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We study a number of sufficient conditions which guarantee the convergence
of semigroup product formulas of the type

H, = lim (Fy, o Gya)"
LET- )

and its generalizations. Our hypotheses differ from those of other authors in
that we do not assume in advance that the limit operator is a generator. Rather
this is a consequence and hence the above formula yields an existence theorem

(""\ (local in time) for nonlinear semigroups. A number of smoothness properties
are studied as well. The results may be applied to and are motivated by the
Navier-Stokes equations.

1. INTRODUCTION

This paper deals with the following situation: suppose a (nonlinear)
operator X on a Banach space generates a semigroup F, (which we
shall also call a flow or semi-flow) and Y generates a semigroup G;.
Then the semigroup for X + Y ought to be

H, = Li_['g(Ftln ° Gl/n)"' (1)

Results centering around formula (1) have been given by Trotter
[22] for the linear case and Brezis-Pazy [1] for the nonlinear case in
the setting of contractive semigroups. In addition to formula (1), we
shall be dealing with an important generalization of (1) due to
Chernoff [3], and also treated by Brezis-Pazy [I]. Namely if K(2)
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is a curve of nonlinear mappings, then the semi-group for K’(0)
ought to be
H, = lim K(t/n)". )

A good introduction to the formulas (1) and (2) is found in Nelson [16].
Usually one makes hypotheses of the following kind. One assumes
that X 4 Y or K’(0) has a semigroup associated with it. Our approach
is rather different; we want to prove the existence of a semigroup
for X + ¥ (or K'(0)). The reason for this is that we shall be working
with general semigroups, not necessarily contractive ones. For such
semigroups, there is no general criterion for determining whether or
not X + Y is a generator. (For the contractive case, one has various
generalizations of the Hille-Yosida theorem; cf. {1, 2, 9].)

Because of the strength of the conclusions, we put on fairly restric-
tive hypotheses. In the linear case it amounts to Y being a bounded
perturbation of X. Despite this restriction, the theorems have several
important applications.

In connection with our theorem concerning the existence of a semi-
group for X 4 Y, we mention some related work of Segal [17]. He
shows X 1 Y generates a semigroup if Y is Lipschitzian and X is
linear. Our result allows both X and Y to be nonlinear, as well as
establishing formula (1).

The results presented here are motivated by certain application in
hydrodynamics. See Ebin-Marsden [10] for an application of (1)
and (2). In that case, both X and Y were nonlinear and we knew a
priori, both generated semigroups (certainly not contractive ones).
We then wanted to show that X 4 Y generates a semigroup, and to
study the singular perturbation problem vX 4 Y in the limit v — 0.
This was used to study the Navier-Stokes equations in a region with
no boundary. This paper refines those techniques and eliminates
some important hypotheses. In addition, we obtain sufficient con-
ditions for the convergence of Chernoff’s formula (2) as a more
general case.

Some of the delicacies in the proof center around the regularity
of solutions. Thus for formula (2), onc wishes to know if a solution
x(t) of x'(t) = K'(0) [*(#)] has initial data from a space with a certain
degree of differentiability, then the solution has this same property.
This involves then, some kind of a priori estimates. This property
was verified for the Euler equations in hydrodynamics in [10]. See
also [14]. We want to include here, an abstraction of this regularity
property as well as establishing the convergence of formulas (1)
and (2).

/%)
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The main results of the paper are contained in Theorems 2.1,
2.10, 5.1, 5.2, 6.1.

Finally we wish to point out the utility of formula (1) in a number
of other applied areas. For example, we cite Nelson [15] for quantum
theory, Chorin [7, 8] and Temam [21] for numerical work on the
Navier-Stokes equations, and Segal [I8) and Simon and Hoegh
Krohn [19] in quantum field theory.

In later work we hope to establish the validy of certain product
formulas for the Navier-Stokes equations in regions with boundary
that are suggested by the recent successful work of A. Chorin [8].

We than P. Chernoff, J. P. Penot and the referee for comments and
corrections.

2. SurriCIENT CONDITIONS FOR THE CONVERGENCE
ofF CHERNOFF's FormuLa (2)

In order to adequately deal with the case X + Y, it is necessary,
as we shall see, to introduce metrics other than Banach space norms.
Therefore, we deal with formula (2) in a more general context than
Banach spaces, namely Banach manifolds with a certain distance
metric specified. Furthermore, instead of working with domains of
operators, we have found it necessary to work with chains of Banach
manifolds: M = MO M, D M,D --- where each M, is densely
included in M;_, . For example M, plays the role of the domain of
an operator with the graph topology (or a stronger one). Actually
we need only M, through M, to obtain convergence on M.

