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GENERAL RELATIVITY AS A DYNAMICAL SYSTEM ON THE MANIFOLD @

OF RIEMANNIAN METRICS WHICH COVER DIFFEOMORPHISMS
t ++
Arthur E. Fischer and Jerrold E. Marsden

Department of Mathematics
University of California, Berkeley
1. Introduction

In this paper we consider the geometrodynamical formulation of general
relativity, due most recently to Arnowitt, Deser, and MMisner [2] , Dewite [3],
and Wheeler [8] , from the point of view of manifolds of maps (function spaces)
and infinite-dimensional geometry.,

Hydrodynamics is approached from this point of view by Arnold [l] and
by Ebin~Marsden [1.] s in Fischer-Marsden [5, 6] the function spaces appropriate
for a dynamical formulation of general relativit'y are introduced, We hope that
our approach will clarify the basic dynamical structure of the Einstein equations
and the associated infinite-dimensional geometry in a spirit analogous to that
which has been done in hydrodynamics,

The key to our approach is the group D= DLiff(M) of smooth (C*™)
diffeomorphisms of a fixed 3-dimensional manifold M. For hydrodynamics ene
concentrates on 8}., y the volume preserving diffeomorphisms [14] . For
relativity one uses the manifold @ of Riemannian metrics which cover diff-

eomorphisms., We begin with a description of QA .
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2. The Manifold Q and the Einstein System

Let M be a fixed (no changes in topology) closed (compact without
boundary) 3-dimensional oriented smooth manifold, and let
M = Riem (M) = manifold of smooth Riemannian (positive-definite)

metrics on M;

D = Diff(M) = the group (under composition) of smooth orientation-

preserving diffeomorphisms of M; and

SZ(M) = vector space of smooth symmetric 2-covariant tensor fields
on M,
Note that Sz(l{) is a linear space and that in any decent topology, M is an open
convex cone in Sz(bl).
Let v ¢t Pos(M) ~» M denote the tensor bundle of symmetric positive
definite bilinear forms so that T -1(m) = gpace of inner products on T M, A

Riemannian metric g, which covers a diffeomorphism N e€® 1is a smooth map

g)\: M ~» Pos(M) such that the following diagram commutes:

Pos (M)

o

M—,—l—>M

(that is, To 8y " Ne€ P ). Thus By, assigns to each point m € M an inner
product of the tangent space Tn(m)}t. We let Q. denote the manifold of all such

maps for all W€ . Q@ is the manifold of Ricmannian metrics which cover

diffeomorphisms. One can prove that Q. has the structure of a smooth infinite
dimensional manifold, cf. [4. § 2]; we shall not require this structure.

There is a natural projection W : & *®  defined by ?7'(3,0 = WO gy ™

1

NER . Also, if g, € Q. , observe that By © R e is an "ordinary"

Riemannian metric for M. Now Q. is diffecmorphic to XML by the map
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!R= a-+dDxMm ; I (n, 9,° ) .
(ik' right translation) with inverse
| .
igtaxm.’a. (K.S) »s.n-

Thus information on Q. can be transferred to B XM and vice-versa via the
mapping §“ . It is convienient to think of OX“M, as a realization of Q. .
Let T = C“(H;R) = the vector space of smooth real-valued functions
£ ¢t M*R (scalar fielda or 0-covariant tensor
fields on M),

We will refer to T as the relativistic time-translation group., Note that the

constant functions on M form a subgroup of 9 which is isomorphic to R, the

classical time-translation group. The manifold TxA ® TxDxMm

is the proper configuration space for a neometrodynamical formulation

of general relativity as we now explain., We will be concerned with the
propagatfon of initial Cauchy data (3“}.0) € M x S,(M) off

some 3-dimensional hypersurface M of, a yet to be constructed, Ricci-flat
(vacuum) space-time V4. Here h = 'g = 394‘: is the velocity canonically conjugate
to the configuration fields g. As g, is determined only up to its isometry

class, the evolution is determined only up to an arbitrary curve nte P

of diffeomorphisms called the actual shift (with ‘o uid“n e = the Identity
diffeomorphism); that is, 8, and (nt")“gt are isometric cvolutions, vhere

