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Introduction

Our purpose is to give an exposition of the foundations of non-linear conser-
vative mechanical systems with an infinite number of degrees of freedom. Systems
we have in mind are the vibrating string, the electromagnetic field and quantum
mechanics. These are all linear. We also outline a non-linear example, the coupled
Maxwell and Dirac fields. Perfect fluids will be discussed elsewhere.

The general Hamiltonian formalism is motivated by the finite dimensional
case; see ABRAHAM [1], although the usual difficulties with unbounded operators
prevent an exact analogy.
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Although we offer a new existence theorem for non-linear flows (an easy
consequence of a theorem of MOSER), our main emphasis is on their Hamiltonian
properties and the relationship with their infinitesimal generators (Hamiltonian
vectorfield). In fact, the general existence question is complicated and is far from
a satisfactory solution. References are YOSIDA [1], BROWDER (I, 2}, HORMANDER
(1], Lions [1], MoseRr (1, 2], SEGAL (1], DERGUZOV & Jakusovic [1].

We feel that our main accomplishment here is a unification of several branches
of physics into one formalism. For example, one conservation theorem has as
special cases, conservation of angular momentum in classical mechanics, electro-
magnetic theory, quantum mechanics (including spin in the Dirac case). Again,
_there is one theory of canonical transformations to cover all these cases.

A one parameter group, or flow, is called Hamiltonian iff it preserves a sym-
plectic structure. In quantum mechanics, for example, this amounts to being
unitary. Our point of view is to regard quantum mechanics and conservative
classical continuum (or finite dimensional) mechanics as special cases of the more
general theory of Hamiltonian systems. Quantum field theory does not, as yet,
fall into this category. In fact, SEGAL's work seems to be along slightly different
lines; see the Bibliography. Also, this scheme does not include non-conservative
systems; see TRUESDELL & NoLL 138

Since we have striven for clarity of exposition rather than a concise report of
new results, many of the theorems are well known, and no claim to originality is
made. Several interesting and important problems remain open, such as DARBOUX’S
theorem: is every symplectic form locally constant in some chart? Sufficient but
probably not necessary conditions are given in Cook [1].

The basic philosophy of Hamiltonian mechanics is that a symplectic structurc
(Lagrange or Poisson brackets, which are commutators in quantum mechanics),
and a Hamiltonian function (expectation of the Hamiltonian operator in quantum
mechanics), specily a physical system and its time evolution.

The first two chapters cover the basic theory of Hamiltonian systems in the
infinite dimensional case. The last chapter studies important illustrations of the
theory. Appendix B to § 8 outlines the method of dealing with non-smooth prob-
lems; a distributional potential in quantum mechanics for example. Appendix A
shows how an infinite dimensional system may be thought of as a limit of finite
dimensional ones. In the applications, § 7 is done from the Lagrangian point of
view (classical continuum systems), while quantum mechanics (§ 8), not being a
Lagrangian system, is done from the Hamiltonian point of view.

We shall assume the reader is familiar with calculus in vector spaces (LaNnG [1],
DIEUDONNE [1], or better, FROLICHER & BUCHER [1]) and with calculus on manifolds
including the infinite dimensional case (ABRAHAM [1), LANG [1]). A knowledge
of semi-groups (YosiDA [1]) and classical mechanics (ABRAHAM [1]) is helpful,
but not essential.

1 wish to thank RALPH ABRAHAM who inspired this work, ART WIGRTMAN and ED NewsoN
for reading the manuscript and making many helpful suggestions, and CAROLINE BROWNE for an
excellent typing job. I also thank my wife GLYNIS for help in the preparation of the manuscript.
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Interdependence of sections and the main results

Glossary of Symbols

Our notation is almost exclusively that of ABRAHAM [1]; the following list may
be helpful. The numbers in brackets refer to following sections, while A refers to
ABRAHAM [1]. See also LANG [1}. Many of these are reviewed in § 1.

R

EF, ...
L(E.F)
Df: U=L(E, F)
mw f(m)
E.

M
F(M)
™
T*M
(M)
(M)
(M)

aAf

the reals,

topological vector spaces,

continuous linear maps from E to F,
derivative of f: UcE—~F (A 2.3),

effect of mapping f: M - N,

L(E,R),

manifold (A 3.1),

smooth maps f/: M =R,

tangent bundle of M (A 5.3),

cotangent bundle of M (A 6.14),

vectorfields; smooth sections of TM (A 6.15),
one forms; smooth sections of T* M (A 6.15),
exterior k forms (A 10.3),

exterior product (A 10.3),
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d exterior derivative (§ 1), (A 10.5),

ix inner product (§ 1), (A 10.12),

Ly Lie derivative (§ 1), (A 8.18),

Dy domain of vectorfield ¥ (§ 1),

F flow (§1); Fi., F,o F, and F,(m)=F(1, m),

Fu: @(N) = Q' (M) pull back (A 6.16, 10.7),

{/ .8} Poisson bracket (2.6), (A 14.23),

(X, Y] Lie bracket (§ 1), (A 8.12),

Xy Hamiltonian vectorfield of H (2.3), (A 14.23),

® symplectic form (2.1), (A 14.8),

W, Lagrangian symplectic form (4.3), (A 17.8),
A finite dimensional orientable manifold (All4),

n: V=4 vector bundle over 4 (A 4.2),

Q volume on 4 (A 11.4),

Hp measure of 2 (A 12.9),

Ly(A) square integrable functions on A4,

o0 (L) inner product,

EDIHESN non degenerate bilinear form

divp X divergence (8.2), (A 11.22).