In our first main result, 2.1 below, we give a theorem corresponding
to the globally contractive case. In hydrodynamics examples, one of
the hypotheses ((iii) below) is unrealistic. The regularity conclusion
in the theorem runs deeper than that. Therefore, we give in 2.10
some other conditions which yield the same result but get to the heart
of the regularity question. Theorem 2.10 represents, we feel, an
abstraction of what is going on in the case of the hydrodynamics
(Navier-Stokes) equations. The result can then be used to prove, for
example, the various product formulas for the Navier-Stokes cquations
(see [10], [14]), and Chorin [7], Temam [21]).

Tueorem 2.1. Let M = M,, M,, M,, M;,... be Banach mani-
Sfolds with M = MyD M, D M, D --- such that each inclusion is continu-
ous and dense. Let dy = d, d, , d, ,... be complete metrics for M, M, ,
M, ... respectively; d < dy < d, .
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Let xo € M, let V C U be open neighborhoods of x, and let
Vk=Mkﬁ V, Uk =1Wkﬂ U.
Suppose we are given a curve of mappings

te[0, T K(t): V— U

such that K(t) maps V, to U, , and K(t) satisfies the following condi-
tions.

(i) KO)x=uxx€eV.

(ii) For xeV,, t—>K({t)xec U, is continuous, (k = 0),
t—>K{tyxe U,_, is Ct (k = 1) and K'(t): V,,— TU,._, is continuous
(TU is the tangent space of U).

(i) There are constants 8 =8,, B,, - =0 such that for
x,yeV,

d(K(1) x, K(8) 3) < €' dy(x, 3). 3)

(iv) For xe V,,, and B a bounded subset of V., containing x,
there is a constant C such that

dy(K(t + 5) y, K(2) K(s} y) < Cots 4)

for all y € B (the constant may depend on x, B, and k).
Then there exists a neighborhood W of x, in M and a v > 0 such that
forxeW, 0t

Hx= lllg K(t/n)" x 2)

ts defined and exists. Furthermore: (Regularity) If xe W N M,., then
Hpxe M, for all 0 <t < 7 (that is, the time of existence  is inde-
pendent of k).
Moreover, we have

(a) d(Hg, Hy) < ¢ d(x, y)

(b) t+> Hxx is continuous

(¢) Hypx=H,cHx, if xe W, 0Kt +s<

(d) for xeM,, Hxe M, , and as a curve in M,

Hyx) = x, 3"7 Hx=K(0)(Ha), 0<t< (5)

Moreover, Hx is the unique solution of the differential Eq. (5).

(Sec Lemma 2.8 below for the precise meaning of (d).)
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Remark 1. It is in the sense (d) that Hx is the semigroup with
generator K'(0) (see Section 5 below).

Remark 2. In [22, 3, 1] the key hypothesis is that K'(0) be a
generator. Notice that we conclude this. Instead, we make the a
priori estimate (4) which says that K(z) is, for small ¢, an approximate
semigroup. In Section 3, below we shall see how to verify the estimates
(3) and (4) in the context of formula (1). A weakening of condition (iii)
is given in Theorem 2.10 below.

Remark 3. We establish (2) and (5), only for small z-intervals.
However (2) is valid as long as one has solutions to (5); in other

words, global convergence of (2) is equivalent to global solutions
of (5).

Lemma 2.2. There is a neighborhood W of xy in M such that for
xe W, K(t/n)* x is defined and remains in V for all n = 1,2, 3,...
and t in some interval [0, 7], = > 0.

Proof. Choose € > 0 such that D(x,, 2¢) the disc of radius 2e
with center ay, lies in V. Define § > 0 by

e < ef2, d<e (6)

and (by denseness) choose y, € VV, with d(y,, x,) < 8/2. By assump-
tion (ii), there is a constant C such that

d(K(t)yo,y) <Ct, te[0, T). @)
Define = by
CeT8r < ¢]2 ®

we assert, inductively, that K(t/n)* y,€ D(y,, €/2). Indeed this
follows from (7), (8) for n = | and the following:

n

d(K(tn)" yo, y0) < Y d(K(t/nY 3o . K(1/n) 3,)

jeal

n

< z Su-utin J(K(t[n) ¥o , ¥o)

j=1

< Y e Ctfn = Cte < ¢2.

jml
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Let W = D(x,, 8/2). For x € W, d(x, y,) < d(x, x0) -+ d(x4 , o) < 8,
S0

d(K(tfn)" x, K(t[n)" 30) < (") - (3, yo)
< M < ¢/2
by (6). Thus, inductively
K(t/n)* x € D(K(t/n)" 3, , €/2) C D(y,, €) C D(x,, 2¢)
which proves our assertion. |
Let W, = Wn V,, a neighborhood of x, in M,,.

