NOTES AND PROBLEMS NOTES ET PROBLEMES

This department welcomes short notes and problems believed to be
new, Contributors should include solutions where known, or background
material in case the problem is unsolved. Send all communications
concerning this department to I. G. Connell, Department of Mathematics,
McGill University, Montreal, P.Q.

HAMILTONIAN SYSTEMS WITH SPIN

J.E. Marsden

In this note we give a brief exposition of the mathematical foundations
of the theory of spin for both classical and quantum mechanical gystems on
oriented Riemannian manifolds. We shall use freely the notations and theory
developed in Abraham [1] and Marsden [2,3]. From the physical point of
view nothing new appears. The whole purpose of the note is to explain how
the theory fits in the spirit of [1].

In view of [3], we can handle the classical and quantum mechanical
cases simultaneously, as both are Hamiltonian systems (the latter being
on an infinite dimensional symplectic manifold}.

We first recall the definition of a spin manifold, second define a
spin Hamiltonian system and thirdly, give the appropriate conservation
law for spin angular momentum. The classical case seems to be of little
physical interest other than theoretical. Quantum mechanical examples
are the two component Schrodinger equation and the Dirac equation. (One
could also use the coupled Dirac-Maxwell system as a non-linear example;
see [3]).

1. Spin Manifolds. We begin then with the definition of spin manifold
following Palais' exposition [4, p. 91]. Other standard references for
spinors are Milnor [5, 6], and Cartan [7]. Further references may be
found in [7], and some references to the vast literature from physics are
found in [10].

Let S5O(n) be the rotation group on Rn. We let Spin{n} be the
universal (2 fold) covering group of SO(n). For an explicit construction
for n> 3, in terms of Clifford algebras, see [4], [6, p. 14] and (8, p. 367],
and for covering groups see any standard text such as [9. pp. 22-27).

There exists an (irreducible complex) Spin (n) module denoted Sn'

called the n-dimensional spinors. If n =2k or 2k+1, Sn has complex
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dimension Zk. For example, one checks that Spin(3) = SU(2); and
2
§,=C

Let A be an oriented Riemannian manifold. To define a spin bundle
over A we first define a local spin bundle and then globalize in the spirit
of Eilenberg Cartan; see [1, §4].

A vector bundle n : E — A with fibre Sn is a spin bundle if there
is a covering U of A and bundle charts & : TU C TA — U_ X R";
-1
=1 s X i
of TA and o¥ tw (Ua) Ua Sn of E such that (i) ¢a preserves
the metric and orientation and (ii) the overlap maps ¢g . ¢: -1 have the

form (x,8)r— (x, g : Ua A U, —= Spin (n) and

ap g &
and p(gap(x)) = 4‘»‘3 v ¢‘;1 (restricted to x), where p : Spin (n) — SO(n)

{x) -8) where g
@

is the canonical projection.

Thus a spin bundle over A is a (vector) bundle w: E —= A whose
local charts are local spin bundles and transition maps are local spin bundle
isomorphisms. Roughly, when we have a coordinate change, the fibers
"transform like" spinors rather than vectors; i.e. according to Spin(n)
rather than SO{(n).

We shall also regard the restriction of w to a submanifold of A as
a spin bundle.

2, Hamiltonian Systems with Spin. We define a spin Hamiltonian
system in the following way. First, let A be an oriented Riemannian
manifold and w: E — A a spin bundle over A. Regarding E asa
manifold M, put on T*M (the cotangent bundle) the natural symplectic
structure. A classical spin Hamiltonian system is a Hamiltonian system
on T#*E. A spin quantum mechanical system is a quantum mechanical
system over E (see [3] for the definition of a quantum mechanical system).

In other words, a classical spin system is a Hamiltonian system which
depends on the spin coordinates and momenta and a quantum mechanical spin
system depends just on the spin coordinates.

3. The Conservation Theorem. Let G be a Lie group which acts
on a manifold M. If X is an infinitesimal generator of G on M, then
the function Px called the momentum of X defined by

PX : TsM — R; Px(am) = a-m (X{m)) is invariant for any Hamiltonian

system whose Hamiltonian function is invariant under the induced action
of G on T*M.

Similarly if £ is a volume for M and a quantum mechanical system

is invariant under the action, the function < Px >:DC L2 {M,C) — R defined
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by < Px> {(¢) = f< ¢,iLx¢ > dQ (for say D the smooth functions) is
a constant of the motion.
These are the basic conservation laws of mechanics. For proofs,

see [2,3]. What we wish to do is simply to determine the corresponding
conserved quantities in cagse M is a spin bundle over A and G acts on A.

Iet w: E —= A be a spin bundle and suppose G acts on A, by
¢ : A ——+ A and that this action lifts to E. That is, there is an action
g

y :E —E on E suchthat (i) noq.og = d:gofr and (ii), there are chart
g

-1 .
coverings cba R ¢: as above, such thatover xe¢ A, ¢* o \pg ° ¢: ¢ Spin(n)

B
and p(¢g d li‘g ° 4)‘;"-1) = ¢‘3 ° (T t.l,-g) e ¢‘;i . 'I’ng is the tangent
{derivative) of 4;g .

