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ABSTRACT

Using new methods based on first order techniques, it is
shown how sharp theorems for existence, uniqueness, and
continuous dependence on the Cauchy data for the exterior
Einstein equations can be proved simply and directly.

Our main tools are obtained from the theory of quasi~
linear first order symmetric hyperbolic systems of partial
differential equations. Einstein's equations in harmonic
coordinates are cast into this form, thus achieving a
certain uniformity of the description of gravity with
other systems of partial differential equations occurring
frequently in mathematical physics. In this symmetric
hyperbolic form, the Cauchy problem for the exterior
equations is easily resolved. Similarly, using first
order techniques, a uniqueness theorem can be proved
which increases by one the degree of differentiability

of the coordinate-transformation between two solutions

of Einstein's equations with the same Cauchy data. Fin-
ally it is shown how the theory of first order symmetric
hyperbolic systems admits a global intrinsic treatment

on manifolds.

§(0): INTRODUCTION

The theorems concerning existence of solutions to the exterior
Einstein equations are due to Four2s-Bruhat [8], Choquet-Bruhat
{21,2], and Lichnerowicz [12]. Their methods involved applications
of the theory of strictly hyperbolic systems of second order par-
tial differential equations due to Leray [71] and as modified by
Dionne [4]. Actually there is a much simpler theory of first order
symmetric hyperbolic systems which is applicable here. In this
paper we give an exposition of how these considerably less compli-
cated first order methods can be brought to bear to resolve the
Cauchy problem for the exterior Einstein equations; for details of
these techniques, see Fischer-Marsden [5,6,7], and Marsden, Ebin,
Fischer [13].
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§(1): BACKGROUND FOR THE MAIN TDEA

When one is dealing with a single second order hyperbolic equa-
tion, say the wave equation,
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(where g¥V is a spacetime of signature (-+++)), a common technique
to resolve the Cauchy problem is to introduce four new unknowns LY
and consider the first order system of five equations
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As is easy to see (e.g. as in Courant-Hilbert [3], p. 594) this
first-order system can be put into the form of a linear symmetric
hyperbolic system,

03w _ 4i 3% _ g,
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Here u = (¢,i| is a 5-component column vector, AO(t,xl) a symmetric
v,

positive-definite 5x5 matrix, and the Ai(t,xl) are symmetric 5x5
matrices. Systems of this type have been studied and applied rather
extensively, as their importance in mathematical physics is well-
established. We refer in particular to Friedrichs [9], Lax [10],
and Courant-Hilbert [3].

Writing the second order wave equation as a system of first
order symmetric hyperbolic equations considerably simplifies the
analysis. In fact, from the existence and uniqueness theorems for
such linear systems, it is an easy matter to conclude that there
exist unique solutions to the wave equation with prescribed Cauchy
data ¥(0,x*), 3p(0,xl)/3t.

We now wish to describe how a similar idea can be applied to
the Einstein empty space equations Ry, = 0.
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§(2): THE EINSTEIN EVOLUTTION EQUATIONS AS A QUAST-LINEAR FIRST
ORDER SYMMETRIC HYPERBOLIC SYSTEM

As is well known, in a system of coordinates in which 'V = g®rlig
= 0 (known as harmonte coordinates), the empty space field equations
are
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where Hy, is an algebraic function of gyy and aguv/?xu only (e.g.
see Lichnerowicz [12] for this computation). Now R;3}’ = 0 is a
quasi-linear gecond order system of partial differential equations.
The key point to remark about this system is that its principal
part, namely the operator -3g98(32/3x%3xz8), is the same for each
of the components g,,. Such systems in which the highest order
derivatives do not involve mixing of the components are said to be
weakly coupled and are a particular case of the strictly hyperbolic
systems of Leray [11].

Because of the complete uncoupling in the highest order terms,
we expect that the second order system RSG) = 0 should behave, very
much like a single second order equation. (An example of this phen-
omenon is in Courant Hilbert [3], see p. 139, where it is shown how
a system of first order equations with the same principal part be-
haves lik? 3 single first order equation). Because the principal
parg of Rug = 0 and the wave equation are the same, we thus expect
that RHQ) = 0 can be reduced to a first order quasi-linear symmetric
hyperbolic system of the form

0 u _ i du
AV {(u) 3 - At (u) P + B(u).