LemMaA 2.3. Let BC W, , be a bounded set. Then there is a constant
C, such that
d(K(t) x, K(t]l) x) < Cyt2 (9)

for xeB, 0t <,1=1,2,3,...
Proof. By (iv),
d(K (¢ + 5) %, K(t) K(s) x) < Cts
for all xe B, t,s€ [0, 7]. Thus using the triangle inequality
d(K(t) x, K(¢/l)' %)

i-1

< Y ARy Kt — jefl) = K@y K@) Kt — (G + 1) 41) %)

=0

< l):“,l PR — jtil) x, K@) K(t — (j + 1) tll) =) by (iii)

jo=0

-1

<Y Gt — (G + D4l by (iv)

j=0

SC (I — I+ D)< G |
In particular, we may conclude from (9) and compactness of
{K()x:0 <t <7} for fixed x, that {K(t/)!x:0<t <, I =1,

2, 3,...}is a bounded set in V., if x € W, . (The bound C, of course
depends on B and k). Thus we obtain the following.

CoroLLARY 2.4. Let x€ W,,,. Then there is a constant C, such
that

d(K(1) y, K(tfl)' y) < Cot* (10)
Jor al 0 <t <r, y=Kt/j)x0<t,<n,5=123,.
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We also assert that:

CoroLLARY 2.4'. The above result is valid if k -+ 4 is replaced by
k+ 2

Proof. Let x € W;,,. We need only show that in W,
{(K(tyjyy »10 < t, < 7,5 = 1,2, 3,..}is a bounded set. Pick £ € IV},
so we have this assertion for & But then

dy(K(ty[jY % K(tyfj) 2) < P22 dyyof, 5)

so that if K(¢,/j)! % lies in a ball of radius R, K(2,/j)/ » will lie in a
ball of radius R + ef+27 dp o(x, ). |

Now we are ready to make the key estimate.

Lemma 2.5. Let xe€ Wy,,. Then there is a constant C, such that
Jor all m = n we have

di(K(tn)® x, K(t|m)™ x) < C,t*[n, (an
Jor all 0 < t < 7. The constant C, depends on x and k.

Proof. TFirst, suppose m = nl. Then write, by the triangle
inequality,

d(K(t[n)" x, K(t[nl)"" x)

< ﬂz-l di(K(t/n)" K(t[nly* x, K(t[n)n—? K(t{nl)4-1" x)

j=0

< "Z-:l tn=i=0in g (K(t)n) K(t/nl)" x, K(t/nl) K(t/nly"* x).

pars
We now employ Corollary 2.4’ to obtain that the above is
< EYC n.
To obtain the result for general m, write
du(K(t[n)" x, K(t[n)™ x)
< du(K(t[n)" x, K(tjnm)™ x) + d(K(tfm)" x, K(tmn)™" x)
< G n) + (1/m)) < 20,76 n.
We get our result by taking C, = 2Ce?». ||
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Observe that the constant C, depends on the point x € W, , but
that = > 0 is uniform, independent of x and 4.

LesMa 2.6 K(t/n)* x converges in V for each x e W uniformly
in t. In particular, for xc W

t— Hyx = Llrg K(t/n) x

ts continuous and so Hpx: [0, 7] X W — W is jointly continuous.

Proof. By 2.5, K(t/n)" x converges uniformly if xe W,. By
denseness, for xe W, find x; —x, x;€ W,. Then the inequality

d(K(t[n)" x, K(t/m)» x) < Bt d(x, x;) + d(K(tjn)" x;, K(t{m)™ x;) + 8! d(x;, %)

shows that K(z/n)" x converges uniformly in ¢ as well. We clearly
have d(H (x), H(y)) < ¢*' d(x, y) so the rest of 2.6 holds. |}

Now the same argument shows that K(¢/n)* x converges in V,, if
x € W, . Hence since the inclusions are continuous we can conclude
that Hx e v, if x € W) . This establishes the regularity property.

Remark. 1. This proof depends crucially on the fact that the
B are uniform on all of ¥ even though for 2 > 1, V. will, in general,
be an unbounded sect. In hydrodynamics the 8, will be bounded on
bounded sets. However, without additional assumptions, the result
does not seem to be true with this weakening. One only obtains for
x€ Wy, an integral curve H(x) lying in V. Thus we have a
“loss of smoothness” which is an unfortunate property for dynamical
systems. (The flow property (c) then does not make much sense.)
We shall see in 2.10 how to rectify the situation.