Chapter One: Hamiltonian Systems
§1. Preliminaries

In this section we recall some of the basic facts about differential calculus in
topological vector spaces, calculus on manifolds and one parameter groups we
shall need later.

Let E, F be (locally convex) topological vector spaces and L(E, F) denote the
space of continuous linear maps from E to F. For the correct topology on L(E,F)
see FROLICHER & BUCHER (I, p. 65), although we shall not need it explicitly.

If UcEisopenandy: U—F, then recall that if fis of class C", D’f: U-L'(E,F),
the r-multilinear maps from E to F (symmetric, in fact). Again see FROLICHER &
BUCHER [, p. 95). If feL(E, F), then Df(u)=.

One of the basic facts is the composite mapping theorem: if f: UcE—F
and g: VeF =G are of class C' and J(U)cV, then gof is of class C" and
D(gof) (u)- e=Dg(f(u))- (Df(u)- e).

For f: Uy xU,<cE, xE, »F we define the first partial derivative by: D, f:
U, xU,~L(E,, F), where

D, f(uy,u)=D(f|U, x {“1})(“1)=Df("u"2)'51 x{0}.
Then f is of class C” iff D," £, D," f exist and are continuous on U, xU,. We also
have Df=D,f+D,f with the natural identifications. (FRSLICHER & BUCHER
(1, p.91])

Similarly, if f,: UcE~F, f;: UcE=F,, then f, and f; are of class C" iff
J1xf; is, and in this case, D(f, xf;)=Df, xDf,.

Leibnitz’ rule (product rule) also holds. If J1: UcE-F, and f,: UcE~F,

are of class C* and B: F, xF, -G is continuous bilinear, then Bo (f, xf,) is of
class C" and

D{B° U, xfz)} (u)- e=B(Dfx(") . f-’sfz(“))"'B(fn("):sz(“) . e) .
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Although there is no mean value theorem in general, there are analogues of it.
(FROLICHER & BUCHER (I, p. 60].) In particular, if D f=0then f is locally constant
(globally if U is connected).

If f: R = E (R is the reals) then D f exists iff
dfldi(u)=limit [f(u+h)~=f(u))/h
A=0

exists, and in this case D f(u)- r=rdf(u)/dt.

In the special case of Banach spaces, much more can be said. For example, we
have the implicit mapping theorem and the existence and uniqueness theorem for
flows of vectorfields. (See LANG [1] or DIEUDONNE (1)

Let UcR" be an open set in Euclidean n-space, R*=R x .-+ xR (or a manifold,
or manifold with boundary) and F a normed space. Let C*= (U, F) denote all C*
maps f: U= F with the topology of uniform convergence (of all derivatives) on
compact sets (¢f. Yosioa [I, Ch. 1]). For ge C=(F, G) the map w: C*(V, F) =
C=(U, G); fr+go fis of class C* and

Da(f)-fiw)=D g(f () f1(u).

This result seems to have been first recognized in ABRAHAM {2). The general result
may be found in FROLICHER & BUCHER (1, p. 130].

Next we recall a few facts about manifolds. For the basic definitions, see
LANG [1] and ABRAHAM [1]. Our manifolds will be modelled on Banach spaces,
or more generally topological vector spaces. For a manifold M, TM denotes the
tangent bundle, and T"* M denotes the cotangent bundle. For F: M = N, the tangent
of F is denoted TF: TM—TN. The composite mapping theorem becomes
T(FeG)=TFoTG.

A (smooth) vectorfield isa C™ section of the tangent bundle; that is, a map X:
Af = T M such that to X is the identity, where 1: TM - M is the projection. The
vectorfields are denoted & (M) and the covectorfields (one forms) *(M).

We shall also consider as vectorfields, maps X: Dyc M —»TM where Dy M
is the domain of X, such that

(i) Dy is a manifold modelled on a topological vector space;

(ii) the inclusion i: Dy~ M is smooth;

(iii) Dy is dense in M;

(iv) X: Dx—TM is smooth.

We can similarly define k-forms with a domain.

In practice we often have X: Dy —T Dy so X is a vectorfield on Dy; see, for
example, the appendix to this section.

A (local) flow for X is a map, C%,

F: (—¢e,&)xU =Dy
where U is open in Dy, and £>0, such that

X(Fm)=4-F(m) (=9,

for me Dy; the derivative is taken using the topology of M.
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If M is a linear space and X is linear, then F may be extended as a flow in M,
but dF,/d1 existing only on Dy. However, in the non-linear case the flow may be
defined only on Dy. For the linear case see YOSIDA {1, p. 246). A non-linear exis-
tence theorem is given in the appendix.