-1 x -}
L &, (m) + (YpyZm) = g0 LW (m) « (Tn;' (Ym)a Tn:‘(Zm))a Yo Zon€ T M,
1s the "pushi-forward” of a covariant tensor field, Moreover, one is free
to specify on M an arbritrary system of clock rates, or equivalently of clock

settings, given as a curve Et €T of time functions (the clock settings) with

§0 = 0 = the zero function on M (all clocks start at high noon). This
arbitrariness or degenency is rcflected in the evolution equations as follows:

The Einstein System: Let ! be a closed oriented 3-dimensional manifold.

Let xt be an arbitrary time-dependent vector field called the shift vector field

and N, an arbitrary positive scalar field called the lapse function; Nc(m) >0



179

for all (c,m) € Rx }lf Let g be a given Riemannian-metric on }, and let k be a

given symmetric 2-covariant tensor field on M guch that

§(k-(Trk)g) =0,
!:((Tr k)z-k-k)-l- 2R(g) = 0.

The ‘problem is to find a tine~dependent netric field 8, on 1 such that gt and

the supplementary variable

k -

i
¢ "u':(%*'bxtst) ’

satisfyq
(1) the given initial conditions: (go.ko) a (g,k) ,

(ii) the evolution equation

Oke
;n Sgt (kt) -2N, Ric(g't) + 2 Hess(N.) - 5‘: kt .

Our notation is the following:
§ k = divergence of k = (Sk)i - k:ljlj ( 1§ = covariant derivative
with respect to the time-dependent metricg) ,
Trk = Trace k = gijkij - kii s
Wt
2

kak = cross-product for symmetric tensors = kilk §0

kek = dot product for symmetric tensors = kij

Sg(k) o kxk - -i-(Trk)k = kuklj - -{-(gmnkm)kij = DeWitt spray on T2,
Ly 8 ° Lie derivative of g, with respect to the time-dependent
t
vector field X, = xilj + lei ’
a o xt 2 L
thkt: Lie derivative of kt X kijlt + kilx 13 + k.‘llx T
Ric(gt) = Ricci curvature tensor formed from B © Rij =
k _pk k n2 2
Cayk P,y +P13rk9. p:lkrtk .
= a pK
R(gt) Scalar curvature = Ry ,

Hess(N) = Hessian of N = double covariant derivative = Nlil 3 -
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We now explain how the Einstein system, the lapse function xt, the shift
vector field X, and the configuration space TxPx. are interrelated (see

Fischer-Marsden [5] for more details).

3, The Geometry of the Shift Vector Fleld

Let & = Diff(M), the group of all smooth orientation preserving
diffeomorphisms of M. Now P 1is a manifold modeled on a Frechet space; (see
Ebin-Marsden [loJ and related references for the structure of ® ). The tangent
space T‘B at a point RED 1is the manifold of smooth maps X , 3 M -» TM which

cover R , that is, such that the following diagram commutes:i

where Ty denotes the canonical projection of ™M to M. To sce this let nteb

beacurve in B , \_ = N , 8° that L1y represents a tangemt vector
o dt l¢co

in 'r,"a ., But form € M fixed, c(t) = nt(m) is a curve in il with c ) = -

n‘t‘"“ and with tangent ¢&'(0)= CLEY (m) e T, 6 M. Thus % jsacw
dt two um) dt

from M to TM covering e

We refer to X as a vector field which covers W, , 80O that T is the

manifold of vector fields covering diffeomorphisms, In particular, TeS = X

= the vector space of smooth vector fields omn M = the Lie algebra of 2 .
As with the manifold Q. , there is a natural projection F: TP +D defined by
T (Xy) =Ty ° X ® nNeED.
Let &M: ©-+9 denote right translation by M; ( Ry 0 = ).
(]