Remark 2. The convergence in 2.6 is probably not locally
uniform in x (except from W, to V).

We continue the proof. Condition (a) being obvious, and (b) proven
in 2.6, we turn to (c).
By joint continuity of H x, we can shrink W, = down to W, # such
that
0<% xeW=>HaxeW.

Let us still call the new neighborhood and time interval by W, .
This additional shrinking is probably superfluous, but it guarantees
that K(¢/n)» Hx converges as n — co (by 2.6) and we use this fact
in the following.
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Lemma 2.7. H,is a semigroup. That is, for xe W,0 < s+t <,
0 <s,t we have

H, x = H(Hy).

Proof. First, supposec s and ¢ are rationally related, say s = lt/m.
Then

Hyoie = lim K((s + )fn) <

= lim K(s/k)*" K(t/k)" =

where k' = Inf(! + m), k = nm/(l + m) and the limit is taken through
multiples of ! 4 m so that k, k' are integers. Here &, k' are chosen
so that

s =tfk=(s+t)fn and k+K=n
which makes the above equality clear. Now write
(KSR KR 3, HH ()
S AK(s/F ) K(tfR)* 2, K(s{k')" H((x)) + d(K(x[K')"" H(x), H(H(x))
™ < ePd(K(tk)* x, H(x)) + d(K(s|k'}*" H (x), H(H (x))

and observe that each of these terms —0 as k', k— co. Thus
H,, »x = H/(H ) holds for a dense set of s, ¢ and so by continuity in ¢
(Lemma 2.6) it holds for all 5, 2. |}

Lemma 2.8. Let xeM,. Then Hxe V is right differentiable on
[0, 7), continuously differentiable on (0, v) and we have

Hx=KO)(Hgx), 0<t<r

Proof. Let xe€ W,. Then, by Lemma 2.3 and letting /— o0,
we have

d(K(t) x, Hx) = O(t2).
Thus H,x is right differentiable at 0 with derivative K’(0). Now
Hy,»x = H(H(x))

and H(x) € V, by regularity. Thus H, is right differentiable at each
s with H/x = K'(0) (Hx). But this right derivative is clearly con-
tinuous. Hence by standard arguments (Yosida [23], Kato [12]) H (x)
is differentiable on (0, 7).
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Hence we have, going to a coordinate chart,
Hx) = x + J; " K(0) (H (x)) dt

on a dense set, namely for x € ¥, N W, . By continuity, this equation
holds then for all x € W, and the conclusion therefore follows. ||

To complete the proof of our theorem, we quote the following.

Lemma 29. Let X:DCM— TM be a densely defined wector
field and suppose X has a C° semigroup H, locally defined on M, leaving
D invariant and H/(x) = X(H(x)) for x€ D. Suppose (locally)
d(H(x), H{y)) < M d(x, y) where M, is locally bounded. Then integral
curves of X are unique.

This is proved by standard techniques; see Chernoff-Marsden [5, 6].
Now we wish to show how the same results can be obtained under
more specialized hypotheses. These can actually be verified for the
Navier-Stokes equations in the context of [10] and Section 5 below.

THeOREM 2.10. In Theorem 2.1, replace (iii) by the weaker assump-
tion:

(iii)’ for each bounded set BC V,_,, there is a constant B,
(depending on B, k) such that

d(K(#) %, K(2) y) < € dy(%, 3)

for x,yeBnV,.
Then the same conclusions, including regularity, hold.

Proof. We proceed as in 2.1 with Lemma 2.2 choosing a (bounded)
W and = so that X(t/n)" x arc all defined. The key thing is the following
lemma.

Lemma 2.11. For x € B, , a bounded set in W, , {K(t{n)" x: x € By, ,
0t rn=1223,.}is a bounded set in V, .

Proof. We proceed by induction k. It holds by construction for
k = 1. Assume it is true for & — 1. Then by (iii)" and the argument
in Lemma 2.3, we see that the estimate (9) remains valid. (All quanti-
ties lic in a bounded set of V,_; by assumption.) Thus there is some
particular y € W), so that K(¢/n)" y lics in a bounded set. Then as in
2.4’ for any x € B, we have

d(K{(t[n)" x, K(t[n)* y) < €' d(x, )
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where 8 is the constant from (iii)’ for the bounded set B, L {K(t/n)" ¥}
in V,_,. Thus if K(t/n)*y € D(y, R) we have K(t/n)*x €
D(y, R 4+ e8! d(x, y)), so our assertion follows. [}

Once we have observed this result, the rest of the argument goes
through exactly as before.

