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Abstract. A systematic presentation of the quasi-lincar first order symmetric hyperbolic
systems of Friedrichs is presented. A number of sharp regularity and smoothness propertics
of the solutions are obtained. The present paper is devoted to the case of R" with suitable
asymptotic conditions imposed. As an example, we apply this theory to give new proofs
of the existence and uniqueness theorems for the Einstein equations in general relativity,
due to Choquet-Bruhat and Lichnerowicz. These new proofs using first order techniques
are considerably simplier than the classical proofs based on second order techniques. Our
existence results are as sharp as had been previously known, and our uniqueness results
improve by one degree of differentiability those previously existing in the literature.

§ 0. Intreduction

Part of the folklore of mathematics is that the Friedrich’s theory of
symmetric hyperbolic systems extends to the quasi-linear case. Our
original motivation for looking at these systems came from the fact that
it is possible to reduce the Einstein system studied by Choquet-Bruhat
and Lichnerowicz [3, 4, 33] to a first order symmetric hyperbolic system.
The techniques these authors used are based on the second order theory
of Leray [32] as improved by Dionne [16].

However we needed a version of the symmetric hyperbolic theory with
sharper differentiability properties than previously existed in the
literature. The basic theory is presented in § 1, 2 below. We consider the
equations in R" with asymptotic conditions imposed. Presumably
similar results are true for bounded regions with suitable boundary
conditions. One could also argue locally in R* and use domain of
dependence arguments; cf. Fischer-Marsden [21], Wilcox [42]. Part II
will deal with the theory on manifolds.

This theory is complicated in its technical details by two facts. First,
differentiability properties of the coefficients complicate the proof that
the solutions are just as differentiable as the initial data in the Sobolev
class H*. Second, we want this value of s to be the best possible, s>n/2+ 1.

* Partially supported by AEC Contract AT (04-3)-34.
** Partially Supported by NSF Contract GP-8257.

1 Commun. math. Phys, Vol 28



2 A. E. Fischer and J. E. Marsden:

The linear case is presented in § 1. For the applications, we want to
make the assumptions on the coefficients as minimal as possible. This
necessitates using carefully the domain of the linear generator of the
equations. In particular the usual energy estimates are not good enough
to show that the top order derivatives are well behaved. This is replaced
by a perturbation argument. This is then used in §2 to effect the quasi-
linear case. The proof is, in outline, that suggested by the standard method
of handling quasi-linear equations (cf. Courant-Hilbert [15]). Namely,
one sets up a suitable contraction mapping on a function space using
the linear theory, and the fixed point represents the solution. It is pro-
pagated only for a small t-interval.

Several properties are established in addition to the existence and
uniqueness thecory. For example we cstablish regularity (the time of
existence does not depend on s, the differentiability degree) — this was
also obtained for the second order systems by Choquet-Bruhat [7,9].
We also show that the propagator Ufu),ue H* is a C* function of u for
fixed ¢ and is jointly continuous in ¢, u.

We go on in §§ 3, 4 to apply these results to the Einstein system. As in
[3,33] we use harmonic coordinates. The key idea is that in these
coordinates the top order terms in the Einstein system uncouple. In
the second order theory this enables one to verify strict hyperbolicity;
here it enables one to reduce the equations to a symmetric hyperbolic
system in the same way that one reduces the wave equation to a symmetric
hyperbolic system.

We obtain most of the important results in a fairly compact exposition,
using the relatively simple theory of symmetric hyperbolic systems.
We deal directly with the asymptotic conditions, obtain the best possible
value s =4, and establish uniqueness of Ricci flat H* spacetimes up to
H**' coordinate transformations (in [6] it is H%). Results local in space
can be dealt with in the same manner; cf. [21].

§ 1. Linear Symmetric Hyperbolic Systems
A symmetric hyperbolic system in Euclidean space has the form

du S ou
0 = i _
A%t x) r .'=z| A1, x) Fp + B(t, x) u+ C(t, x) (1

where A%, x) is an mxm positive definite symmetric matrix for
(t,x)eRxR", u=u(t, x)=u,(x) is an m component vector and A(t, x)
are symmetric matrices.

These systems have been studied and applied rather extensively.
We refer, for cxample to Friedrichs [23]. Lax [31], Courant-Hilbert [15],
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Dunford-Schwartz [17], Phillips [37]), and Kato [29]. See also Wilcox
[42] and Schulenberger and Wilcox [38].

In this section we would like to present a few refinements of theorems
due to the aforementioned authors. These refinements concern the
differentiability of the coefficients and are needed in the quasi-lincar
theory (§ 2) and in subsequent applications.

We denote by H*(R", R™)= H*, the usual Sobolev space; H* is the
completion of the C* functions with compact support under the H* norm:

Il =1s0= %:ISSHD"f(x)Iz dx.

o=

Here D*f denotes the total derivative of order k.
We make use of two basic Sobolev-type theorems:

(i) H*is a ring under multiplication,

1/~ = const £, gl

if s> n/2. Here f-g stands for some bilincar form from R™ x R™ — R™
composed with f x g; for example, componentwise multiplication;

(ii) fors> —',,l +k, H*C C*, and
|/l  const]| £,

where | f ||« is the supremum of | f], |Df], ..., |D*f| over all of R".
These results are standard; see for instance Nirenberg [35].
Our starting point will be a result which is essentially contained in the

above references. The assumptions are as follows:

(i) s>n/2+ 1.
(i) A° is symmetric positive definite and
t—>AXx)=T= A%, x)— 1
is a C' map from R to H*R", R™) and a C° map from R to
H**'(R", R™). Here [ is the m x m identity matrix.
(iii) A‘is symmetric, i=1,...,n and
- Ai(x) = A'(t, x)

is a C° map from R to H*(R", R™).
(iv) t— B,(x) = B(t,x) is a continuous curve from R to H5(R", R™).
(v} t—C,(x)=C(t,x) is a continuous curve from R to H*(R",R™).

(Ay)

1.1, Theorem, Let assumptions A, hold. For any uy,e€ H® there is a
unique continuous curve t—-u, € H* which is differentiable as a curve in

1*
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H*"! (in the norm topology) and equals u, ai t=0 and which satisfies
Eq. (1). (Note that each side of Eq. (1) is an element of H*™'.)
In fact there is a_family of smooth maps

Ult,s):H*>H*, 1,seR
such that
(i) U, s)e Uls, ry=U{t, r) ( Chapman-Kolmogorov equation),
(i) Ule, ) ug =uy, and

(iii) t—U(t, s)ug is a continuous curve in H* and a C' curve in H*™"
and satisfies Eq. (1). We refer to U(t, s) as the flow defined by Eq.(1).

This result is generally attributed to Friedrichs.

Remark. The solution u(t, x) will, from the differential equation itself,
be locally jointly H* in (¢, x). However, that 1+, isa C® curve in Hand a
C! curve in H*~! is saying more. Indeed, from the restriction theorem
(Palais [ 36]), if u(t, x) is jointly H*, it does not have to be H* in x for fixed ¢
(one “loses 4 a derivative” on restriction to a hyperplane).

Since Theorem 1.1 does not appear in the above form in the literature,
we shall sketch its proof.

Sketch of Proof

Since A4° is symmetric and positive definite, we can write A% = T?
where T is symmetric and positive definite. Moreover T — I will be in
H**! and C! as a curve in H*. Thus T is close to I at spatial infinity,
and so T or T™! multiplied with something in H* is again H® (write
TA=(T—1)A+ A). Then v= Tu satisfics (using the summation con-
vention on repeated indices)

v dv oT™! oT

1 4iT— 1 4i il t -1
aTATa.TAt,+TT+TBTv+TC

which is of the form

dv . Ov

T A'—— i Bo+C
where now A, B, € satisfy the same hypotheses with 4° = I. Thus this
change of variables reduces the problem to A° = I. Note that one degrec
of differentiability was lost in the transformation. If 4° is only H®,
different arguments are needed — see below. This change of variables may
be found in Courant-Hilbert [15].

We see from our assumptions together with Sobolev's theorem that

the conditions in Kato [29] are met. This assures the existence of unique
t-continuous solutions in H', and t-differentiable in L,.
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To obtain the H* case from this we employ the Leray energy estimates,
as in Courant-Hilbert [15]. First we proceed formally; letting ( , ) be
the L, inner product, we have

1 ¢ ~ Ov . -
5 E(U, V)= (A 2 ,v) +(Bv,v)+(C,v)
= — —;-((%-:'—) v, v) +(Bv,v) +(C, v)
< constant (v, v) + constant ||v||,,, —T=Zt£T.
lolle, S lvglly,, —T=St<T.

Here we have written

P20 N2 2 oy~ ([ d [ 4022
(A axl.,u)—jaxi(Av-v)dx j(ax"')” vdx— | A'v 0x‘dx

and exploited symmetry of A°. We thus have ||v],, bounded on finite
i

t-intervals. Note %‘%— is uniformly bounded as s>n/2 + 1.

We continue this process up through the H* norm. One must exploit
the ring property of H*® here, being slightly careful as our coeflicients are
just H*. Consider the total derivative of order s; again we have, formally,

1 9 s s 1i ov S
5 -aT(D v, D’v)= (D‘(A Fri +Bv+C),D v)

= (/i‘—a.—(D’v)+ ~-+(D’A"‘)—ai.,b=v)
éx' ox'
+{(D°*B)t + --- + BD*v, D*v) +(D°C, D*v).

