COUNTABLE AND NET CONVERGENCE
J. E. MarsDEN, Princeton University

It is well known that Lebesgue’s dominated convergence theorem does not
hold for nets; that is, having a countable sequence is essential (see [1], p. 95).
On the other hand, for a real valued function on an interval, sequences do suffice;
that is, lim,., f(x) =a iff lim,., f(x.) =a for every sequence x,—y. The purpose
of this note is to isolate the basic reasons for these phenomena.

DEFINITION. 4 directed set A is called countably accessible iff there is a count-
able sequence a, in A such that a,— =, that is, for any bE A there is an N such that
a.2bif n2N.

THEOREM. Let X be a lopological space and A a countably accessible directed set.
Suppose f: A—X is a net and for every countable sequence by—  in A, f(bs) con-
verges to xX. Then f converges to x.

Proof. If f did not converge to x, there would be a neighborhood U of x such
that for any b€ 4 there is a b’ 26 with f(b') &€ U. However, if a,— « then f(a,/)
does not converge to x even though a/— =, a contradiction.
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