To avoid the local character, we shall generally assume the flow to be complete;
F: R x Dy — Dy, only for simplicity.

Let # (M) denote the smooth real valued functions f: M —R. If f: D,—R;
fe# (D,) for a domain D, we consider f as densely defined on M. Its derivative
makes sense, however, only in D,.

We let (M) denote the exterior algebra of (smooth) k-forms on M and let
d: (M) - Q" '(M)
denote the exterior derivative. Recall that it is given by (X denotes that X is omit-
ted)

k
(k+Ddw(Xo. ... X)= X (=1 Xi(@(Xoeees Ko oon X4))

iz

-+ Z (-l)‘+IW([xi,Xj].Xo.....2,‘,..-,2},...,X&)
05i<jsk .

where [X;, X] is the Lie bracket of X;, X;€eZ (M) and X(f)=df-XlorfeF (M).
In general, [X, Y] is not defined il X and Y are merely densely defined, but if X
has domain Dy and feF (M), Lyf=X(f)=df- X has domain Dy as well.

In addition, locally we have

k
(k+1)dw(u)-(vo, ...,v,,)=lzo(— N [Do) - v](v. T R A

The exterior derivative enjoys the usval properties and commutes with pull
backs
F,: Q*(N)—- (M) for F: M — N smooth.

(See 1.1 for the definition.)

Let X be a vectorfield with domain Dyc M and 2e&'(M). Define the inner
product by
iy: QM)= 21 (Dy),

ix2(m) (g, ... vi-)=ka(@m)(X (m).vy, ..ol Vie1)

for me Dy and v,€T,, Dy.
Also, define the Lie derivative by

L @(M)—2(D); Ly=doiy+ixod.
From the properties of d and iy we deduce at once those for Ly. For example,
Lyd=dLy, Lx(@af)=(Lxa)AB+an(ly B, etc.
In fact, a simple computation from the formulas for d and i, shows that locally,

k
Lya(u)- (v, ....0)=Da(u) X (1) (01, ..s v,)+‘§a(u) (030 ees DX () Vg5 e )
where vy, ..., 1,€T, DxycT,M; and k 20.
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1.1. Theorem. Suppose X is a vectorfield on M with domain Dy and has flow
F,: Dy = Dy. Then for each ae (M), we have

d
F,.(an)aﬁ(l",.a). at t=rt,

on Dy (the derivative uses the M topology). In particular, Lya =0 implies F,,2=a
for all teR on Dy.

Proof. It is sufficient to prove the result at t=0. Let v, ..., £,€7, Dy, so that
F,oa(u)-(vy, ..., )=a(F () (TF, - vy, ..., TF - vy).

The result follows immediately by differentiating, using the chain rule, the Leib-
nitz rule and the local formula for Lyx. O

If F: M = N is a diffeomorphism, and X has domain Dy, we define F*X with
domain F(Dy) by
F*X<=TFoXoF~ !,

and this satisfies (Fo =(F*)~!=(F~1)*),

F‘(l.xz)=l.pxp‘d
and
F.(Lxﬁ)=prF.a.

Further, if X has flow F,: Dy = Dy, then F*X has flow Fo F,o F~1! as is seen at
once by differentiation.
We now introduce an important generalization of this.

1.2. Definition. Suppose F: D— D is a diffeomorphism on a domain D= M.
We say F is admissible iff for each me D, T F(m) extends to a continuous linear map
of TaM into Ty, M. Sometimes by admissible we shall just mean that T F(m)
can be extended so that, for example, TF - X makes sense.

Clearly F~! is also admissible.

If X and F have the same domain and F is admissible, then comments similar
to those above apply. In particular, if X has an admissible flow F,, then F'X=X.
As we shall see later, admissibility often holds in the Hamiltonian case.

Other facts we shall use [reely are the Poincaré lemma (d2=0 implies x=df
locally), partitions of unity, orientability and integration on finite dimensional
manifolds. See ABRAHAM [, § 11, 12).

Appendix: MOsEr's Theorem on Non-linear Flows

MOosER's approach [1, 2] seems to be the most promising at present for existence
of solutions of non-linear partial differential equations. Here we outline his theorem
for the case of flows.

Let A be a finite dimensional (compact) manifold and C*(4) the space of maps
from A to a normed space which are of class C* with the C*-norm (ABRAHAM
(1, p. 168]). Fix a>0 and p an integer. Let B*(4) denote the maps

U: (—a,a)xC*(4) = C*(A4)
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which are of class C?! in the second variable and differentiable in the first in some
containing space; e.g., L?(4), with

ueB**?(A4) implies —‘;l:-eB‘(A).