The first term (A."E%(D’v),D‘v) may be dealt with as in the L, case
above. The other terms are handled by Sobolev inequalities. For example

(D*A“" LS D’v) <
ox

dv ~
et ML

-
we|lA]
The rest of the intermediate terms are handled in a similar way as in the
proof that H* is a ring. The B terms come immediately from the ring

rty:
property (D¥(Bv), D*0) < || Bo]| e o] s
< const | B] s ||

Warning: This technique does not work if B is only H*~'.

< (const) ||v|

"

2
Hs -
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These arguments show that there is an a priori bound on the H* norm.
To make the proof precise requires further arguments. Indeed, at first
one doesn’t even know that D*v is an L,-function. This can be remedied
by a C* approximation argument. Namely, we observe that we would
rigorously obtain the above bounds if v were C®. So approximate the
coeflicients by C® ones and the initial databy C* data. By differentiating
the equation it is not hard to see that the solution is C* (or use Dunford-
Schwartz[17]),and by the H* estimates above, our sequence of approximat-
ing C* solutions converges in H*. The theorem then follows. [

Theorem 1.1 is not yet sharp enough for the applications we have in
mind. We wish to allow B to be just H*~! and A° to be H*. Let us observe
that without special conditions on 4', H*~! solutions need not be H*
if the initial data is H*. Indeed, take the case A°=1, A'=0, C=0 and

. . . 0 . .
m = 1. Then we are dealing with the equation 7:‘- = Bu. This has solution
Bd:

u(t,x)=e"  uy(x) which is only H*~! if B is only H*~!.
To deal with this case, we consider first a few lemmas:

1.2. Lemma. Let A be the generator of a C° semi-group &4 on a
Banach space & with D, the domain of A. Let D C D, be a Banach space
continuously included in D, (with the graphtnorm). Suppose &4 leaves D
invariant and forms a C® semi-group there. If D is dense in D,, then D
is a core for A (cf. Kato [26] for terminology).

Proof. The argument is along standard lines; cf. Kato [29], p. 243.
Namely, from ®
(A=A '=[e Metd:

(4]

for sufficiently large 4, we see that (A — 4)™! maps D to D. Now (4 — A)~!
is one to one and maps & onto D,. Since D is dense in &, the image
(A— A)~*(D) is also dense as is easily seen using &£*. From this it follows
easily that A is the closure of A} D as required. [

Further details and applications of results like this are found in
Chernoff-Marsden [14].

The purpose of this lemma is to insure that when we regard A‘%—
as an operator from H* to H*~!, its closure is the generator of a (semi-)
group and hence the correct domain may be obtained from this closure.
We state this formally as follows:

.0 .
1.3. Corollary. Let Au=%A4' a—:,— where A’ satisfies conditions A, (iii).

Regard A, as an operator from H* to H*~'. Then the closure of A,, for
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each t, is a generator of a one parameter group. Let this closure be A, with
domain D,.

Proof. Fix t. Then by Theorem 1.1, A, generates a flow on L, which
maps H* to H*,and H*~! to H*~ . The generator of this flow, restricted to
H"!is clearly an extension of A4,: H—H*™!. Now apply the lemma
withé=H*"'and D=H*. 1

1.4. Lemma. Let A, : D, C & — & be the generator of a flow U(t, 5):6—8.
Let t+>B, be a strongly continuous curve of bounded operators on . Then
A, + B, has a (unique) flow, V(t, s).

Proof. This is proved as in Kato [27], Theorem 4.5.

Warning. The flow V(t, s) need not map the domain D, to the domain
D,. Since B, is a bounded operator, the domain of 4, is the same as that
of A, +B,.

If we apply these remarks to symmetric hyperbolic systems we obtain
a result in which B need only be H*~!. Our assumptions are as follows:

(i) s>n/2+1. ]

(ij) A° is symmetric positive definite and t+—A2(x)—~ I isa C!
map from R to H*~! and a C° map from R to H*.

(iii) A'is symmetric and t+A'isa C° map from R to H*.

{iv) t—B,(x) is a continuous curve from R to H*"!.

(v) t—C,(x) is a continuous curve from R 1o H*"'.

e (A,)

1.5. Theorem. Let assumptions A, hold. Let D, denote the domain of
the closure of the operator

Al(u) =

as a map of H*to H*"'. Assume D, is independent of 1.
Then for uy e D, there is a unique solution u, € D, to

A%, x)—— Z":A(t x) +Bu+C 1))

In fact this equation defines a flow U(t,s):H"‘—»H"‘l which maps
D, to D,

Proof. We may assume, as in Theorem 1. 1 that A° is the identity.
Applying 1.4 we see that

v . Ov
H = ZA 'a—" + Bl7 + C
has a well defined flow.
If the inhomogeneous term were H°, there would be no problem,

as in Kato [29], Theorem 7.1. However, even for C only H*~! we claim
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that a solution in the domain of 4, remains in the domain. This is not
obvious at all from Duhamel’s formula (which masks extra “smoothing”).
However, the result does follow from a more general smoothness result
on lipschitzian perturbations of linear systems due to Segal [39]. It
applies in particular here to show that initial data in the domain of 4
remains in the domain. See also Chernoff-Marsden [ 14] for an exposition
and further applications of Segal's result. [

That we may allow € 10 be just H~! will be important below in
studying asymptotic conditions.

Warning. For the hypotheses (A,), the energy estimates only hold up
through the H*~! norm. The added differentiability comes from the
domain of A4,. It is not in general true that H* initial data remains H®.

Next we proceed to consider linear symmetric hyperbolic systems
with asymptotic conditions imposed.

That ue H(R", R™) means that « dies off to zero fairly quickly at co.
In particular for s> n/2, [u(x)| =0 uniformly as |x| = co. For relativity we
wish to impose a different condition at o5 ; for example u is asymptotically
constant. More precisely, we make:

Definition. Fix w: R"— R™. We say a map u: R"— R™ is H® asymptotic
to w il u—we H*(R", R™). We denote this set of u’s by HS(R", R"). By
translation, H inherits a metric structure.

1.6. Lemma. Let s> n/2 and suppose the derivatives of w of order <s
are continuous and bounded on all of R". Then (componentwise) multiplica-
tion

Hi x H*— H*
is a continuous map.

Proof. A typical element of Hj, is f + w where f € H*. Now for g€ H*,
writing

(+wg=fg+wg

we notice that fg € H® as H® is a ring, and wg € H* since the derivatives of
w are uniformly bounded. Thus for f,, g, € H*

I(fi+w g, —(f+wglsZ]f9- f19:],+ const|g —g,],

so the lemma follows. J§

In particular, multiplication by f € HS is a continuous linear map of
£ s
H® to H*.
We now consider again our system (1):

A%, x)?—l: =Y A, x)% +B(t,x)u+C(t, x).
’ =1 ]
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Let C; denote the Banach space of maps which are of class C* and have
bounded derivatives of order <s. We formulate our assumptions as
follows:

(i) s>n/2+ 1.
(ii) A° e HS where A4 e C}is a C° curve and a C' curve to
A‘ - . b 3 . .
C; ™. Moreover, A? is symmetric and positive definite with, more

specifically,
peclicaly AP X, x> 2 ¢, (x, X

where ¢, > 0 is a constant depending continuously on 1. (The latter
assumption then also follows for 47.) > (Aj)
Also assume 1+—A%— A% € H* is a C° curve and a C' curve
into H*~ 1.
(iii) A!e HY where 1Al € Cjisa C® curve and t+-Ai — Al H*
is a C° curve. Also, 4! are symmetric and D, is independent of ¢.
(iv) B, € H37' where 1—~B,eC;™' is a C° curve and
t—B,— B,e H ' is a C° curve.
(v) t=C, isa C° curve in H*™ 1.

. 3]
(vi) Letw e C3and assume (a)%e H* 'and(b)B,-we H*™'.

Note. The condition (vi) is not the same as w e H® and the distinction
will be important later for the Schwarschild type of asymptotic condition
we want to impose.

1.7. Theorem. Let assumptions (A ;) hold and let D, denote the domain of

A= (A: 5(%) as an operator from H* to H*~'. Then system (1) has a
unique solution u(he D+ wCHE ! for u(0)e D,+w. Indeed, Eq. (1)
defines a flow on H:™ ' with domain D + w for its generator. If s> n/2 + k,

u(tye C¥~1,

Proof. Observe that the equation for v=u—w is

A"% =.4"% +Bv+(A"%+Bw+C).

By Lemma 1.6 and assumptions (v), (vi). the inhomogeneous term is
H*~!'. Now we assert, as before, that we can assume A°=Identity.
This is done just as before. The assumption concerning A? is necessary
to insure that T~ ! remains bounded on all of R" so that the transformed
cquation will have B satisfying the same assumptions. So we can assume
A° = Identity.



10 A.E. Fischer and J. E. Marsden:

Now we first consider
dv i av

1

T

Since 4! € H; and s> n/2 + 1, and A e Cj, it follows that the C! norm of
A} is bounded. Thus 1+ Aie C} is continuous. Thus by Kato [29), as
before, this equation has unique solutions in H* and L,. The point now
is that because of Lemma 1.6, multiplication by A! is still continuous
from H* to H* so the Leray energy argument will still work. Thus we get a
solution flow to dv/dt = Ai dv/ox' in H*

We can, as before, add on the B term because by Lemma 1.6, B:u— Bu
is a bounded operator on H*~!. Thus we get solutions to

év av
ot H "vc' + Bv

in the domain of the closure of the operator 4! — e

Since the inhomogeneous term is H*~!, we can, as before, add it on
as well. Thus we get our solution u=v+w. [}

Finally, in this section, we shall present an example of how this theory
can be used to prove a sharp result for the wave equation. The result
actually goes back to Sobolev (see [40], § 21 where different techniques are
used). We shall generalize it to include asymptotic conditions as well.
This result will be used in §4 to obtain the best possible differentiability
results on spacetime coordinate transformations connecting two solu-
tions of the Einstein equations.