Verifying (iii)’ for hydrodynamics rests on a basic nonlinear estimate
done in [10] or [14, part II, Section 3]. That statement also yields a
direct proof of the regularity conclusion of the theorem for those
equations.

Of course one could also make the more general assumptions:

(iii)” the B, of (iii) are assumed bounded on bounded
sets of V,, and for each xe Vy,, {K(t/n)*x: 0 < t < T,
n =1, 2,...} is a bounded set in V..

Then with this assumption replacing (iii) it is not difficult to see that
the conclusions remain valid. The trouble is of course that in examples
it is difficult to check directly the boundedness of K(t/n)" x.

3. SmooTHNESs oF THE FLow M,

Sometimes one expects more than just continuity of Hp: W —V,
and it is important to have criteria for establishing this. The natural
hypotheses are in terms of smoothness of the K{(¢), for fixed t. We
observe that if H,is C* for each fixed ¢, then derivatives up to order r
will automatically be strongly continuous functions of ¢. This is a
general fact about semi-groups proved in Chernoff~-Marsden [5].

It is an amusing fact that the Navier—Stokes equations have this
smoothness property in Lagrangian coordinates, but not necessarily
in Eulerian coordinates. The results in [10] and this section establish
this fact.

Let M D M, D -+, etc. be as in 2.1. We shall need some additional
structure on these spaces. Namely we assume that on V' we have a C?
structure enabling us to parallel translate vectors at x€ V' to our
reference point x,, and have a norm on the fiber 7, M (thus we
inherit a C° Finsler structure on V). Thus we can subtract vectors at
different points and we get a (locally) complete metric on TV by
setting.

dve,v,) =d(x,5) +llv. —v,ll.

For example we may suppose we are working in a chart, that M is a
Banach space to start with, or has some group structure or has a
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Riemannian or Finsler structure admitting an exponential chart at
% . We demand regularity in that this same operation should restrict
to each V..

In the following we treat the C! case. The CT case is similar.

ProPOSITION 3.1.  Let the hypotheses of 2.1 (or 2.10) hold and let
there be a metric on TU as described above. Suppose each map K(t) is
C?! so that

R(t) = TK(t): TV — TU.
Assume that the hypotheses of 2.1 hold for these maps R(t) with V = TV
etc.

Then for each t, H, is a C* map of TW,,—TM, , k=0, 1, 2,....
Moreover, (t, v,)i— TH - v, is jointly continuous.

Proof. 1t suffices to prove the conclusion for 2 = 0. From the
hypotheses and the proof of 2.1, we see that, with the same =, W
as in 2.1,

[TK(#/n)])" 0. = T(K(t/n))* - v,

converges uniformly in ¢, as # — oo for each v, € T, W. Call the limit
£2{x) - v. We have

d(gdx) * vz, 84) - v,) < d(x,3) + |l v. — v, |1}

so that x> g(x) is continuous in operator norm.
Our result now is an immediate consequence of an elementary
lemma, and our introductory remarks.

Lemma 3.2. Let E, F be Banach spaces, U C E open. Let
Ja: UCE —F be a sequence of C* functions such that: Df,(x) is locally
uniformly bounded,

Jo—f  pointwise on U,

Df, —~¢  pointwise on UxE

and x> g(x) € L(E, F) is continuous (in norm topology). Then f is C*
and Df = g.

Proof. Write
foles ) = fuls) = [ Dfyls +50) - 0 ds.
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Now by dominated convergence we may let # — o0 and get

f(x-i—v)-f(v)=fg(x+w)-vds.

The result is an easy consequence of this formula and norm continuity
of g.

4. Towarps VERIFYING HyproTHESIS (iii)

We shall now give a nonlinear generalization of a remark apparently
due to W. Feller and H. Trotter (see Hille-Phillips [11] or Trotter
[22]). This remark is that if F; is a linear C° semigroup on a Banach
space E, then E can be renormed in such a way that F, is a quasi-
contraction:

NFe-x —Fe -yl <eftllx—y].

For nonlinear semigroups this is not possible. In fact there is a
large (and very important) gap between the developed theory of
~ quasicontractive nonlinear semigroups and general semigroups which
are, say, just locally lipschitzian for each .

We show that if one is willing to move out of the confines of Banach
spaces to manifolds, then by a simple adaptation of the linear argu-
ment we can recover the above remark. The Banach space norm is
replaced by a distance function associated to a certain Finsler (= norm
on each tangent space) structure. This is evidently useful in view
of Theorem 2.1 which is valid for these more general spaces.