1.3. Theorem (MOsER). Using the above notation, suppose
X: C+2(4) - CH(A)
is of class C? and for each ue B***(A), heB*(A), the (time dependent) vectorfield
g—DX(u)-g+h; geC'™®

has a C* flow on C*** (called the linearized flow).

Then for each go€C**? there is a neighborhood V of g, and £>0 such that X
has a flow

F: (&8 xV=C'*?.
If the linearized flows are unique, so is F.

Note that the hypotheses rely heavily on the linear theory. We have assumed 4
compact so we have the containing space L, (4) and also smoothing operators
(MoseR [1]); however, this is not essential.

The idea of the proof is as follows. Consider the map
f: B**? B, u-—»%—':-—Xou.

By assumption, we can solve Df(u)- v=h for v. Conditions (11), (12), (14) of
Moser [1] hold locally by continuity and differentiability. For goeC*** find v
so 2v/ét=DX(g)- v,(85)+ X(go). Choose V, & so

X ov,~[DX(g) - v,(g)+ X (g)]

is small for te(—¢, ), g€ V. With this, the hypothesis of Moser’s theorem are
satisfied. Further investigations along these lines with specific applications remain
to be done; see also MOSER [2], and Section 8.

§ 2. Symplectic Geometry

The main structure on a manifold which allows us to do Hamiltonian mechanics
is a symplectic structure. Much of this is formally the same as the finite dimensional
case.

2.1. Definition. A symplectic manifold (M, w) consists of a manifold M (model-
led on a Banach space) and a closed non-degenerate two-form @ (symplectic form);
that is, dw =0, and for each meM, w,: T,M =Ta M; w,(v)+ w=a(m)- (v, w) is
an isomorphism (onto). We let wg=w; .
Note that it is not enough to demand w(m)- (v, w) =0 for all w implies v=0.
2.2. Proposition. In 2.1, @,: TM =+T*M is a vector bundle isomorphism.

The proposition is clear using local charts. See also LaNG [1, p. 8.
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" As an example, let E denote the Banach space of continuous real functions on
{~1,1]and F =E x E. Define weQ*(F) by

i
(D(e,f) * ((el'fl)D (el -fz))=_fl(f| e -fz el)dﬂ ]

where ef denotes the pointwise product. Here w is closed (it is constant), and
w(e.f)- (ennfo)s (e2,f2)) =0for all (e,, ;) implies (e4,/,) =0 (w, is a monomor-
phism). But w is not symplectic since w, is not onto (use a d-function). The reason
for this will be evident below, where we also give positive examples (2.4).

As usual, we write X =(dfy =} wg(d)), for feF (M). More generally, we
make the following:

2.3. Definition. Let (M, w) be a symplectic manifold and X a vectorfield on M
with domain Dy. Define X? a oneform with domain Dy by

X (m)=2w,(m) - X(m).
Similarly define
(m)=tw,(m)-2(m);  meD,.

Let feF (Dy). We say fis a Hamiltonian function (or is admissible) iff
df(m): T, D; —~R has a (unique) extension to

dfeTaM.

Then define X, =(df %, a vectorfield with domain Dx,= Dy, called the Hamiltonian
vectorfield of f.

Suppose Dy> D,. Define
Lyg=X(g)=dg-XeF(D,)

the Lie derivative. We may similarly define Lya for Dy>D,.
Since geF (D,) need not be smooth on M, we do not have

d
Lxg=7;F..g at =0

it X has flow F,. In fact, conservation of energy must be proven by dilferent
techniques. See § 3.

We shall see in examples later that functions H: D= R of interest are in fact
Hamiltonian.

Next we consider the canonical forms:

2.4. Theorem. Let M be a manifold modelled on a Banach space E and T* M its
cotangent bundle. Define a one-form 0 on T*M by

0(2n) - W= =% T2 (W,,)

where t*: T*M—M is the projection, a,€Ta M and w,_€T, (T*M). Then
w=d0 is a symplectic formon T*M iff E is reflexive. (That is the map j: E—E®*;
j(e)- a=a(e) is an isomorphism. ) Seme~
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Further, locally, using principal parts, we have

o(u,%) ((91. a). (e, “z))= ¥ [“z (e))— “n(ez)] .

Proof. Locally we have 6(u, x)- (¢, )=—a- ¢, so that by the local formula
for d9 (§ 1) we have the formula for w. From this formula it follows that w, is
a monomorphism. In fact, if «, - e, ~a, - ;=0 for all e;€E, «;€E* then «, =0
(setting &, =0) and by the Hahn-Banach theorem (YosIDA (1, p. 107)), e, =0.

Suppose that w is symplectic. Then for ecE** there is e,, a, so

wy(ey, ay) - (ez, ) =e(az).

Hence j(e,/2)=e or E is reflexive. Conversely if E is reflexive and o =(a,, €)€
E*xE** let j(f)=e; then 20,(f, —a)=(a,e) since 2w,(f, ~a): (e, @)=
a, f+o-e,=e-a;+x-¢;. O

From this proof we deduce the following:

2.5. Corollary. Suppose Xy is a Hamiltonian vectorfield on T*M [with E
reflexive]. Then identifying E and E**, we have locally on U x E*

Xy(u,0)=(D; H(u,), =D, H(u,a))

for (u, &) in the domain of H.