Basically we want to prove here that solutions to the wave equation
with H*, H*~! coeflicient functions preserve H**!' H* Cauchy data.
Let 1 =p,, denote the Minkowski matrix on R?%, let m 20 be given, and

L. 2 .
let 1,, be equal to 1 plus a term of class C; which |sTm I outside of a

bounded region in R, where I=4,, is the unit 4 x4 matrix. Thus for r
sufficiently large,

2
-1+ 0 0 0
r
0 22 0
2m r
Lpy=n,,+ —6 om R
0 0 1+2= 0
0 0 0 42
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which is just the asymptotic Schwarschild metric in isotropic coordinates
on a t = constant hypersurface. Let #*C Hi  denote the maps from R?
to the Lorentz matrices on R* which are H*® asymptotic to 1,,; we call
such maps asymptotically flat with mass m (see p. 23).

1.8. Theorem. Let s>n/2+ 1, n=13. Let g, (t, X'} be a given Lorentz
metric on R* (or (— ¢, &) x R®) satisfying the conditions:

(i) t=g,(t,-) is a C° curve in £* and a C* curve in Hj "

(i) The t=constant surfaces are space-like for g,,; specificaily,
assume g, E'E 2 c||E|? EeR3,c>0 fixed, and — goot, X) 26> 0.

(iii) Let b*(1, x) be a C° curve in Hi ' where bt e Cj and c(t, x), d(t, x)
are C° curves in H*~"' and Hy™ ! respectively, where d € C;.

(iv) Let we C3(R3 R) with 2:: e H*~! and let (p,, Yo)€ HE* (R, R)
x H*(R®, R) (note that H*(R®, R) is the tangent space to H:(R*, R)).

Then there exists a unique y(t, x), a C° curve in H:* '(R*, Ry and a C*
curve in H}(R®, R) with derivative in H*(R®, R) and which is also locally
jointly H**' int, x such that

(w(O, 222 x)) = (o), ()

and
oty

ax*ox¥

g1, x) +ct,x)p+d(t,x)=0.

+ b1, x) 631“

0

Proof. We can apply Theorem 1.7. One can easily define A°, A%, B, C
(see § 3 below and Courant-Hilbert [15], p. 595), so that our equation
becomes the symmetric hyperbolic system A% du/dt = £ A7du/ox! + Bu+C
in the five component vector ‘

Y
u=1y;

¥.o,

We have enough differentiability so that y ;=dy/dx' is the classical
derivative. (See note on p. 38.)

We shall now check out the assumptions (A ;) of Theorem .7. Con-
ditions (i)~(v) all hold by assumption, with the asymptotic values 49, 4'
given by inserting the metric 1,, into A% A°. The w of (vi) is given by

w
(0
0

ce H*!,ie, ¢ is asymptotic to zero.

. The special assumption B-w e H*~! holds by virtue of the fact that

. . du
Next we shall determine the domain of the operator 4/ F i A-u
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1.9. Lemma. The domain of the closure of A as an operator from H*
to H*™ ' is given on the three blocks of u by

D=Hs—I@Gs®Hs
o= {o bt e,

Proof. 1t suffices to treat the three blocks separately. On the first
block A is the zero operator (the first column of each A4/ is zero) so that it
clearly extends to all of H*™!

On the second block, A is the operator

where

d; (0 0,0,0,4" 09, )
ox'
Thus A4 extends to G*. Then it is easy to see that on this domain A is
closed (that is, u, € G*, u,—u in H*~?, Au,—~v in H*~! implies u € G* and
Au=v). Now the closure of A on H* has domain G® since A on G* is a
closed extension, and we know from Lemma 1.2 that H® is a core for A
in H*~! (the corresponding flow leaves H*® invariant).
Finally, on the last block of u, A is the operator

o (0.0 55 26% 55| = 0. grad . 2X(9)

where X/ = g% is a vector field. As above, if this is H*~*, the second com-
ponent gives that ¢ € H*. The domain of X > H* so the domain of this
block is again H®. |}

Now let u(t, x) be the integral curve of our system as determined by
Theorem 1.7 which has, by assumption, initial data in the domain of A.

s

Hence we get a solution u(t, x)= (lp_ j| €D. Therefore o is C 1. the
V.o

¥, o together with non-singularity of g'/ and

~

oy ; _ i ©

or 9 oy
the initial data shows y ;=23y/0x/ and yp o =0y/d1. Now the condition
p, ;€ G* becomes

equation g'/

- 62w
L §
9 oxox €

s—1

But g'/ is uniformly positive definite, so the standard elliptic theory (cf.
Nirenberg [35]) gives p e H**!. Thus we get the result. |

It might be noted that this result of having solutions more differen-
tiable than the coefficients is not a general property of first order systems.
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For example, for a scalar equation

6¢ =ZX'0¢/0x

the solution can, in general, only be H® if the X' are H® (see Appendix 2).

§ 2. Quasi-Linear Symmetric Hyperbolic Systems

The essential techniques for dealing with quasi-linear systems are
rather old, going back to Schauder, Frankl, Petrovsky, and Sobolev.
See Courant-Hilbert [15] for a fairly complete bibliography.

Our purpose here is to present a version of this theory which pays
particular attention to the differentiability of the coefficients. This care
in dealing with the coefficients is necessitated by the applications.

There are several possible sets of hypotheses. The simplest of these
was discussed in [21]. Here we wish to treat the case in which an A°
term is present. It is not generally appreciated that in the quasi-lincar
case, this is a non-trivial generalization because the reduction to A°=Id
is no longer possible without destroying some differentiability of the
B-term. To deal with this situation it is necessary to work with domains
of A' as was done in § 1. Otherwise one is confronted with an unnecessary
derivative loss (H* initial data would yield only an H*! solution).
Furthermore, we shall make a few additional special assumptions
designed for later use. They are inserted so that we can obtain the
sharpest possible bound on s, namely s> n/2 + 1. If one is willing to take
larger s, the assumptions can be relaxed (see below).

So we are considering an equation of the form

A%, x, u)—— =T A, x, u) +B(t X, u). )

In applications, A%, A, B will be rational functions of # with non-zero
denominator. For purposes of generality we shall just state the relevant
properties these functions need. (To verify the conditions for more
general classes of functions than rational, one could use Sobolev's
“condition T, [40], p. 217.)

For Eq. (1), our assumptions on the cocflicients which we shall refer
1o as assumptions (4 ) are as follows:

() s>n/2+1;

(i) we are given a closed subspace F*~' CH* ' with FF=F"'nH*
and an open set U~ ' CF*~1;

(ili) for ue Us™', A%, x.u), A'(t, x,u) are H* functions, B(t, x, u) is
H"1,
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Remark. This assumption (iii) is the special one referred to above.
If s>n/2+2 we could take ue U°. (This is pointed out in the proof
below.) The boundedness assumptions follow.

(iv) The maps ue U*~ ' A%, x,u)e H*, ue U~ ' — A(t, x, u) € H*,
ue U~ '—Bl(t, x,u)e H*~' are bounded (map bounded sets to bounded
sets) and are C* maps with bounded derivatives.

(v) Forue Us™?!, A% A', B, C satisfy the conditions (A,) of §1. The
corresponding solutions are assumed to map F*~' to F*~!,

(vi) For ve U™ 1, teR, let the domain of the closure of the operator

A, u=Z A, x,0)0u/dx' : H* > H*"}

be denoted D}, and let |||-|l,,,., denote a Banach space norm on D} ,. Assume
that F*~' A D; , is independem of t. Denote the space F*~' A\ D}, simply by
D® with norm \|ul|l,. Thus for all ue D* we may suppose

K_ ! ["u"s—l + IIAI’.lu"S" l] é "Iulllsé K["u"s—l + "Av.lu“s— l]
where K is independent of ve U™ ', te[-T.T)ue F~ 1.

Finally, we require a special “smoothness” type assumption on
A’ related to its domain. We state explicitly what we need:

(vii) For w,,w,e Us"!, ve D*, we have a Lipschitz estimate of the
Sform

ov dv
At x, w,)W — A'(t, x, w,) W” ‘ < const [fw, — w,, -, livlll

where the constant may depend on ||wi |-, | walls-1-

The main result of this section is the following (the asymptotic case
is done below).

2.1. Theorem. Let conditions (A,) hold. Then for uge U*~'nDF,
there is an £>0 and a unique solution u,e U~ 'nD°, —e<t<e of (1)
which is a C* curve in H*™*, and a C° curve in D*, and equals uy at t =0.
Moreover £ >0 can be chosen uniformly in a D* neighborhood of u, and u,
varies continuously in D* as a function of ugandt e(—¢,¢).

Proof. For 6, M;, M, >0 10 be spccified below, let E denote the set
of continuous curves

w:[-=06,6]1-D;, w0 =u,

which are also C! curves in U*~! and which satisfy [w(t)l|; <M, and
[wOl,-1 £ M,.