The hope is that these more general ideas will enable one to deal
with the semigroups not covered by the quasicontractive theory on
Banach spaces (i.e., many intercsting nonlinear partial differential
equations). For the concrete type of differential equations to which
the contractive theory applies, see for instance Browder [2] and [6].

THroReM 4.1. Let M be a Banach manifold admitting partitions
of unity and || - ||, a given Finsler structure on M. Let F (x) be a jointly
continuous, (perhaps locally defined) flow on M; t = 0.

Assume that for each t, xv F(x) is a C* mapping and there is a
constant M, such that

i TF! * Uy “F,(z) < 1‘/[( | o2 [l (]2)
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Jor voe T,M and t— M, is locally bounded. Thus, if p is the metric
on M corresponding to || - |l (p(x, ¥) = inf{ [3|| C'(D)]| dt: C(2) is a C?
curve joining x, y}) it follows that

PFU*), F(5)) < Mop(x, y) (13)
Then there are constants «, B such that
PIE()F(y) S ocPip(v,y), 120 (14)

and there is an equivalent Finsler structure || - |||, on M with associated
metric d for which

d(Fy(x), F(y)) < e d(x, y). (1)

Remark. Under the assumption that F(x) is C! for fixed ¢,
assuming (12) is the same as its consequence (13). We have done this
for simplicity. If F, is just assumed Lipschitzian the same theorem
holds, with some additional effort, by replacing C! norms by Lipschitz
norms where appropriate (see the remark of P. Chernoff below).

Proof of 4.1. 'That one can replace M, by «e?! is a classical argu-
ment in the linear case (Yosida [23]). It was observed to carry over
to nonlinear semi-groups in Banach spaces by several people, for
example Phillips and Chernoff. Exactly the same argument may be
used here in the metric space context, so we shall omit it (cf. Chernoff—
Marsden [6] and Crandall-Pazy [8]).

So we turn our attention to the proof of (15). We first remark that
our local flows can be converted to globally defined ones without
changing them on a given neighborhood V,, where V,C V,C V.
Namely, find a smooth function f: M — R equaling 1 on ¥, and 0
on M\V. Then setting

Gx=F X
! Jo rFganas™

G clearly extends to a globally defined flow equaling F; on V,,
0 <t < 7. Thus in what follows we may assume we are dealing
with global flows.

The new Finsler structure is simply given by

m Uz l“: = s“:po “ e-B‘TFt t Uz uF,(z) . (16)

Observe that formula (16) reduces to the linear renorming if F, is
linear (Trotter [22]).

m
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From (12) we have

vzlile < «ll vz llz

and clearly (take ¢ = 0),

i 92 llz <Ml 02(llz,

so we have an equivalent Finsler structure.
To demonstrate (15), let ¢(s) be a curve joining x and y. Then
F,o ¢ is a curve joining F (x), F{y); we have

WFF) <WF0 = [ || EFeo || @
= [} sup 1= TR (F (o) [T et - €Ol s
= [ supii S TFyp fele)) - €0l ds
0 70

by the Chain rule and the fact that F, is a semigroup. The above is,
taking o = 7 4 ¢,

= f ' sup | e=8eftTF,(c(s)) - ¢'(S)ll ds

0 o>t

< [ sup e8¢ || =S TE(els) - €'(s)) s

0 o=0

= e%l(c) (length in the ||| - ||| structure).
Taking the inf. over all such ¢ gives
d(F (%), F(y)) < &' d(x ). |

Chernoff has pointed out that estimates (14) and (15) also follow
from the linear theorem and the application of his general “linearizing
functor’” (Chernoff [4]). However we shall also require some more
detailed smoothness properties of the Finsler structure (16) (see
4.2 below).

Note that for finite z-intervals it is trivial that one can replace
M, by ae®, merely by choosing « large and § = 0.

In what follows, we shall require some smoothness properties of
our Finsler structure and we want to make sure ||| * ||| inherits this
property. We do this as follows.
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ProrosiTioN 4.2. Let, in Theorem 4.1, V be a coordinate chart for
M and suppose F: W — V is defined for WC V, 0 <t < 7. Assume
there is a constant C such that

loll. <Clioll, and  |lol. —ilel,| < Cdxy)llel. @17)

Jor all x, y € V and v in the coordinate linear space E. Assume that F,
satisfies the conditions in 4.1; In addition, assume the derivative of F,
for each t is Lipschitz

| DFx) - v — DF(y) - v|| < const || vl d(x, y)

Jorall x,ye W, veE 0t <.
Then the new Finsler structure || ||| defined on W by Theorem 4.1
also satisfies the condition (17) (with possibly a larger constant).