In particular, ¢: I - U x E* is an integral curve iff ¢ maps into the domain of H
and

dey(1)fd1=Dy H(cy(), c2(1)),
dey(9)/dt= =Dy H(cy(1), ¢2(1))
using the T* M-topology. ( Hamilion's equations.)
As we shall see later these equations give, in the special cases, equations for
the electromagnetic field and SCHRODINGER's equation. Of course if E is finite

dimensional, they are the ordinary equations of Hamiltonian mechanics.
Poisson brackets of one-forms ae 2 *(m) (with (M, w) a symplectic manifold)

are defined by
{d, p} == [33' ﬂ=]b°

Unfortunately, if x or 8 is defined only on a domain D, this won’t make sense.
Therefore we restrict ourselves to Poisson brackets of functions.

2.6. Definition. Let (M, w) be a symplectic manifold and f, g Hamiltonians
defined on a domain D< M. Define the Poisson bracket {f, g}e & (D) by

{/,8} (m)=—iy, ix, @(m)=20(m)- (X ;(m), X (m)).
Thus if the manifold is T* M, we have, locally, by 2.5, 2.4,

{f.g}=D.g:-D,f-D;f-D,8.
2.7. Proposition. In the above,

{f-8}=Lx.f= ~Lx, 8.

26 Arch. Rational Mech. Ansl., Vol. 28
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This follows immediately since

df(dg®)=2w(df* dg")
as df=(df*).

In case w is locally given by 2.4 (the usual circumstance), it is easy to check
that the Hamiltonian functions formally form a Lie algebra under the Poisson
bracket, although {/, g} need not be a Hamiltonian function.

If X, =Xx on a domain D, then H and K differ by constants if D is connected.
This follows as d(H—K)=0on D.

Finally in this section we study some properties of symplectic mappings (i.e.,
homogeneous canonical transformations).

2.8. Definition. Let (M, w) be a symplectic manifold and F: D = D a smooth
admissible map. We say F is symplectic iff F,w=w, on D. That is, Fo(iyw)=i,w
with i the inclusion map of D into M.

We make a similar definition for F mapping between different symplectic
manifolds. The main theorem on symplectic maps is as follows:

2.9. Theorem. Let (M, w) be a symplectic manifold, DeM a domain and

F: D - D an admissible diffeomorphism. Then the following are equitalent:
(i) F is symplectic;

(ii) for all vectorfields, (F*Xy=F*(X?) if Dx=>D (or on any open subset
of M);

(iii) for all one-forms 2 with D,o D, (F*a)*=F *(a%) (or on any open subset
of M);

(iv) for any Hamiltonian H,Dy=D, F*Xy=Xy.r-1 (or on any open subset
of M);

(v) for f, g8 Hamiltonians with D;=Dy> D,

F*{f.g}={F"f.F*8}

(or on any open subset of M).
(Note that F admissible and f Hamiltonian implies fo F is Hamiltonian.)

Classically this theorem is proven in the linear case, where there are no domain
problems for F.

Proof. First, (i) implies (ii) since at me D,
(F* XY v=20(F*X, v)=2(F* ) (F* X, V)
=2w(X,TF-t)oF

which is just F*(X?)-¢. Similarly we see that in fact (i), (i), (iii) are equivalent.
Second (iii) implies (iv) since
F‘(X,,)=F‘(dH)’=(F‘dH)’=(dF‘ H)*.

Third, (iv) implies (v) since A
F‘{f-8}=F.(Lx.f)=Lr-x.F.f='{F'E-F'f}-
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This coinputation for arbitrary fe # (M) also shows (v) implies (iv).

Finally, (iv) implies (iii) since pointwise we can write a(x)=df(u) for some
feF (U) on a local chart. [J

§ 3. Hamiltonian Systems

A one parameter group F, is called Hamiltonian iff F, is symplectic for each
t€R. In this section we study the basic properties of such systems. From here on,
JSlow means admissible flow. See 1.2 ff.

3.1. Theorem. Let (M, w) be a symplectic manifold and X a vectorfield on M
with domain D. Suppose X has flow F,: D = D. Then the following are equicalent.
(i) Lyw=0; .
(ii) iyw is closed;
(iii) locally on D we may write X =Xy for some Hamiltonian function H,
(iv) F, is symplectic for each teR;
(v) locally there is a Hamiltonian H so that

LX f = {f ' H } .
If D is a linear space, H in (iii) and (v) may be chosen globally (on all of D).
Proof. Since w is closed, Lyw=diyw so (i) and (i) are obviously equivalent.
Also, iyw =X so (ii) implies, by the Poincaré lemma, that locally on D, X*=dH.
Since X? is a one-form on the whole of T, M, meD, it is clear that X is Hamil-
tonian (see 2.3). Similarly (iii) implies (ii). Clearly, by 2.7, (iii) and (v) are equivalent.
Finally, (i) and (iv) are equivalent by 1.1. O
As usual, a vectorfield satisfying 3.1 is called locally Hamiltonian, and is glob-
ally Hamiltonian iff H can be chosen globally on D; i.e., iyweQ'(D) is exact.
The next proposition considers the linearized equations at a point. This is
useful in verifying the hypotheses of MOsER's theorem (1.3) for example.