We shall set up a contraction f on E in a suitable metric and use
the fixed point obtained on the completion of E to get the solution.
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Step 1. Construction of the map f.
For we E we let v= f(w) be the solution to the system

v(O) = uo

A%(t, x, w(t, x)) ?)_;J = T A(t, x, w(t, x)) g—; + B(t, x, w(t, x)). (2)

Because of (iv) and (v) we see that these coefficients A°(t, x, w(i, X)),
Al(t, x, w(t, x)), B(t, x, wit, x)) satisfy the conditions (A,) of § 1, so we do
have a unique solution v(t)€ D*. It is C° in D*and C! in H*~!.

Step2. f maps E to E for suitable 6, M,, M,.

From the linear theory in § 1, we know that the Eq. (2) defines a semi-
group on H*~ ! or on D*. (Asin § 1, the A° term may be grouped with the
H*~' B term.) Now we also know from the energy estimates in § 1 that
for each fixed 1, Eq. (2) defines a quasi-contraction in H*~! (that is, the
norm of the solution grows exponentially). We can, as in § 1, show that
this same property is inherited by the domain D*. Thus, using (vi) we

conclude that
No@)lls < aeWMllugll,, —-6<t<6

where « is a universal constant (as in the remarks following the assump-
tion (vi)) and § depends on |w]|,_,. Thus we may conclude that for M,
chosen sufficiently large, we will have [[v(0)|l, < M,, if § is sufficiently
small. From this estimate and the differential equation itself (with A°
as a B term) we sec that for M, large, the condition ||v'(¢)]|,_, £ M, will
hold. Finally, from |[v'(¢e)]|;— £ M,, it follows from the mean value
theorem that v(r)e U*~* for & sufficiently small. This completes step 2.
Note that for 6 small we also may assume that E lics in an s— 1 ball
contained in US™! centered at u,.

Step 3. f isa contraction in the H*~* norm on E for 6 sufficiently small.
For w e E defined above, let

Wls-y= sup [w(),-, -
Y

We shall show that f: E— E is a (strict) contraction for § small; that is,

|f(wl) - j.(WZ)Is—l §k|w1 - Wlls— 1
where 0 <k < 1.

In making this estimate we may assume A° is the identity because
our assumptions allow us to do this in system 2 without changing the
hypotheses on B. (Of course this is possible only because we allow B to be
H*"! and consequently are working on D* rather than on H*. This
procedure does not simplify if A° depends only on u(t, x) and not on ¢, x
explicitly.)
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We have from (2),

d
LRI U

of (w,)
ox

of (wy)
ox

— AL, x, w,)

= <A‘(t, x,w,) + B(t, x,w,)

- B(l) X, “’2)» f(“‘] ‘—f‘(“"2)>
s—-1
- <A‘u, %) L )= Sl S0 = S w2))
M s=1
+ <A‘(t, X, wy) 6_(1'— Sw,)

. d
— A x W) S S )= )
+ <[B(f. X, wl) - B(” X, WZ)]‘ f(wl) - f(w2)>s— 1

The first term is estimated by the usual energy inequalities of § 1. It is
bounded by

K, "Ai(“’l)“s”f(“'l) —f(“’z)".f— 12K, "f(Wx) -f(Wz)”sz—l

since |w,|;_, is bounded and w,>A4'(w,) is bounded by assumption.
For the second term we use hypothesis (vii). For the third term we have
a bound K;| f(w,)—f(w,)|?-, and for the fourth term a bound
K, |wy = walls—y | £ O0y) = f(w))]s-y in virtue of smoothness of
wi-> B(t, x, w) and the boundedness of its derivative.

Remark. If s were larger we could use a priori bounds in H*~' to get
a contraction in H*~2 (and a fixed point in H*~! %), thereby weakening
the assumption (i) to u € U~ ! implies A°, 4 are H*~!.

Thus we have the estimate

d A
ar £ 6e)) = fwal]ls-1 SCy I tw)— fwy)]is—y + Ca flwy —wall-1 -
Thus (by Gronwall’s inequality for example) we have

C
170w = FOrls £ - vy = alemr e =D,

. C . . .

Hence letting k= F’-(e‘“’— 1) we sec that if we choose é sufficiently
1

small (so k < 1), we get a contraction.
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Thus f extends to a contraction on the completion of E and hence has
a fixed point on this completion.

Step4. The fixed point so obtained represents the solution desired.

Let u(¢) be the unlque fixed point of f, the extension of f to the com-
pletion E. Since, as in Step 2, we have EC U*~!, with fixed point u(r)
obtained, we do get, as before, a solution () e Ds of the system (2). We
assert (1) = u(t). To show this we want to take the limit of solutions of
system (2) (with 4° incorporated in B at each step). This is slightly delicate
because we are only assuming s> n/2+ 1. However, it may be achieved
by the Trotter-Kato theorem (cf. Yosida [43] and Chernoff [12]) which
also holds for time-dependent systems (Kato [28]). The version we need

is as follows: if %‘:— = X,;()u is a (time-dependent) system depending

on a parameter 4 (in, say, some Banach space) and if X,(s) all have a
common core and X; — X, strongly on this core as 4,— 4, then the
solutions converge strongly as well.

In our case, our A, represents successive iterations of a starting point,
say uo, under f. We know they converge strongly in H*™! since f is a
contraction. Hence by our assumptions on the coefficients, X; converges
as well. Thus, by the quoted theorem, the iterations converge to ()
and hence (1) = u(e).

Remark. See [21] for a more direct proof in case s is larger.

Continuity of the solution with respect to the initial conditions in
H*~! will follow at once from the following elementary lemma.

2.2. Lemma. Let M be a complete metric space, N a metric space and
f:M x N> M be separately continuous and be such that for each ye N,
f{(x)=f(x,y) is a contraction on M with d(f(x,), f,(x;)) S kd(x,, x5)
for a fixed constant 0 <k <1 independent of y. Let x(y) be the unique
fixed point of f,. Then y+x(y) is continuous.

Proof. Pick xy € M. Then x(y)= limit f]'(x,) the limit of a sequence

of continuous functions. But since k is uniformly less than 1 independent
of y e N, the convergence is uniform. [

We define f, in our case, to be the solution of system (2) on M = E with
y=1, the initial condition. Lemma 2.2 applies; we just have to check
continuity of f separately in w and y=u,. But this is clear in u, as (2)
is a linear system, and it is clear in w because we have a contraction in
that variable.

To obtain continuity in the D° topology requires a bit more care.
However it may be proved as follows. Let 1, — u, be a sequence of initial
conditions converging in D*, and u,(f) the corresponding solutions. We

2 Commun math. Phys., Vol. 2x
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know from above that u,(1)»u(r) in H*~'. However, as above, from the
Trotter-Kato theorem we know that this implies that the corresponding
linear semi-groups F;" converge strongly and are equi-continuous on D°.
Letting F, be the limiting solution, we have

F;(1e0) — Folunlls < 1F (o) — F¥GaeoMlls + I1F¥ (o) — F¥ ()l
+IEN () — Fi(uil,
S WF (o) — F¥ (ug)ll; + (const) g — w, |l
+IEN () = Fi(u il -

Given £ >0 choose n = n, so the middle term is <&/3, then choose N so
large that the first and last terms are <g/3 (which is possible by strong
convergence). Hence we get continuity of F,(ug) in ug. [l

As in § | we may also consider the situation in which our coefficients
and unknowns satisfy a certain asymptotic condition. Qur assumptions
are as follows, which we refer to as (4;).
(i) s>n/2+ 1.
(i) For w € C} we have a neighborhood U™ of w in a closed subspace
Fs=Yof H2 ! (defined in § 1). Also, we have fixed A°, A}, B, e C; such that
AP, Ai, B, are asymptotic to them for each ue U* and in these asymptotic
spaces the conditions (A) of § | hold. ~
(iii) The conditions (A,) above hold with the appropriate asymptotic ‘
conditions imposed.

2.3. Theorem. Under these conditions, the conclusions of Theorem 2.1
remain valid with the appropriate asymptotic conditions, i.e., for uge U~}
A(D*+ w) we have a unique solution of (1) in the same space, and the
solution varies continuously with the initial data.

Proof. Argue as in Theorem 1.7 making use of 1.6, and 2.1. [}

This concludes the basic existence theory. Now we shall give a few
properties of the solutions. In the applications these properties will give
further information about the Einstein system.

2.4. Theorem. Let A 3 for A 2} hold and let 9,C R x(D*+ w) be the
domain of the maximally extended solutions for the system (1). Then

(a) £, is open

(b) integral curves of (1) are unigue on their domains of maximal
extension.

Proof. This follows from the continuity of the solution with respect
to the initial data in the same way as for ordinary differential equations;
cf. Lang [30]. W
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Thus for (¢, u) € &, we have F,(u) defined as the solution to (1) with
initial condition u. Then F, maps an open subset of D* to D*. Globally.
we have F : Z,— D* a continuous map.

2.5. Corollary. Suppose F,(ug) exists in D* for all t20. Let T>0.
Then there is a neighborhood of uqy in which solutions exist for a time
t=T.

Proof. Immediate from openness of Z,. |j

For second order systems this result was proven (in an apparently
more complicated way) by Choquet-Bruhat [10].

Sometimes this result is referred to as “stability™ of ug, but that is
misleading; the usual notion of stability is a “second order™ property
implying that near u, solutions will be defined for all 120 and will
remain close to the solution through u,. On the other hand, 2.5 merely
expresses continuity in the initial data. A less obvious resull is the
following (compare also Choquet-Bruhat [10]):

2.6. Theorem. Let A, or A, hold and F:%,— D* be as above. Then
Jor fixed 1, F,: D* > D* (locally defined) is a C* mapping.