Proof. We have from (16),

Il — el |
= | sup | e=#*DF (x) - v llp () — sup e #*DF(y) - vl Fi( )|
< s‘l;g{l | e=#'DF (x) - v llgt) — [ e ®*DF () * 0 li, 0 |}
< s‘g{l e B DF (x) - ¢ llp ) — e Bl DF (%) “ 0 lg. (0 |

+ e B | DFx) v — DF(y) v — DF(y) v ll7, 0}
< sup(Ce-#*|| DF (x) - o d(F (), F(¥) -+ #C 1 d(x, )

< (const) [l v il d(x, ). 1

5. SUFFICIENT CONDITIONS FOR THE CONVERGENCE
oF TroTTERs Formura (1)

We now consider some simple sufficient conditions which will
enable us to derive formula (1) from (2) via Theorem 2.1. One of the
chief problems is to verify the condition (iii) (resp. (iii)’) where
K(t) =F, G,. Basically, this can be done when both F,, G, satisfy
(iii) for the same d. (Trotter [22] points out this same problem in the
linear case). For contractive semigroups, this difficulty vanishes. The
rest of the conditions seem to be reasonable in most concrete situations
of interest.
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The simplest case in which we can make F, and G, simultancously
quasicontractive is when the generator of one of them is “bounded”
or more precisely is a smooth vector field.

First we list some general notation. By a densely defined vector field
on M we mean a map X: D — TM from a dense set D C M such that
X(x) € T, M, the tangent space at x € M. By a (local) flow for X we
mean a C° semi-group, (perhaps local) F: M — M such that
Fi:D— D and for xe D,

dF (x
A& _ 3 (o)

Sometimes it may be convenient to choose D smaller than the domain
of the complete generator of F,, and so we do not make this assump-
tion in our results (cf. Chernoff-Marsden [5, 6]).

THEOREM 5.1. Let M D M, D M, -, be Banach manifolds with
continuous and dense inclusions. Let || - ||, be a Finsler structure on M,
with the associated metric d, making M, a complete metric space. Let
xo€ M, VCU be neighborhoods of xo in M and V) = VnM,,
U, = U N M, as in Theorem 2.1. Assume U gives a local chart for M
and that this restricts to U, to give charts for M. Assume that the
Finsler structures in these charts satisfy, for each fixed k, the boundedness
and Lipschitz properties (17).

Let X: M, — TM be a given densely defined vector with a local flow
FpV— U. Assume X: V). — TV,_, and is of class C' with bounded
derivative on bounded sets. Suppose for each t, F is of class C*, Vi — U,
with its first and second derivatives uniformly bounded on V, for
ot T

Let Y: M — TM be a vector field on M such that Y: V;.— TV, is of
class C* with Y and its first derivative uniformly bounded on V. , and
second derivative bounded on bounded sets. Let G, be the local flow of Y.

Then X + Y has a unique local flow H, which is Lipschitz for each
t. Moreover H, maps W,, = W V, to V)., and we have

Hpx = L‘f{}, (FynoGua)' x n

uniformly in t for each xe W, ,0 <t < .

If all the degrees of differentiability and the hypotheses on them are
increased by one, then H, will for each t be of class C* with a locally
Lipschitz derivative, etc.
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Progf. We shall verify the hypothescs of Theorem 2.1. Let
K(t) =F,> G,, (and choose V suitably small). It is clear that we
have hypotheses (i), (ii) on K. The main job will be to verify (iii),
so let us first dispose with (iv). We consider, for x € Vise » the curves

Jt,8) = K(t + s) x = Fyy 0 Gy )
£(ts) = K(t) K(s) = F, > G, o F, 5 G(x).

From our hypotheses we see that

f(0,0) = £(0,0),  (affet) (0, 0) = (agfet) (0, 0)
(9ff2t) (0, 0) = (g/25) (0, 0),
(#12r%) (0, 0) = (5%¢/or?) (0,0),  (&%/25°) (0, 0) = (2%gf2s2) (0, 0)
and that f, g are C* with bounded derivatives as x ranges over a
bounded set. For example
6f/6t = X(Fg.” ° Gu.s(x)) + DFH-s : Y(GHs(x))
%0t = X(F, o G, o F,o Gx) + DF, - Y(G, o F,o G,(x). ~

From this and Taylors theorem we obtain
d(K(t + 5) x, K(t) K(s) x) = O(ts),

which is (iv). [This is basically an estimate on the commutator
[X, Y] (as a densely defined vector field)].

Now we verify (iii). For this purpose, we define a new Finsler
structure ||| + [|| as in Theorem 4.1. Thus

d(Fix, F,y) < & d(x, y).