3.2. Proposition. Let (M, w) be a linear symplectic mbnifold withw: M xM—=R;
(w is constant). Suppose X is a (non-linear) Hamiltonian vectorfield with linear
domain Dy and flow F,. Then

(i) for each me Dy,
DF(m): D-D
is a linear symplectic map;
(ii) for each me Dy we have: the linear map
DX(m): DM
satisfies
o(D X (m)-v,u)=—w(v,D X(m)- u)
Jor u, ve Dy (a skew adjointness condition).
In fact, both (i) and (ii) are equivalent to the condition that X be Hamiltonian.
Prool. (i) is just F,,w = written out while (ii) is just d(iy®)=0. See §1. [

Next we prove conservation of energy.
26°
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3.3. Theorem. Let X, be a Hamiltonian vectorfield with connected domain D
and flow F,. Further, suppose F, has an invariant point. (For example the origin if
the system is linear.) Then

Ho F,=H
for allteR on D.

Proof. As we remarked before, {H, H}=0 is not sufficient, as H is not, in
general, smooth on M. However, by 3.1, F, is symplectic, and so by 29,

Fuxa=xn=xu.r.»

the first equality following from the fact that any vectorfield is invariant under

its own flow (§ 1).
Therefore H— Ho F, is constant on D. Going to the invariant point, we see

that this constant is zero. [

Thus it is preservation of the symplectic form, rather than a direct argument,
that gives us conservation of energy. This same technique will be applied also in
§5. It would be interesting to see if the hypothesis on the fixed point is really
essential in non-linear examples. Our examples later all satisfy the hypotheses;
only one example is non-linear.

In § 5 we will develop some conservation laws special to function spaces.
Therefore it is convenient to discuss the main example of a symplectic manifold
at this point. The definitions are of wide enough scope to allow for relativistic
and multi-component systems such as the electromagnetic field and the Dirac
equation.

3.4. Definitions. Let n: V — A be a finite dimensional vector bundle over A with
inner product { , ) on each fiber (it depends on aeA) and {, Do a non-degenerate

symmetric bilinear form on the fibers of V.
Let Q be a volume on A with corresponding measure pg and Ly(A, V) the Hilbert
space of measurable functions f: A — V which are sections of n: V — A and

3‘ (S(x), f(x)) dug(x) <

with inner product

(/. 9)= j (f(x), 8(x)> da(x).
Also, define the bilinear form

(f.8)o= J {Sf(x), g(x)od pa(x).

The complexification of Ly(A, V) is denoted CLy(A, V) and is identified with
L,(A, V)xLy(A, V) using standard notations. For example, if f,8€CL3(4,V)
f=fi+if;, weletf=fi~ifs and

(f. 8o =§ ), 8(x)>edua(x) ete.

3.5. Theorem. In 3.2, CL;(4, V) is a symplectic manifold with the symplectic
form

o(f.g)=}Im(f, go=1% {(22 Jdo— 2, 1)o}
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where Im denotes imaginary part and f=f,+if,. In fact, identifying L;(4, V)
with L, (A, V)* by means of {, Yo, this is the natural symplectic structure (2.4).

Proof. With the identification indicated, the natural symplectic structure
(which is symplectic in view of 2.4, and the fact that every Hilbert space is re-

flexive) is
w((fnfz)v(gu 82))=‘H(82 Jo— 2 g1)o}
as stated. O

Observe that the condition 3.2(i) becomes, in this case: for all f, ge
LZ (Ay V)nD.\',
(/,8)o=(G2f,G1 8o

where D F,(m) =G, x G;; and in particular, if D F,(m) is complex linear (G, =G,)
then it is unitary, so extends as a map of L,(4, V) onto L,(4, V). The real linear
case corresponds to classical continuum systems (§ 7) and the complex linear
case corresponds to quantum mechanics (§ 8).

The condition 3.2 (ii) in the complex linear case (i.e., D X (m) is complex linear)
is equivalent to i D X(m) being symmetric:

(iDX(m)-f,8)o=(f,iD X (m)- g)o
for all £, ge Dy. If i D X(m) has a self-adjoint extension, then by STONE’s theorem
the linearized equation has a flow. This is what 1.3 demands.
Finally, we remark that the symplectic structure in 3.5 is naturally associated
with the complex structure of the manifold. (Thisis a general phenomenon for mani-
folds with a Kihler structure.)