This property of being smooth for ¢ fixed is actually quite general.
A general theorem, of which 2.6 is a special case, is given in Appendix A.

2.7. Theorem.( Regularity). Let F, be as above and ug e D** ', 5> nj2+ 3.
Then F(uo) is in D** ' as long as it is defined in D*. In particular the time of
existence is independent of s. In other words for r>s, possibly r= «,

we have Z,={(t.uye @, |lueD'}.

Proof. The trick is to look at the differential equation satisfied by the
second spatial derivative of u, the solution found in D*C H*~'. Now

A°(t, x, u)— = A'(t, ,.u)——- + B(t, x, u) £}

so if Du is the first differential of u with respect to x,

du

A%, x, u)—(Du)—DzA(t X, u) +D3A(l x,u)-Du- Fra

)

+ At x, u) (3 Du+DB(t x.u)—[DA°(t, x, u)]——

where D, A' and D; A* are the partial derivatives with respect to the second
and third variables, respectively. If we consider this as a linear equation
in the unknown ¢ = Du of the form

v

. 0v
—=A'"——+C-v+D
ct axt
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; ou . . .
then we must treat D3 A'(z, x, u) F ek coefficient. However, since u is

du . . . . .
only H"’,a—:. is only H*~2. However, if we differentiate (2), it is easy

to sce that w = D2y satisfies
40 ow . O

" - -
W=A W+C-w+D 3

i A = . ¢Du . . .
where now 4°, C, D are H*~? functions, I incorporated into w and

ou
ot
do not occur multiplied together as the first ones did. Hence, since
s> n/2+ 3, the coefficients are in H, r=5—2>n/2+ 1, with A* in H*™!
so by the linear theory w, which is initially in D*~', remains in D*™ .
Hence u remains in D**'. [

we substitute from (1) for —. The reason is just that second derivatives

We shall apply this regularity result to the Einstein system to show
that C* Cauchy data remains C*.

§ 3. Existence Theorem for the Exterior Einstein Equations

In this section we wish to show how the classical existence theorems
of Lichnerowicz and Choquet-Bruhat 3, 33] (including the improvement
recently obtained using a result of Dionne [16]) as well as some recent
modifications [6, 7] can all be obtained from the symmetric hyperbolic
theory above. Since our improvements of the results are technical ones,
we shall not include all the details.

We point out that the second order theory of Leray used by the above
authors requires strict hyperbolicity of the equations. Sometimes when
strict hyperbolicity fails, the system may still be put in the form of a
symmetric hyperbolic system; cf. Friedrichs [24]. We also point out that
the symmetric hyperbolic theory admits a global intrinsic treatment on
manifolds; this is the subject of Part II (see also [34]).

Some of the technically delicate points we deal with follow: a direct
treatment of the asymptotic conditions and globally defined “coordinate
transformations™ H* asymptotic to the identity; an improvement (from
H* to H**') of the degree of differentiability of the coordinate trans-
formation relating two solutions of the equations R,, =0 with the same
Cauchy data; existence of solutions in the class H*; the latter is given in
(6, 8]. Moreover, we also show that the solutions to the Cauchy problem
depend continuously on the initial data in the H* topology and that C*
initial data give C* solutions;cf. [7. 9, 10, 25]. Finally we show that the
time T solutions are C* functions of the initial data.
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Details not given below for the most part can be routinely supplied.
We now summarize our notations.

Greek indices run from 0 to 3, latin indices from 1 to 3. Local co-
ordinates are written x* = (t, x) = (x°, x’). We take ¢=1 and our Lorentz
metrics g,, have signature (—, +, +, +). The summation convention is
employed.

Christoffel Symbols:
1 dg dg 09ap |
s = — %A Az A _ af .
#= 799 T ox ax* |
Contracted Christoffel Symbols:
re=g**r. i

= ]/ ldelg o (|/ detg g**)
where detg = determinant of g,,,.
Riemann Curvature Tensor:
_ 1 [ d%g., 9., 0%g,, % g.p
gy = _2—[6:('0:(’ T oo T oxox | oxrox
—Gooe T s+ 90a T 5135

R

Ricci Curvature Tensor:

Ruv = gaﬂR:p[f\'

igzﬂ _ 629‘” a gzﬂ + a gnﬂ + a gv:
2 ax*axP  0x*3x’ | Ox0x" | OxPoxk

-.q"aro ra+qaﬂgoar rvﬂ

_ar;, or;, .
e + 3 M —T2,TY,
Scalar Curvature:
= g’pR‘:ﬂ .
Einstein Tensor: )
Guszﬂv— ?guvR .
Laplace-Beltrami Operator on Scalars:
1 oo
O¢=—-——— - det g g?* ——
¢ |/ = detg axﬂ V- detgg oxt
*¢ o¢
= — 2B 2
9 axax? +r oxt’
The covariant derivative is denoted 1*#-,, | etc
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The Cauchy Problem is as follows:

(Existence). Let qm(wc) be an H® asymptotically flat metric (see
below), s 2 4, and K"v( x') an H*~! symmetric tensor (asympiotic to zero).
Assume G°(t‘)—0 Find ¢>0 and an H* asymptoncally flat spacetime

g‘” (0, )= K,“(\c ) and

gt X, — e <1 < such that g,,(0, X) =g, ('),
R,,=0.

(Uniqueness).  Let g, and h,, be two H* asymptotically flat spacetimes
with the same Cauchy data and which satisfy R,,=0. Find an &' and an
H**' coordinate transformation X*(x*) globally defined in space and
spatially asymptotic to the identity such that

X

ax

() = ==

G _
(%) 2 (%) g, (04(F%).

Both of these problems as well as related ones will be answered
affirmatively.

By asymptotically flat. we mean that g,, is H® asymptotic to some
given comparison metric. In practice this means §,, is H* asymptotic to an
asymptotically Schwarschild type metric §,,. or §,, —§,, € H*. Here our

. . . 2m X
comparison metric §,, looks like 1, =1,,+ —r—ém. for r sufficiently

large, where m 20 is a constant and #,, is the Minkowski matrix (see
1.7, 1.8, 2.3). The existence theory then guarantees that these asymptotic
conditions will auromatically be maintained in time.

As with the second order theory we make use of harmonic coordinates
defined by the condition

r=g*r4,=0,

In this case, the system R, =0 simplifies considerably.
An algebraic computation (see, e.g., Fock [22], p. 423) shows that
| érs or:
=R® 4 o
R,,=R+ (g,“ s G a.v')
where a2 2
hy __ zfi C Gy gaﬂ
R}x\{_ - =4 (-ix,—a“xp +Hur (.‘la[b W)
and

0g, «
Hyo (00 S22 ) =000 T T,

OGuy ra i 2y g6 0940 2 ey g5 09y
+ (6‘7(’ r+g,,59%g Ww,.afapg el b
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Thus if =0, R,, reduces to RY). Note that H,, is homogeneous
quadratic in dg,,/¢x* and is rational in g,, with non-zero dominator
det(g,,).

The principal part of the system RY)=0, namely the operator
— 3g*7 8%/ x78x", operates the same way on each component g, of the
system so that the highest order terms are completely uncoupled. Such
systems are said to be weakly coupled, and are a particular case of the
strictly hyperbolic systems of Leray [32].

From Leray's theorem [32] for strictly hyperbolic second order
systems as improved by Dionne [16], Choquet-Bruhat [6, 7] concludes
that H, H*~! Cauchy data for the system R{)=0 cvolve into an H®
spacetime. In this section we shall prove this result using the theory of
first order quasi-linear hyperbolic systems which we developed in §2.
First we shall set up our asymptotic conditions.

Let T3¥™(R%) denote the 10 dimensional vector space of symmetric
2-covariant tensors on R* (symmetric bilinear forms) and let A(R*)
denote the open set C 73'™ of forms g,, with Lorentz signature
(=, +, +, +); thus the submatrix g;; is positive-definite and goo <0.
Let 1,, denote the Minkowski matrix 1,,, plus a term of class C} which for

.2 . . ‘e
large r is Tm o, (all we really need is an asymptotic value satisfying the

sort of conditions spelled out in § 1, 2). Thus, as in 1.8, 1,,, is H* asymptotic
to a t =const.slicc of the Schwarschild metric in isotropic coordinates.

Definition. A map g:R>— A(R*) is called H* asymptotically flat
(with mass m) if g — 1,,€ H(R3, A(R%)).

Of course, here we put a positive-definite metric on A(R*) when
forming the Sobolev space H*(R®. A(RY)).

Let us fix m and put

L*={g:R*> A(R%\g is H* asymptotically flat}
X = H(R?, T3™(R*).

The space 2 x X*~!, s>nf2+ 2, n=3, will be the space of Cauchy
data for the Einstein equations. Thus for ge %, it follows that g— 1 C? at
infinity and for ke ¢~ !, k—0 in the C' norm at infinity. (This follows
casily from the Sobolev theorems.)

Fore>0,let I=(—¢¢)and V, =1 x R>.

Definition. By an H® asymptotically flat Lorentz metric on V,, we
mean a map g“ : V, — A(R*) such that

(i) for cach t € I, g“(t, -) € &° such that t—g"(t, -) € &* is continuous
and

(i) g is locally jointly H* in (t, x).

and
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We shall also refer to g* as an H* spacetime.

Note that as part of our assumptions concerning A(R*), the surfaces
{to} x R*C V, are space-like for g* (that is, for ve R?, v+0, g'(to, x)
-((0, v), (0, v)) > 0).