This expectation is in fact correct. Introducing the 40 new com-
ponents g,,,, o the system RMQ) = 0 can be reduced to the first order
system of ) equations,
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Fuv
Let u = {guv,i] be a 50-component column vector, and let
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where 010 is the 10x10 zero matrix, 030 is the 30 component zero
column vector, and IO is the 10x10 identity matrix. Then it is
easy to check that the system (F) can be written as

Oy 2o i) i‘-‘; + Blu) (s)

Ifgyy is a Lorentz metric, A(x) will be symmetric and positive-
definite and the 43(u) are symmetric. Thus the system (S) is sym—
metric hyperbolic and we have succeeded in writing the system

R = 0 in the symmetric hyperbolic form. Thus the Cauchy problem
for R{}) = 0:

Given gyuy(0,x1), 3g,y(0,x1)/3t, find a gyy(t,zl) such that
R&Q) = 0 and g,,(t,x1) has the prescribed Cauchy data

is equivalent to the Cauchy problem for the symmetric hyperbolic
system (S).
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8(3): EXISTENCE THEOREM FOR QUAST-LINEAR FIRST ORDER SYMMETRIC
HYPERBOLIC SYSTEMS

Now we turn our attention to the Cauchy problem for abitrary
quasi-linear first order symmetric hyperbolic systems of the form

u(0,zl) = uo(zi),

(S)
) - Ao(u) 344 BG).

The essential idea is to use the linear theory to define a con-
traction mapping f:E + E from a complete metric space to itself.
Thus, let H denote a space of k-component fields in n variables,
u:R? > RK, and let 9 be an open subset of H. Let E denote the set
of continuous curves w:[-§,8] - i such that w(0) = ug e 2. We want
to define a map f:E + E. For each w e E, let f(w) be the unique
solution of the linear system

u(0,xl) = up(x),
4%w) & < 4icw) ;—"1 + Bw).

Then f maps £ to £ and using Leray type energy estimates, f can be
shown to a be a contraction mapping in a suitable norm; i.e. there
exists k, 0 < k < 1, such that for wy,up € E,

IfCwr) - flwll < Klwy - wall-

By the contraction mapping principle, f has a unique fixed point,
a solution to the quasi-linear system we are studying. Moreover,
since f depends continuously on up, so does the fixed point.

In essence the technique is similar to the usual Picard itera-
tion method used in ordinary differential equations, although it
differs in several important technical respects.

From the existence, uniqueness, and continuous dependence on
initial data outlined here for sysfems of the type (S), together
with the reduction of the system R 0 to a system of this type,
it is an easy matter to prove that there ex15t5 a unique solution
to the Cauchy problem for the system R, G 0 which depends contin-
uously on the Cauchy data. We have uniqueness here because we have
a specified set of partial differential equations; see, however,
section 5.
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§(4): SUFFICIENCY OF THE USE OF HARMONIC COORDINATES T0 RESOLVE
THE CAUCHY PROBLEM

The imggrtance of the use of harmonic coordinates and of the
system Rﬁv = 0 is based on the fact that it is sufficient to
solve the Cauchy problem for RSB) = 0. This remarkable fact, ap-
parently discovered by Fourds-Bruhat [8], follows from the observ-
ation that the condition I'¥(0,z*) = 0 is Propagated off the t = 0
hypersurface for solutions gyy(¢,x 1) of Rus) = 0 under the hypo-
thesis that the Cauchy data gyv(0,z1), 3gyv(0,x1)/3t satisfy the
conditions:

n
o

(a) Gg(o,xl) {(where Gyy = Ryy - 3guvR);

() rMo,xl)

0.

Thus for such g,,, M'M(¢,zl) = 0, so that R{}) = R, = 0.
v uv

We remark that condition (a) is a positeriori necessary for gyy
to satisfy Ruv = 0 (which is equivalent to G,, = 0}, as Gg is well
known to depend only on first order time derivatives and therefore
can be computed from the Cauchy data alone. If condition (b) is
not satisfied, then a related set of Cauchy data F,y(0,21), (3/3t)
Guv(0,Z4) can be found which satisfies tho ®1) = 0 and TH(0,2}) =0,
The evolution of this Cauchy data under SB; = 0 then leads to a /saﬁ
spacetime g,y which satisfies Ry, = 0. A coordinate transformation
then gives rise to a spacetime which is also Ricci flat and which
has the original Cauchy data.