Then
-mt.z'rs»‘rb ; X" Xat M,

-1
go that for X, € T,B, TR':. (Xp) =Xpo R € T,D is an "ordinary"

vector field on !, called the gull—back of )(l by right translation.
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Now let X M -» TM be a time-dependent vector field on M. Then the flow
‘t of xt with llo » jdentity is a smooth curve in B (as ‘X, 1s time-dependent,
N, is not a one-parameter subgroup of ® ) which satisfies

dRy . x, o o 8% ot ax, .
"'t_ixi“'ii 4t 'Lg Kt

Conversely, given a smooth curve Vlt €D with "‘0 = jdentity, 3—2&. nt-' -
xn ® n:' - Xt is a time~dependent vector field which generates "‘t as its flow,
t

Thus in the Einstein system, if ovne gives the shift vector field X., then

the actual shift of M is its flow "'t. €D , acurve in B ., Equivalently one
may specify the actual shift uc ¢ D and compute the shift vector field as
above, It is because of the presence of the shift vector field that the group
must be included in the configuration space.

The relationship between the Lie derivative terms and the shift vector
field can be explained geometrically as follows. Suppose that for .ﬁt « 1, ‘it = 0,
(Et,l-ct) €M X S,(1) 1is a solution to the Einstein system with initial conditions

('g'o,io) ; that is ,

98 -
t ok
TR
3% i
3t " sg (k,) - 2 Ric (g,) .

t

Now let X, be an arbitrary shift vector field with flow ”-:- ‘110 = jdentity., Then
-1

(8¢ rk,) = (W,

)“gt, (nt-l)*kt) are solutions to the evolution equations with

N, = 1, X, = given shift vector field, and the same initial data as before. This

follows by a direct verificationt

agt - ;(nt.. * Et
kX3 t

9%
- IVSE - R

"“:"xt 8
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where we have used the fact that

%E (n;‘)*g --th (n;.)*s i see [7] » Pe 32

Similiarly,

d M) E
B3t ot

o K -ty -
ST - Y,

- Sg: (kt) -2Ric (8t) - th kt

-1yt
since S§ (k) and Ric (§) are tensors and hence commute with ("\}) ; that is,
=-Ly% LAS
(,™")" e @) = rac(( ™) F) = Ricto)
The significance of this result may be clarified as follows: Besides
the realization of QL as DxM by "right translations, there is a

realization of @& as Dz by "jeft translations” defined as follows:
. LYY e d -1
g aA=>BDxm; 3 = (") (9o ')

These two realizatioms of Q. are entirely analogous to the two realizations of
TSO(3) for the rigid body into body and space coordinates respectively; sec
Arnold [1] . Thus the introduction of a shift may be viewed merely as shifting

from body to space coordinates by use of the coordinate change W, .

4, The Lapse Function and the Intrinsic Shift Vector Field

To discuss the lapse we assume that the shift vector field X.¢g= 0.
(They can be handled simultaneously by using the gsemi~direct producton TxD.))
If_ we choose the lapse Ng=1{ , then the evolution of g is parameterized by a
canOt.\ical evolution parameter, the proper time T. But suppose that g is a
solution of the Einstein system for an arbitrary lapse N. One constructs a
space-time on RxM 1in a tubular neighborhood of M by the Lorentz metric

(in coordinates)
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. dxMdx” = -N‘dtg * 35 daddd .