From the dynamical point of view we shall see that, alternative to
(i), one may wish to require that g* be a C° curve in #* and a C! curve
in £°" ! (see § 2 and below).

We shall also wish to consider H* coordinate transformations which
are asymptotically the identity.

Definition. A map f:V,—R* will be called an H* coordinate trans-
formation asymptotic to the identity if the following conditions hold:

(i) f is a local H* diffeomorphism in (¢, x),

. 0
i) £0,9=0.920.9=0,0,
(iii) writing f(t, x) = (£(t, x), X(1, X)), X is a C' diffeomorphism of R?
10 R3 for each t, with X— x e H® and r—X(t,-) — x € H* continuous, and

(iv) T is an H* diffeomorphism for each fixed x and 7 —t € H(R*, R)
for each fixed .

In the sequel, we shall just refer to f as an H* coordinate transforma-
tion.

If g is a Lorentz metric on V,, and ¢ : V, -V, a diffeomorphism, we
recall that the puli-back of ¢ by ¢ is the metric given by

(@*9) (m) (X,,, V) =g(@(m) - (T, - X,,, T, ¥,)

wheremeV,, X, Y,.e T, V, =~ R* and where T,,¢ is the tangent (derivative)
of ¢. The push-forward is (¢~ ')*g. If we write g=(¢"')*g and let
X* = ¢*(x#) then we have the coordinate expression

oxf

—i
T X

x* .
(X% = gop(x*(x%) 6?‘ (XY

é

We shall prove the following, as it requires some care.

3.1. Lemma.Let s>n/2 and let g~ be an H* asymptotically flat
Lorentz metric on Vy and f an H*** coordinate transformation ( asymptotic
to the identity). Then on (—¢',¢') x R* for some ¢ >0, (f ~")*g* is also
on H* asymptotically flat Lorentz metric.

Proof. We let Z{(R") denote the H* diffeomorphisms of R” asymptotic
to the identity, as defined above. We shall use the following (Cantor [5]):

/ﬁ%\
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For s>n/2+ 1, 23(R") is a topological group and acts continuously by
composition on H*(R", R™).

This is a generalization with asymptotic conditions of the known fact
that the composition of an H* map with an H* diffeomorphism is again
H* (see Sobolev [40], Ebin [18]). Also, products of H* functions are H*
(this ring property of H* was used in §§ 1, 2). From these facts it follows
that g=(f "")*g is locally H* as 7 is formed from compositions and
products.

Of course, it is clear formally that g—1_ at spatial infinity since
S —id at spatial infinity.

This may be obtained precisely from the above results as follows.
The map f is an H* diffeomorphism of {t} x R3 onto ¢ x R® asymptotic
to the identity. If we then write out g — 1,, we see by Cantor’s result and
by Lemma 1.6 that g — 1, is H* and is continuous in ¢ (note that D f € H}).
Since #* is open in H* and f starts out the identity, as does Df, g will
be in #* for some t-interval (—&'¢’).

Let x* be a coordinate system on V,, and g, a given spacetime. The
coordinate system is called harmonic if '(x*) =0. This requirement is
equivalent to saying that the coordinate functions themselves are
harmonic functions: (J x* = 0(since [(J¢ = — g** 2 ¢/0x* xF + 6 §/Ix?).

In the next section we shall show that an arbitrary H* spacetime can be
transformed by an H**! coordinate transformation to one that satisfies
the harmonic condition. This new coordinate system is a global one.

The importance of harmonic coordinates and of the system R%) =0
is that it is sufficient to solve the Cauchy problem for R¥)=0. This
remarkable fact, discovered by Fourés-Bruhat [3], is based on the
observation that the condition I™* = 0 on the Cauchy data is automatically
propagated off the ¢ =0 hypersurface for solutions of R{)=0, provided
that the initial data also satisfies G2(0, x') =0 where G,,=R,, - }g,,R
is the Einstein tensor. The latter condition is a postiori necessary since
R,,=0iff G,,=0, and G? can be computed from the Cauchy data
g, (0, x'), ag;” (0, x') alone (it is well-known that G¢ depends only on the
first order time derivatives of g,,). Similarly I'* can be computed from the
Cauchy data above. We also remark that in fact G2 does not depend on
0go,/0t. For example, in the notation of [20],

—4Gi=H =4 ((Trk)> =k -k)+2°R, —2NG?=45((Trk)g— k),
whcre

1 . _
kij=w'(gij+goi|j+gojli)w N=(-g%)"17



26 A. E. Fischer and J. E. Marsden:
which demonstrates the assertion (in the expression for k;;, |; denotes

covariant differentiation with respect to the 3-metric g;)).

3.2. Lemma. Let (g, bye(z*. 1) and suppose s> 32+ 2. Assume
(xi)y=0 and G°( x') = 0 (the superscript “refers to the fact that I'* and G°
are computed jrom g, k). Let g,y be an H* spacetime satisfying g,.(0, t)

ég ;‘" 0, x")= fk,. (xY) and R =0. Then I'(t, x') =

= Gl X'),

Remarks. The basic computation appears in [3]. However, in the
present situation some care is required concerning thc amount of
differentiability. In particular we are in the delicate situation of dealing
with H* for low s in which case H* is no longer a ring (closed under
multiplication). The idea is to work out G**|, =0. Since g, € H*, g,,€C7,
and the third derivative terms occur linearly multiplied by uniformly
bounded functions, the computation of G**, =0 as if it were C* can be
justified. One ends up with a system of the form

1 orre (‘q,,v) or:

By _ Bu Souv ) T o
59 Fxaw A (J‘“’ axt ) ox? =0 M

where & I'*/oxPdx" is an H' function. As was explained in Theorem 1.8,
this reduces to a first order linear symmetric hyperbolic system in
(r*, r*,;, ™ o) e H*. Since the coefficients of (1) are in C', we have
uniqueness in the class H', and since the initial data is zero, so is the
solution. Thus one can obtain 3.2 even for this low value of s.

Thus an H* solution of R}}=0 with prescribed Cauchy data and
=o, G° =0 is also a solution of R, =0 (since ' =0). As we shall see
in the next theorems, if the [ are not zcro, we can make them zero by a
suitable coordinate transformation.

Our main new technique is given in the proof of the following:

3.3.Theorem. ( Existence). Let s24 (or s>3.5 if not an integer).
Let (qm,lm)e PL5x A Then there exists an £>0 and a unique H®
asymptotically flat Lorem. metric g-(1, x), tel—(—: &) such that
tergh(t,)e P is CO, is CYinto L', 40, x)=¢g (t) (0 x) = k(x)

and RM =0

The solution depends continuously on the initial data in L x X",
and moreover, for T fixed. |T|<e, the solution is a C* function of the
initial data. If the initial data is C™*, so is the solution.

Case A. 1If the Cauchy data satisfy éﬂ =0, /=0, then g, 50 Obtained
satisfies R, , = 0.
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Case B. If the Cauchy data satisfy only (;'2 =0, there exists an H**!
coordinate_transformation f such that g=(f~")*§ has Cauchy data
satisfying G2 =0, I'* =0. Hence we get an H* solution g = f*§ of R,,=0.

Remark. f is not unique, nor is the solution of R,,=0 unique.
Case B above constructs a particular one. See the next section for
elaboration on this point.

Progf. The system R =0 is reduced to a first order system by
introducing the new unknowns g,.. k,,=dg,./0t, g,.,=2g,,/0x, and
considering the following first order quasi-linear (symmetric hyperbolic)
system of fifty equations:

£,y
at =Ko
ag,., ok,
gl —ERL =gl F)
g it / axt (
) Al
_goo ("‘k;n‘ =7l)0’ {";‘uv ij (7_([,,\._, —2H
&t e axt ey

where H, (g,, g,..;» k,.), defined earlier, is homogeneous quadratic in

{9u+.i» K, ) and rational in g, with non-zero denominator det g + 0.
Within class C?, the system (F) is equivalent 1o R®) = 0. Since g'/ is a

non-singular matrix (with inverse g,;— gy09;0/doo) the equations

Oy ek, "
g ‘g‘l"' =g c.:, are the same as dy,,/0t=0k, /ox". The first

cquation than givcs%(g,,v_,- —2¢,,/0x)=0. But equality at t =0 gives
Guv.i=04,,/6x'. The last equation is then exactly RM=0.

We shall now apply Theorem 2.3 to this system F with s'=s—1 in
place of s. Let u=(g,,.d,....k,,) be our fifty component unknown. We
specify the closed subspace F*~' and w as follows: w=(1,,0,0) for
1,, as defined above and

F""={u

eg,.
B =g

which is clearly a closed subspace of H: ~'(R*, R*°). Moreover, the
above shows that it is compatible with the equations. Let U¥ ! be an
open st in H ~! defined such that all denominators are bounded away
from zero; for example U* ™' ={ulg,; is positive definite goo> 1doos
detg;;> jdetg,;}.
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The matrices A%, A', B are given by
llO 0]0 010 010 010
0]0 _(}“IID gl2llo glJllo 0!0

AO(g“w g‘”"_’ k’”) = 010 gIZIIO gzzllo g23110 010 s
0[0 913110 gZJIIO 933110 010
00 0! 010 010 _goollq.
010 00 0'° (Y ol¢
010 010 010 0l0 g“I"’

Ai(g“.g“v.l_’km)= Olo 010 010 0'0 gjzpo
0[0 010 010 0[0 gj3110
\010 yljllo gljllo y.!jll() zgj()l!()l’.-

where 0'° is the 10 x 10 zero matrix, ' is the 10 x 10 identity,
k

3%

B(guw Guv.i» ku v) = 030 = B(u)
- 2Hn\'(guv' guv.i' ku r)

and where 03¢ is the thirty component zero vector.
We sce that the symmetric hyperbolic system

Ju .
N A%(u) ‘a—t = Al(u) % + B(u) )
is just the system (F). .