§ 4. Lagrangian Systems

The basic idea of a Lagrangian system is the same as in the finite dimensional
case. See ABRAHAM [, § 17]. In the general case here, Lagrangian systems are
suitable for describing conservative classical continuous systems (see § 7 for de-
tails). Quantum mechanics is a Hamiltonian, but not a Lagrangian system.
Lagrangian systems are a special case of Hamiltonian ones.

We also briefly recapitulate the elements of the Legendre transformation
theory (which fails in the quantum mechanical case).

First we recall the definition of second order equations:

4.1. Definition. Let M be a manifold and X a vectorfield on T M with domain D,
Then X is called a second order equation iff Tto X is the identity on D where
t: TM — M is the projection.

If ¢: R— D is an integral curve of X (that is F,(m) form fixed) then toc is called
a base integral curve of X.

The basic properties are:

4.2. Proposition. (i) Suppose X is a vectorfield on TM with domain D and X
possesses aflow. Then X is a second order equation iff for all integral curves ¢: R — D,
we have d
—(toc)=c at t=1

(derivative in TM ). di
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(ii) X is a second order equation iff in local coordinates,
<@
X(u! e) =(C, XZ(“) e))

for (u, €) in the domain, and X, the second component of X.
(iii) If X is a second order equation and ¢: R— M is a base integral curve in
the domain,
dc de
-ﬁz‘—xz (C('), Tt.(‘)) s
locally. (All derivatives in time t, use the topology of M as usual.)

Proof. Tto X is the identity iff for all integral curves ¢ in D, Ttoc’ (t)=c(t).
But by the composite mapping theorem on M, Ttoc' =(toc). Parts (ii) and (jii)
follow at once from the definitions. [

Returning to Lagrangians proper, we make

4.3. Definition. Let Le F (D) where D=TM is a (dense) domain, and where M
is modelled on E. We say that L is a regular Lagrangian iff

(i) vn€D implies T,M< D,
(ii) if La=L|TnM, then L,, is smooth in the M-topology,

(iii) FL(@tn)=DLp(@m): TaM—R has a (unique) extension to a map FL:
TM —T* M which is a local diffeomorphism,

(iv) for (u, €)eD, locally, D, L(u, e) extends to a map in L(E, R).
Also, if L is regular, we set
mL = (F L).w,
where w is the symplectic form on T* M.
Thus, w, will be a symplectic form on TM.
Notice that (iv) just means that L is a “Hamiltonian function” (in view of
(iii); see 2.3).

4.4. Proposition. Suppose L is a regular Lagrangian on TM. Then locally we
have:

(i) F L(u,e)=(u, D; L(u,€))
for (u, e)eD; (so Dy L(u, €) is smooth),
(ii) 2&);.(“, 8) * ((eb eZ)' (eJ ’ B‘))

=D,D,L(u,e)-e3-e,+D;D; L(u,e)-e,- ¢,
—D,D,L(u,e):e,- es—D;D;L(u,e)-ex-€5

for (u, e)eD and all e,, €3, &3, es€E.

This proposition follows at once from the definitions and the local formula
for win 2.4.
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4.5. Definition. Les L be a regular Lagrangian on T M. Define the action of L
by A: TM —-R; A(w,)=FL(w,)- w,, and the energy E of L with domain D by
E=A-L. .

Thus, locally, A(u, )=D,L(u, ¢)- e and E(u, e)=D,L(u, e)- e~L(u, e).

By LEBNITZ' rule we find that, locally,

DE(u,e)-(e;,e3)=D, Dy L(u,€)- ;- €+ Dy D; L(u,€)- ;- e=Dy L(u, ) - ¢, .

Thus, in view of the regularity assumptions, £ is a Hamiltonian function (2.3).
The main theorem of this section is as follows:

4.6. Theorem. Ler L be a regular Lagrangian on T M, with energy E. Then using
the symplectic form w,, we have

() X is a second order equation with the same domain as L, say D,

(i) c: R— D is a base integral curve of Xg in the domain iff

% D,L (c(l), %{- (r)) =D,L (c(r). {','—f (r))

(Lagrange’s equations; using the M topology for djdt).

Proof. By use of the explicit form for w, in 4.4 an easy computation shows that,
locally, \ v v
Xg(u,e)=(e,D,D;L(u, &)™ {D, L(u,e)=D, D; L(u,e)-e})

(just verify X >=DE, given above). T -
Thus from 4.2, X; is a second order equation and ¢ is a base integral curve iff

2
%'-g-é‘bz D,L(c,c')"*{D, L(c,c")~D,D; L(c,c')-c'}.

This gives the Lagrange equation, since we may apply the chain rule on M,
D, L(u, e) being smooth on M (smoothness on D would nort suffice). O

Of course in the finite dimensional case these are the usual Lagrange equations.
For continuum systems they give the standard density Lagrange equations. (See §7.)

Finally we describe the Legendre transformation. We are brief and omit
proofs as they are essentially the same as ABRAHAM [l, § 18] with modifications as
indicated above.

4.7. Remarks. A Lagrangian L on T M is called hyperregular iff in addition to
being regular, FL is a (global) diffeomorphism.