(It suffices to take the casc & = 0; the others are the same). We want

to verify the same hypothesis on G,. This is where the result 4.2

comes in. So we can, by 4.2 assume the estimates (I7yon|l-ll.
Now G, is a smooth flow jointly in ¢, x. We have

(d/dt) DG (x) - v = DY(G /()  v) - DG (x) - v
s0

DGx) v =DGx) 0 + [ DV(G,x) -0) - DG,(x) - v
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and thus
[l DG (%) « villg,ty — Il DGYX) * ¢lll6, ) |
(18)
< [ UDY(G.) - Moo | DEL) 0l do-
Now
[N DG (x) - villg,a» — Il DG (%) - @ lllg ) |
< (const) | DG () - g0 - d(G(), Glx))
< (const) | DG () - ©llezo | i V(G (#ll,te) do
< | s — t|(const) ||| DGy(x) - vlilg,ex) »
by (17).

Thus, writing out a telescoping sum and employing the above, we
get

I DG ) - ller — Il ol < const - [ 11 D) - vlleym do

and so
Il DG (%) * 2lllg,z) < exp(const - 1) ||l vill,

(Gronwall’s inequality). From this, it follows that

d(G (x), G.(y)) < exp(const - t) d(x, y)
as in 4.1.
Thus, if we let 8 be the sum of B, and this constant, we get

d(F' ° G‘x,F‘ o G{)') < 88' d(x’y),

which is our condition (iii).
The last statement of the theorem follows from 3.1. |

COROLLARY 5.2. Suppose the quantities DF,, D*F,, Y, DY which
in 5.1 were assumed bounded on V)., are merely bounded on sets of the
form BNV, where BCV,_, is bounded. Then the same conclusions
are true.

Proof. Use 2.10 instead of 2.1. [I
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6. SINGULAR PERTURBATIONS

Typically, X and Y in Section 5 represent nonlincar differential
operators. They may be of different orders. Thus it is not a priori
obvious that the limit of the flow of vX + ¥ as v — 0 has anything
to do with the flow of Y. In [9, 14] we verified that one does have the
correct limit in the case of the hydrodynamic equations when no
boundarics are present (sec [10(II)] for the case of boundaries). This
result is also due (independently) to Swann [20] and Kato [13].

One more observation: even though X and Y may have different
orders, we can let them have the same domain by using the domain
of the one with the highest order. In the context of 5.1 there is no
problem as Y has “order zero.”

Now we wish to abstract this situation.

THEOREM 6.1. Let K'(t) be a family of maps for v € [0, A) each of
which satisfies the hypotheses of 2.1 (or 2.10). Moreover, assume V, U, T
are independent of v and

(iy K¥(t) x — K(t) x uniformly in t for each xe V,,,
() for ye Vi, (djdt) K(t), is uniformly bounded in Vies
vef0,4], tel0, 1),
(i) the constants By in 2.1(iii) (or 2.10(iii)’) are uniformly
bounded for v € [0, A],
(iv) the constant C, is independent of v e [0, A] in 2.1(iv).

Then W and T may be chosen so that each of the flows H yx are defined
on W (that is, W, 7 are independent of v).

Furthermore, for eachxe W, ,Hyx ~Hxin V, asv —0 untformly
int.

If dy(K*(t) x, K(t) x) = O(v) for x€ W,,., then the same thing is
true for di(H px, H x).

Note. Because of assumption (iii), it suffices to check (i) on a
dense sct.

Proof. The various constants constructed in the proof of 2.1
are independent of v so we have that W, r are independent of .
For x€ W, we see from the estimate (11) that K¥(t/n)* x — H /x
in ¥y as n— oo uniformly in v, f. Thus it follows that Hx — H X
as v — 0 (write

di(Hyx, Hx) < di(Hp(x), K(tn)" x) -+ d(K(t/n)" x, K(t/n)" x)
-+ dy(K(t/n)" x, H x)).
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Finally if xe W,., let x; > x, ;€ W,,,. Then writing

di(Hx, Hix) < di(Hpx, Hyxy) + di(Hpxs , Hxy) + di(Hx; , Hx)
<2 d(xy, %) + di(H /%y, Hex))

we see that H px — H xasv — 0 for x € W;.. The last statement of the
theorem also follows from this proof. |}

In particular, if X and Y are as in Theorem 5.1, then the hypotheses
are satisfied for

S0

Kv(t) = th o Gt
that the generator is vX + Y. Here K((t) >~ G, in W, asv—0

and the difference is O(v) on the spaces W,..;,j > 1.

—

(o]

10.
11.
12.
13.

14.

15.
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