The asymptotic matrices A7, AL, B, are just the matrices A7, A;, B,
with 1,, replacing g,,,. It remains to check conditions (4,). The condition
(iii) results from the way we defined F¥~!, because ue F*~! implies
g, € H: and A°, A, B are rational combinations of g,,. From the fact
that H® is a ring, we see that condition (iv) is satisfied. Condition (v) is
clear. For condition (vi) we can, as in Theorem 1.8, see that the domain
of v—AJ(u) dv/ox! is H* '@ G @ H* and on F* ! the graph norm is
H* '@ H* @ H* as was shown in Theorem 1.8. Thus this graph norm
is independent of t, u. Finally, using the H**'@H*@®H* ! norm as
fi-llls, we see that (vii) holds as again the coefficients are rational func-
tions of g,,, and H* is a ring (as long as denominators are bounded a
priori away from zero. division by an H* function gives us another H*
function).

Thus we have a solution existing in the domain and hence in H* *!
@({-I"@H" and thus we obtain our unique H* spacetime g, satisfying
RM=0.

If the Cauchy data satisfies éﬂ =0, [*=0, then the conditions of
Lemma 3.2 hold and so Casc A is established.
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Now we turn to Case B. This is based on the following computation [ 3]:

3.4. Lemma.Let s>n/2+2 and g,,(1,x') be an H* spacetime on
Vo=1xR* with Cauchy data §,,,8§,,/0t that satisfies G°=0. Let
S(x)=X*(x") be an H**" coordinate transformation which satisfies:

(i) (£(0, x9), (0, x%)) = (0, x),

... OX* A
(i1) W(O,x]—(l,O), and

e 02X ; w(r o
(1ii) W(O,x): ) 0, x7).

1
900(0‘ xJ

Such coordinate transformations exist. Then the Cauchy data of the
transformed metric § satisfy:

gﬂﬁ = gozﬂ

Oy _ %y

ot at

ag—gi - a!)o.‘ ()- o2xe - aéo-' + éi: f*:
ot ot Hia - ap2 ot g°°

ag(ll) 6@00 o azix aéOO + .‘?Oa f-.:
ét ot ot ot g°°

]
]
+
&
(=4
R
t9)

]

and o
=0, G,=0.

Existence of f is established in §4. The existence of X* is slightly
delicate because the right hand side of (iii) is just H*~!. We shall obtain
the existence of such transformations in the next section by solving a
suitable wave equation. The rest of the assertions can be checked by a
straightforward computation using the transformation rule for I'*:
oxH o0 x*

x __ 2ff

= —
ax* g ox*ox’

and the fact that GJ does not depend on dg,,/d1.

To complete Case B we consider the solution g,, of R%* =0 with
Cauchy data given by the lemma in the X* system. By case 4, g,, satisfies
R,,=0. Hence g= f*g will also satisfy R,, =0 (since it is a tensorial
equation) and will have the originally given Cauchy data. By Lemma 3.1,
g satisfies the asymptotic and smoothness properties of a spacetime.
This completes the proof. [§
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§ 4. Uniqueness for the Einstein System

In this section we shall show that any two H* asymptotically flat
spacetimes which are Ricci flat and have the same Cauchy data are
related by an H**! coordinate transformation asymptotic to the identity.
A local result like this with weaker differentiability of the coordinate
transformation was obtained by Choquet-Bruhat [6]. See also Choquet-
Bruhat and Geroch [11] where the problem of maximal extendability in
spacetimes is discussed.

Our proof is based on Theorem 1.8 which tells us that for the wave
equation with (H*, H*~') coefficients, solutions exist in the class
(Hs+ l’ H:)

As is well known, solutions to the system R, are not functionally
unique. Thus if g, is an H* asymptotically flat solution to R,,=0 and
X*=7T"x") is an H**' coordinate transformation asymptotic to the

ATH
identity that is the identity on the surface t=0.%(0, x)=48§ and

Ad=p

%—(0. x)=0, then by covariance of R,,=0 and by Lemma 3.1,
ot

- = a OXF g OxP . .

G (X1 = g, 5(x2(F?) e (x4 o (%) is also an H* asymptotically flat

solution to R,,=0 and which has the same Cauchy data as g,.(x°.
Of course, a similar situation holds for any tensor system of partial
differential equations on a spacetime.

Thus we want to prove the converse of the above remark. That is,
two H* solutions g, § with the same Cauchy data are H**' isometric.
As a first step, we shall now prove that when we bring an H* spacetime
to harmonic coordinates, it remains H*. To do this requires an H**!
coordinate transformation. This will also complete the existence part of
Theorem 3.3, Case B.

4.1. Theorem. Let g, be an H* spacetime, s 24, on I x R, I =(—&,¢).
Then there is an ¢ ,0 < ¢ <¢ and a unique H** ! coordinate transformation
¢:I'x R*—1 x R® x°—X" = (x®) asymptotic to the identity such that
the transformed metric g, is an H* spacetime with F*(3%) =0.

Proof. Consider the wave cquation for the scalar ,

~2
g Y
Owp=—g 2

dy
an a +g,”r“ u
NOoX

2 axm =0.

The coefficients are of class H*. H*~'. Let (¢, x) be the unique solution
with Cauchy data _
- ét ;
Jy = i iy =
10, x))=0, a0 0, x)=1.
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To fit this into the [ramework of Theorem 1.8, consider instcad the
equation for &(1, x) =1(t, x) —t which is
3¢
S B
T T

0. x) = ¢ _
S‘Osx)"'Os E(O,x)—o

- g=ﬂ

’
ﬁax.u ﬂrﬂ_o

Note that the coefficients are H*, H*"! and the inhomogeneous term
is H*~'. Thus by 1.8 we get a solution & in H** ', and hence have defined
a function i(t, x) H** ' asymptotic to .

In a similar way we may use theorem 1.8 to solve (Jy = 0 for ¥ with
Cauchy data

-~ i

(0. xi) =, %?mﬂ=o

Now t—X'(t, -) is continuous in H**! (by Theorem 1.8) and &; ! is open
in H**! (Cantor [5]) so X' is an H**! diffeomorphism of R“ 1o R? for
some {-interval. Also, t is for fixed x a diffeomorphism in ¢ (on a uniform
t-interval for all x since d1/dt = 1) by the implicit function theorem. Thus
St x)=(t(t, x), ¥(1, x)) on I' x R* is an H**! coordinate transformation
asymptotic to the identity, so that by Lemma 3.1 §=(f~")*g is an H*
spacetime.

Now the equation (JX*=0 is a tensorial (scalar) equation. In the
barred coordinates, it becomes

so that g,, satisfies the harmonic condition. Thus [ transforms g,,
to harmonic coordinates. Uniqueness of f follows from uniqueness of
solutions to the wave equation with given Cauchy data. [

Note that since g, is of class H*, the sharpness of Theorem 1.8 is
actually necded to show that the transformation f is H**' and thus that
g, in harmonic coordinates is also H*. Note also that we have uniqueness
of f because the Cauchy data used to solve the wave equation for
harmonic coordinates is contained in our definition of coordinate
transformation. Moreover, since f leaves the hyperplane (=0 fixed
and Df is the identity on r=0, f cannot even be composed with an
lsomc.lry, as an isometry which fixes a point and a frame at that point
is the identity.
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4.2. Theorem. Let g\\) and g2 be two H* spacetimes on (—&,¢€) x R?
with the same Cauchy data and which satisfy R, =0.

Then there is an &', 0 < ¢ < ¢ and a unique H**' coordinate transforma-
tion ¢:1'=(—¢,&)x RP—>1x R® asymptotic to the identity such that
gP=(¢p " "*g" on (—¢,&)x R,

Proof. From Theorem 4.1, we can find the unique H*™ ' coordinate
transformations ¢, and ¢, such that 7" = (¢7 ')*g'V and g = (¢; ")*¢**’
satisfy the harmonic condition. Moreover, from the expression for the
transformed Cauchy data and from the equality of the Cauchy data of
g'" and ¢'®, we see that the Cauchy data of g’ and g* are also equal.
But both " and ' then satisfy R®)=0 with the same Cauchy data,
so from uniqueness for that system, g"'=g"? (on their common
t-interval). Thus (7 Y* gV =(¢; ')*g'®, or

g(2)=(¢—l)*g(l]

where ¢ =¢,°¢;'. It follows from the definitions and the fact that
95*' is a topological group that ¢ satisfies the conditions for an H**)
coordinate transformation asymptotic to the identity. That ¢ is unique
follows from uniqueness of ¢, and ¢,. [

We showed above that given H®, H*~' Cauchy data, the system
R,,=0 always has some H* solution. However, one may desire that
the solution have gq o, do; specified; for example, in Gaussian coordinates
with goo = — 1, go; = 0. In this case, it sccms that the best one can do is
to obtain an H®~2 spacetime from H*, H*~! initial data. The case of
general goo and gy; is similar; see [20].

4.3. Theorem.Let s>n/2+3 (n=3). Then for (g’, 3“{1 ) ELSx A}

which satisfies doo= — 1, §o: =0, 8./t =0, there exists a unique H*"?
spacetime g with this Cauchy data, satisfying goo = — 1,go;=0and R, =0,
Jor —e<t<g,e>0.

