actually flow invariant since Ff(c^) = F^F^c^)) = F1(Ft(c^)) so by unique­
ness, F^Cp) = Cp. (We have Ff(c^) n {0} = 0 , \i > 0 by uniqueness of 
solutions.) It follows that cM are actually the periodic solutions of the system 
we sought. The attracting nature of cM together with the continuation 
assumption entails that the flow is global in time near these periodic orbits 
and that initial data near c^ will approach the periodic solution as t -> oo. 
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