§(5): UNTQUENESS

As Ryy = 0 is a tensor system of partial differential equations,
solutions to the Cauchy problem for the system cannot be function-
ally unique. Thus, if gy, satisfies Ry, = 0, and Z*(xB) is a coord-
inate transformation which is the identity in a neighbourhood of
the t = 0 hypersurface, then the coordinate transformed metric gyy
= (3x%/32V)(3xB/32V)g g also satisfies Ry, = 0 and has the same
Cauchy data as gyy.

A proper uniqueness theorem for a tensor system of partial dif-
ferential equations is the converse of the above remark; namely, to
show that two solutions of Ry, = 0 with the same Cauchy data are
related by a coordinate-transformation, i.e. are isometric.

The essential ideas of the proof are in Four2s-Bruhat [8). The
first step is to show that any spacetime can, by a coordinate trans-
formation, be transformed into a spacetime for which ¥ = 0. Now
suggose two spacetimes have the same Cauchy data and both satisfy
Ry3/= 0. Bring them both into harmonic form. Then they both sat-
isfy R{B) = 0 and their transformed Cauchy data are also equal.
But by uniqueness of solutions to the Cauchy problem for REB) =0,
the two spacetimes in harmonic form must be functionally the same,
and therefore the original spacetimes are isometric.
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First order methods can also be brought into play here. To show
that any spacetime can be brought into harmonic form, one must solve
the wave equation for four linearly independent functions. As in
section 1, this can be done by reducing the wave equation to a lin-
ear first order symmetric hyperbolic system. In fact, using this
method, it is possible to show that the coordinate transformation
relating two solutions of Ay, = 0 with the same Cauchy data is dif-
ferentiable to one more degree of differentiability than the solu-
tions. This is a technical result, but natural geometrically,
since one loses on degree of differentiability when a metric is
transformed.

8(6): SYMMETRIC HYPERBOLIC SYSTEMS ON MANIFOLDS

So far we have been working locally; our methods, however, can
be globalized to an arbitrary manifold M, possibly non-compact.
This is accomplished by giving an intrinsic treatment of first order
symmetric hyperbolic systems.

So let m:E > M be a vector bundle over a 3-manifold M (the start-
ing manifold on which the Cauchy data is given) and let JL(E) + M
be its first jet bundle; the fiber over x e M is

JUE)y = L(TyM3Ex) @ Ex.

A section u:M + E can then be extended to a section j(u):M + JL(E),
the first jet extension of u. We assume E has a connection and

let Vu be the horizontal part of the tangent Tu; then the two com-
ponents of j(u) are the derivative Vu and u itself.

A first order linear operator may be regarded as a map

Then A°j(u) reduces in the case of RN to Ai(au/sxl) + Beu. Let us
write, conforming to earlier notation,

AeF(u) = A-Vu + B-u

(the two components of D) so A:L(TM,E) + E.

Suppose now that we have an inner product { , )y on each fiber
Ey compatible with the connection. We call

Bu_~.. A, .
5E = Asg(u) = AVu + Beu

a symmetric hyperbolic system if A+j - (A+§)* is a zero order oper-
ator where (4+7)* is the adjoint of 4+j. Then in R? this condition
reduces to the condition that the Al be symmetric matrices (the AC

term may be included separately). The point is that most of the
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theory works well in this context provided M is complete Riemannian
and has curvature bounded above. For the quasi-linear case we re-
quire 4 to be linear in the first factor Vu, and that the associated
linearized system be symmetric hyperbolic.

8(7): CONCLUSIONS

The theory of first order symmetric hyperbolic systems applies
to a wide variety of equations of mathematical physics, amongst
which are Maxwell's equations, the Dirac equation, the Lunquist
equations of magnetohydrodynamics, compressible fluid equations,
and the equations of elasticity. As emphasized in Courant-Hilbert
{3), p. 592, the essential geometric reason that equations of this
type play such a central role in mathematical physics is that these
equations are often the Euler-lLagrange equations of a variational
problem in which a symmetric bilinear form is varied.

Putting Einstein's equations into a symmetric hyperbolic form
achieves a certain uniformity in the description of gravity with
other physical systems. Moreover, there are several technical ad-
vantages for writing Einstein's equations in this form. For one
thing, the proof of the existence of a Ricci flat spacetime with
given Cauchy data is considerably simplified. For another, one can
use similar first order methods to sharpen previously known unique-
ness theorems. Finally, in this form the equations can be written
intrinsically and thus globalized to a manifold.
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