Proof. Consider some H* spacetime g,, with the given Cauchy data
and satisfying R,,, =0, whose existence was proved in 3.3. Consider now
the geodesic ordinary differential equations defined by g; that is, consider
the spray of §([30, 34]). This is a system of ordinary differential equations
with H*~! coefficients:

dx*
dt
dv?
dt
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Since we have conservation of energy we can multiply v by a C* function
of [lvl with compact support || £ M without affecting solutions with
dx
dt
X, X, are H*~! functions. By Appendix B (sharpening a result of Ebin-
Marsden [19]), this has an H°~! flow asymptotic to the identity. Thus,
the associated exponential map will be an H*~! diffeomorphism ¢ (1, x)
asymptotic to the identity. This ¢ satisfies the requirements of an H*~!
coordinate transformation. Thus ¢ ~'*g =g will be an H*~? spacetime
which, as is well known (cf. Synge [41]), satisfies goo= — 1, go; =0.
This proves the existence part of 4.3. Note: g satisfies R,,=0in a
distributional sense; cf. 3.2. For g to be defined we only need s> n/2 + 2;
for R,, = 0to make sense, g should be at least C' and H? and so s > n/2 + 3.
For uniqueness, we may prove, as in Theorem 4.3, that if g and ¢*
are two H*~? solutions, then there exists an H*~! coordinate transforma-
tion ¢ (asymptotic to the identity) such that g*¥ = (¢ ~*)*g'"). Thus g
is obtained from g'? by a coordinate transformation. But from the theory
developed in [20], it follows that such a coordinate transformation
mapping one solution of the Einstein system to another with the same
Cauchy data is completely determined by the lapse and shift function.
Since they are prescribed here, g = g‘®". One can also sce this directly
by writing out (¢~ !)*¢'V=¢® and using the conditions g{j= —1,
gi¥=0,A=12 |

The same sort of argument works to show existence of unique solu-
tions for a general lapse and shift. Finally we remark that it seems quite
difficult to prove such results directly from the equations in the dynamical
3+ 1 formulation (cf. [20]).

Remark. In future papers we plan to discuss the question of global
existence of non-singular spacetimes. Besides the above existence theory,
the existence of such spacetimes depends on (a) finding non-trivial
solutions to the constraint equations near the flat solution which depend
on only one variable (we believe that toroidal gravitational waves are
examples), (b) the use of the mass function introduced by Brill and Deser
(Ann. Phys. 7, 548 (1968)) and positive definiteness of its second variation.
See J. Marsden and A. Fischer, Publications du départément de mathé-
matiques, Université de Lyon; Lecture, March 3, 1972.

loll =M. Then we get a system X, (x, v),% = X,(x,v) where

Appendix A. Smoothness of Non-Linear Semi-Groups

Here we prove a general result on the smoothness of a non-linear
semigroup F, for fixed ¢ and apply it to the case of symmetric hyperbolic
systems (Theorem 2.6). The smoothness for fixed ¢ is important in many
applications; cf. [13].

3} Commun. math. Phys., Vol. 28
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Let D ¢ E be Banach spaces and X : D—E a C" map. By a flow for
X we mean continuous maps F,: D— D such that Fy(x)=x, F,;=FF

and% F,(x) = X (F,(x)) with the derivative as a curve in E. The flow F,

need in general only be locally defined and for ¢ = 0.
Recall that a linear semi-group U, is called quasi-contractive iff
| U]} £ €* for a constant B 0.

Theorem. Let X :D—E be of class C' with a flow F,:D—-D. For
xeDlet Y, be the part of the linear operator DX (x): D EinD(Y,=DX(x)
on the domain = {y|DX(x)-ye D}). Suppose

(a) Y, generates a quasi-contractive semi-group on D with constant
B locally bounded in xe D

(b) the domain of Y, is independent of xe D.
For each u, v e D write

X(u)— X(v)=Z(u,v) - (u—vo)

1
(so Z(u,v)= [ DX (su+(1—s)v) ds) and also let Z stand for its part in D.
0

Assume, more generally than (a), (b) that:
(c) The domain of Z equals that of Y,,

(d) Z is strongly continuous as an operator in D as u varies in D, locally
uniformly inue D (note that Z(u,u)=Y,), and

(e) Z(u,v) generates a quasi-contractive semi-group with B locally
bounded in u, v.

Then for each fixed t, F,: D—D is differentiable with strongly con-
tinuous derivative, locally uniformly bounded.

Note. If one is willing to add more differentiability in u, v, condition
(d) can be relaxed to resolvent continuity.

Of course one can iterate the process. Sometimes one says F, is of
class BT for the conclusions here. If DF, is again of this type, F, is C'
as is easy 1o see (see Abraham [1]).

The proof of the theorem is based on Kato’s theory of time-dependent
evolution equations; Kato [26-28].

Namely, we can find an cvolution operator for the family of time-
dependent operators A(t) = Yy, for xe D fixed. This is possible because
A(r) are all quasi-contractive (hence “stable”) and have a fixed domain
and vary continuously in 1. Call this evolution operator H,:D—D
(starting at s = 0). What we claim is that DF,(x) = H,. To see this, we note



The Einstein Evolution Equations 35

that 8,(h) = W (Fi(x + h) — F,(x)) solves the equation

26,0 = [X(F.(x-+ W)~ X(F N ]

=Z(F(x + h), F(x))- 0,(h)

and B4(h) = h/||h| = e, say. Now the operators A,(t) = Z(F,(x+ h), F,(x))
also generate evolution operators and 6,(h) is an integral curve. As h—0,
A,()—= A(t) strongly for each t. Thus by Kato [28], the solutions with
fixed initial data e also converge, as h—0. Thus as h— 0 we get

F(x + h)— F(x)
l1Af

The convergence is uniform over the directions of h because of (d). Thus
DF,(x) exists and equals h~ H, - h. This derivative is strongly continuous
and locally bounded in x because Y, is. This proves the theorem. [

—H, - hf||h| .

To apply the theorem to the symmetric hyperbolic case, we consider
the situation of, say 2.1, with D= D* and E = H*. The non-trivial part of
the hypotheses is to verify (d) with u, v varying in the D* topology. To
see this, we may take A°=1 and confinc ourselves to the A term, so

X(u)—A(u)— Now write
. ov
X(u)— X(0) = a) 2= 4 L A‘(v)];)%.

We may write A'(u)— A'(v)=R(u,v)-(u—v) where R’ is, say, some
algebraic combination of u, v. Thus we take
é
Z(u,v)= A (u) e+ 2 R ).

The last term is like a B term in our symmetric hyperbolic system and the
first term has coefficients depending continuously on ne D*. Thus
Z(u, v) depends continuously on u e D*. This shows that 2.6 is a special
case of the above theorem.
Appendix B. Flows of H* Vector Fieclds
Theorem. Let X : R"— R" be an H® vector field (asymptotic to zero)
d

where s>n/2+ 1. Then X has a flow F,e & (F, is defined by?i?l",(x)
= X(F(x)), xe R" and 2} are the H* diffeomorphisms asymptotic to the

identit y).
3
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This improves a result of Ebin-Marsden [19] in two ways. First,
we have lowered the permissible value of s by one, and second we are
working in a non-compact setting.

A careful examination of the proof in [19] together with the results
of Cantor [5] can, in fact, be used to prove the theorem. The result has
been noted independently by H. Brezis who also remarks that the result

. n .
is true generally for X of class W*?, s> — + |. However, we can give an
p

entirely different argument using the theory of symmetric hyperbolic
systems.

Proof of Theorem. Since s> n/2+ 1, it follows that the C ! norm of
X is uniformly bounded. Hence X has, by classical theory [30], a globally
defined C! flow F,. What we shall show is that F, — Id lies in H*. Since
F, is invertible. this will prove the assertion. Consider the scalar equation

29 _ ZX‘(x)%

dt
with @(0, x) = ¢y(x) given. As is well known, this has solution
¢(t9 X)= ¢0 N F,(.\')

(this is just the method of characteristics for first order partial differential
scalar equations).

Now (1) is also a symmetric hyperbolic system with H* cocfficients,
and so we may apply the theory in § 1. Thus ¢, of class H* implies ¢,
is H*.

In particular let ¢q(x)=x', the projection on the i'* coordinate.
The equation for .

{=¢—¢o

¢ vy 8 Ly
2 Z X’(x) 3 + X'{x)

¢0)=0.

By (the inhomogeneous) Theorem 1.1, the solution &(t, x) is in H".
Hence we have

Y

is

)

-

2)

Fix)—x is H*
(asymptotic to zero). This means F, — Id is H* and completes the proof. |
To extend this to non-flat nianifolds requires the same sort of com-

pleteness and curvature assumptions which is needed for the non-
compact H* theory. These details will appear in Part I1.

Acknowledgements. We thank H. Brezis, Y. Choquet-Bruhat, M. Cantor, D. Ebin,
K. O. Friedrichs, T. Kato, H. Kiinzle, P. Lax, H. Levy, A. Lichnerowicz, M. Protter, R. Sachs,
and A. Taub for several helpful discussions.
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Note added in proof. (a) Refinements of some of the results in § 1, 2 have been obtained

by T. Kato, using the methods of [29].

(b) Strictly speaking. in 1.8 we should work in the closed subspace F* of those u in H*

such that y = dy/éx'. This makes the domains independent of ¢ and is why we use F* in
(A,) and (4,) on pp. 13 and 18.

(c) Some existence theorems for the nonlinear constraint equations will appear in a

forthcoming paper.
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