The proper time function <€ (t,m) = tt(m) - 'l'.(t,xk) (in this tubular neighborhood
of M) 48 then just the time coordinate in Gaussian normal coordinates
(z(:,xk), ?ci(:,xk) ), where :'c"(t.:_ck) is the space part of the Gaussian coordinates.
To find the relation between the lapse N, and T,» we consider the transformation

. =00 _ _Mv e
of g,‘,to Gaussian nornal coordinates; writing out g g7 m— % yields

-1--_1_(_;9.1_)%3“12_%31.
n2 ot 9x axl

which is solved for Nt to give

Now S 1 ,
t dt 2 -
V1+ ugrad 'ct"
2 .
where grad t = gk"'i.‘. dT {5 computed with respect to the inverse kR
A &
ax  dx

of the time-dependent metric Bip ( -‘3‘] since the shift is zero). The factor

1 takes into account the fact that in general the lapse depends on

v1+ llgrad<h ‘

space coordinates and therefore pushes up the hypersurface M through Wx M

unevenly,

The single first order partial differential equation fo: =<

2
de 2 kR de d 2
gE) - N e dt
(“'t dx dxz = N

can be reduced to a system of eight first-order ordinary differential equations
by the Cauchy method of characteristics. Of course this system of ordinary
differential equations is just the system of geodesic equations of the Lorentz
metric By (for unit timelike geodesics) in Hamiltonian form. If we choose on
the non-characteristeric hypersurface t = 0 the initial condition: T (O,m) = 0 i
(corresponding to geodesics normal to t = 0), then we are assured of a unique

€ (t,m) that satisfies the above equation with the initial condition T(0,m) = O,

Note that %-N on this initial hypersurface.
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The condition
e g e LT [z ) =0
RS T\

gives an equation for the space part 'ii(t,xk) of the Gaussian normal coordinate

gystem,
[
a;‘ X N(t.‘ ) u"- K -
3t Vielgroacl® 2 T
NCex )

gradt ; then the above equation can be written as

S .=
et Y -
J I+ “3"“"“

d
'I?' = - Dag-(Y),

vhere g is the spatial part of the Gaussian normal coordinates and ch is,

in coordinates, the Jacobian matrix of 5. But the identity

-t ‘ - ' -
g:(f:‘. t)a -j{&oft + th'. %:3 = é:_i‘_.-ﬁt #DG“ 'Yt°f¢‘°

‘ -
then shows that this equation 1s solved by 4" *F*_ if *F.,_ is the flow of Yt-

We call Y, the intrinsic shift of the lapse since it describes the "eilting”

of the Gaussian normal coordinates due to the space dependence of the lapse
function. The above argument shows that the partial differential equation for the
space part of the Caussian normal coordinate system can be solved by an ordinary
differential equation, namely finding the flow of the i{ntrinsic shift. Finally,

the inverse to the contravariant metric

. =] n % - -a-.;
3, st = S5 ) B @) g e e Be g )

+ 3 - wi W T l) nv& ‘..)
B e DT ¥ - ) & g
- “x ) 3¢ &x o) 9 (-t.x“) ol “‘ t,% 3;‘[ )

‘% (‘oxt)
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‘solves the evolution equations with ¥ = 1 (and the same initial data) if 93j (e, )
solves the Einstein equations with an arbitrary N, Writing g']' for the con-

travariant components of g, the above equation can be written intrinsically as

T (2Ctm), 9 ttam) = Do (6, @ Deplemd[ g7t = -gdten) g_gmoitd) )
Vidigrad<]®  Visforadofl”
Our prescription shows how, given a solution to the Einstein equation
with an arbitrary N, to find the solution to the Einstein equations with N = 1 and
the same initial data by solving ordinary differential equations only, A similiar
prescription is available to go from solutions for N = 1 to solutions for arbitrary
N; see [S5]. To take into account the lapse function we introduce the relativistic

time translation group T = C‘(M;R) (a group under pointwise addition of

functions)., As Y is a vector space, TJ = TxT . For a given lapse N_ and
a solution g, to Einstein's equations with this lapse, we construct a curve 'l:ttT
such that