Let X be an infinitesimal generator of & on A (a vectorfield on
A) and Y the corresponding one for y on E. Then an easy computation
shows that locally, Y = X + Ys where Ys . at each point lies in the Lie

algebra of Spin(n), i.e. Te Spin(n). I the ¢a above have the form Tf
a
for charts fa on A, then Tep (Ys) = TX (in the chart).

In summary then, the conserved quantities consist of the ordinary
conserved momentum X plus the spin angular momentum Ys.

If G is the rotation group and A = R3 these yield the usual
conservation laws. See [3]. For the Schrodinger equation with spin we
use A directly (two component spinors) while for the Dirac equation we

use the spin structure derived from A as a submanifold of R4 (four
component spinors). For a general Dirac system A would be a space-like
3 surface with spin structure derived from A X R. Note that a
pseudo-Riemannian manifold does not define a spin structure as we have
described it.

We summarize the results in these two theorems:

THEOREM 1. Let A be an oriented Riemannian manifold and
w:E — A a spin bundle over A, Iet H: T*E ~— R be a Hamiltonian

system on T*E (H is usually a Cao function but distributions are also
acceptable; see [2]). let ¢ be a smooth action of G on A which lifts
to an action on E, and under which H is invariant. Let X be an

infinitesimal generator of ¢ on A, Then the function P : T#E — R defined
by P = Pxon + Ps is a constant of the motion (invariant under the flow of H)

where Ps : T¥E — R is such that Ps = PY where Ys is a vectorfield
s

on E linear along the fibers of w determined above,

205



3
For example, take A = R and two component spinors a = (ai.az)

3 3 2 2
over A. We identify T*E with (R"XR") X (€ X € ). Under the rotation
group, the corresponding conserved quantities are components of the following
vector function (using the obvious notations)

P(x,p @ P} =xXp_+ 1/2 p, o @

where the components of o are the standard Pauli spin matrices.

Spin theory is usually neglected classically but there is surely no
theoretical reason for it, only physical precedence.

THEOREM 2. Let A, E and ¢ be as in Theorem 1. Let

2 2
Hop :DCL —L bea Hamiltonian operator on a domain D where L2 is

the complex Hilbert space of functions ¢ : E —= € with respect to a
volume £ on A and some fiber inner product and ¢ preserves that volume
(again distribution valued operators are also acceptable; see [3]). I Hop

is invariant under ¢, then the expectation of X + Ys (defined above) is a

constant of the motion.

In the same example as above, the conserved momentum about
the z axis is the expectation

] /]
7. (x) i s %4 1/ m 4
zi: & ¢i (x) 1 (x ay S 4 9% ) x + 2 fA‘P cx ""' X

where ¢1(x) = ¢(x,1, 0) and.upz (x) = ¢(x, 0, 1). The first term is the usual

angular momentum of § and the second is the spin angular momentum.

Lifting an action from SO(n) to Spin(n) was trivial in the Euclidean
examples above. However, in the general case this may be a topologically
non-trivial process.

4. Rigid Body with Spin. The motion of a rigid bedy can be regarded
as a geodesic on SO(3) with respect to a given left invariant metric
(moment of inertia tensor) c.f. [12]. However the analogous thing on Spin(n)
is not a rigid body with spin. It is easily checked that the corresponding
geodesics are just lifts of geodesics on SO(3), so is just another
description of rigid body motion (i. e. the rigid body can be regarded on
either SU(2) or on SO(3)).

The correct description of a rigid body with spin is as follows.
Let A =SU(2) and 1 a left invariant metric (the given moment of inertia).
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Let E = SU(2) x CZ and as a chart, use ¢ : TA —= A X TeSU(Z) = AxR>

-1
. - , L , i tion, d
defined by ¢ (vx) (x 'I‘x o vx) Lx being left translation, an

$*: SU(2) X C2 — SU(2) X Cz; o*(g.c) = (g, g-ic). With the obvious
product metric on the spin bundle E, namely 1 times the standard inner
product, we define geodesics on E to be the motion of a rigid body with
spin. That the natural action of SU(2) on itself by left translation lifts to
E is easily checked, by setting L*g(h,c) = (gh, gc). By the conservation

theorem {1, the conserved functions are given by (on TE):

Total Angular Momentum (g, Pg; c, Pc)

= rigid body angular momentum

-
P +ic-+c
c

i
2

For more detailed proofs of the results sketched in this paper, see
Marsden, Chang, Robinson, Hamiltonian Mechanics, Infinite Dimensional
Lie Groups, Geodesic Flows and Hydrodynamics {Berkeley lecture notes).

I wish to thank Ted Chang for pointing out several inaccuracies in the
first draft of this paper and for showing me the correct description.
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