k3

de\’ _ 2 : .
$2) - N° llgreaz[® = N

and to = 0, Thus to find the curve in T corresponding to a given lapse N we
must firat solve Einstein's equations with this particular lapse.
In the case that N depends only on the time coordinate, then ' T and
N, are simply related by T, = j; N,dA, Moreover, if (Et,ﬁt) is a solution to the
Einstein system with initial conditions (Eo,l-co) and lapse it = 1, then the solution
with N, = £(t) (and X, = 0) and the gsame initial conditions is just the re-
parameterized curve (g¢,kp) = (Br(r)s -Et(t))' This is easily seen, as
as'wu 39-:( dae® _ 1
f a-g St - Mok ® Ne ke

and

%% s 3-t. %39:1 %ﬁ =N (S§w)( kee) -2 R{c’@uﬁ))

e N, ss;““e) - 2N, Ricdg,) .
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5. The Einstein Lagrangian on T™"A = TxBDxM

Since WL 13 an open convex cone in SZ(M)' TT= "ML X Sz(}!). On M. we

define the DeWitt metric 3 (see DeWitt [3]) , and Fischer-Marsden [5]) by

Yyt TyM T = S (M) S (M) =+ R

Zy Ch,,hy) = SH (Teh)(Teh) = wrhe) g 5 ™

where )‘,3' is the volume element associated with the metric g (in coordinates

Mg m dxl A dx? A dx7). .Y 1is a non-degenerate but weak metric

on ‘ML ; here weak means that the map ﬂ;’: Ts'm_ - T:'m. , defined by ﬂ}h])-hz-
2’3 (hy,hy) is an injection, by the non-degeneracy, but is not an

isomorphism.

We now introduce a potential V :'WL IR defined by

V(g) = 2 S R(3) pq
[}
(twice the integrated scalar curvature). If on T we consider the Lagrangian

L=T«VIiTM= MX SZ(H)-O'!R ,
defined by Lig,h) = 3 g (h,h) - V()
then a computation shows that Lagrange's equations give the Einstein system with
lapse N, = 1 and shift X, = 0.
The DeWitt metric 2 on M 1is extended to DxM = QA by

defining on each fiber T (Dam,) = TnB X Szm)

(M ,9)
Am,g): (T® xS (M) « (T, D xS;(M)) = R

(n,9) ((Xe,,h), (Xn_,h:)) = Halh* Lx, enyr 94 byt an; x 9).

The Lagrangian L on TM, 1is now extended to a Lagranglan on T(PxM.) by
TiT(BaM) = TD AWM % 5,00 >R

T (Xp.8h) =L (g, h+ by ot )
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TEAG N on Bt as) SV

Note that the factor B 1s now essential as xn is explicitly involved in L.

Now 2 18 a degenerate metric on PxYN, since if

Hen,g) (he Ly ot 30 ke LY'.""..Q) w0 for a11(Y, k)& TDxS,(M),

then
h+ Lx‘ou" g=o0,
but h and X‘_ need not be zero independently. This degeneracy has the effect of
introducing some ambiguity into the equations of motion, However, the degeneracy
of Y is such that we are free to specify a curve of diffeomorphisms n,e¢ 9;
thus the ambi.guil.r.y in the equations of motion 1s completely removed by the
specification of the shift vector field Xpo
UaingT. t T(Dx M. ) » R , we construct on T(T xPx7M. ) the

Einstein Lagrangian

Lt T(T e D x M)
defined by . Y

h"' o' 3) h"'L - qﬂ -
LE<§.| ”axl\sﬁn“) = N N / :\_m )‘ Tr .":_‘5”&3_ g

-2 fN R(g)/.a.s .
M

LE now picks up a degeneracy in the T direction, as well as in the ® direction,
allowing for the arbitrary specification of N as well as X.. llowever, once N
and X are specified, the degeneracy of L; is completely removed and the evolution
equations are well-defined. A computation then shows that Lagrange's equations

in the "non-degenerate direction", together with the arbitrarily specified lapse
function Nt and shift vector field X., are the Einstein equations of evolution

(see [S] for details).
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