In this case we let H=Eo FL™}, so that obviously the flows of X, on T* M
and X on T M are related by conjugation, as FL is symplectic. The domain of /
is FL(D) (and carries the same topological structure).

Thus, every hyperregular Lagrangian on TM is equivalent to a Hamiltonian
systemonT* M.

Conversely, since M is assumed modelled on a reflexive space (see 2.4), we may,
given H on T* M, construct FH: T*M —<+T**M=TM and demand it extend to
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a diffeomorphism, as in 4.3; that is, H is hyperregular (we also assume that
is a Hamiltonian function).

We then define E=Ho(FH)™!, A=Go(FH)™! and L =A - E where G =0(Xp) ‘

. is the action of H; 0 the canonical one-form. All functions have the obvious
domains.

Then we find that L is hyperregular and in fact, FL=(FH)™*. Moreover L
has action 4 and energy E. We call FL the Legendre transformation.

Thus every hyperregular Hamiltonian system on T* M is equivalent to a La-
grangian system on TM.

For a discussion of geodesics in the infinite dimensional case (here things
are greatly simplified as the domains are all of M) see LanG (1, p. 109]. (Un-
fortunately, this includes no examples of physical interest but nevertheless is a
good mathematical illustration of a Hamiltonian system. Of course when things
are smooth on all of M, the more usual techniques can be used; for example, in
3.3 the fixed point assumption is unnecessary.)

Chapter Two: Hamiltonian Methods

§ 5. Symmetry Groups and Conservation Laws

Symmetry groups provide an important practical method for obtaining con-
servation laws. For example, angular momentum in quantum mechanics or energy-
momentum in electromagnetic theory are obtained by exploiting rotational and
translational symmetry respectively.

The motivation is the same as in the finite dimensional case, smooth or not
(see ABRAHAM [1, § 22] and MARSDEN [2]).

An important kind of symmetry action in a function space is one generated
by an action on an underlying manifold 4 (see 3.3), and so we develop conservation
laws special to this case.

8.1. Definitions. If G is a finite dimensional Lie group, and M is a manifold
(infinite dimensional, say), an action of G on M (sometimes called a transformation
group) is @ homomorphism

¢: G- DiffM; gm @,

where Diff M is the group of diffeomorphisms on M. We do not assume & is smooth
in geG (this is false in the important applications).
If X is a left invariant vectorfield on G, with flow F,, we have a corresponding
Jlow F/ on M;
F{(m)=®g, (,(m)

where e€G is the identity. We let X' denote the infinitesimal generator of F, and
assume X' has a domain D with a structure making X’: D -+T M smooth. X' is an
infinitesimal transformation.

The action @ is called symplectic iff M is a symplectic manifold and ®, is sym-
plectic for each geG.

Thus an action ¢ is symplectic iff each F,’ is symplectic iff each X" is locally
Hamiltonian. The fundamental conservation theorem is as follows:
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§.2. Theorem. Let (M, w) be a symplectic manifold, Xy a Hamiltonian vector-
field on M (with domain D), and ® a symplectic action on M. Suppose that ® is a
symmetry action of H; that is, leates the domain of H invariant and Ho ®,=H on D.

Also, suppose Xy has flow F, with a fixed point and Xy is an infinitesimal trans-
formation of ® with connected domain Dg> D.

Then K is a constant of the motion. That is, Ko F,=K on the domain D.

Proof. (As in 3.3, the classical proof using Poisson brackets is fallacious here.)
Since F, is symplectic, F,oXx=Xy.r, by 2.9. We claim that also, F,4Xgx=Xy
which will prove the result as in 3.3. For this, it suffices to show that Fyo Ff o F_,=F/
where F is the flow of Xj. This is equivalent to F{ o F,o F_ =F,, orF{s Xy=Xy.
But since F; is symplectic by assumption we have F; 4 Xy =Xy.5,. But HoF{=H
since H is invariant under the actionof ¢. [0

Below we shall determine K explicitly in the most important cases.

First, we consider the action of a group in the cotangent bundle case:

5.3, Theorem. Let M be a manifold and & an action on M. Define an action
on T* M by ‘

(@) =00 (T, ) ' e TomM.

Then ®* is a symplectic action on T* M using the natural symplectic structure.
(Assume M is modelled on a reflexive space; see 2.4.)
Further, if X' is an infinitesimal generator of ®, and X*’ is the corresponding
one for *,
x‘ ’ = Xp(x')

where P(X') is the Hamiltonian function given by

P(X") (%) =2n(X"(m))

and domain \){T2 M: m lies in the domain of X'}.
We call P(X’) the momentum corresponding to X'.
In the finite dimensional case P is in fact a Lie algebra homomorphism, and

this “correspondance principle” was used in the original transition to quantum
mechanics. (See MARSDEN [2] for details.)

Proof of 5.3. The proof of ABRAHAM [1, 14.16] shows that ¢* is a symplectic
action, and further (9?),8=60. Then if F; is the flow of X', (F/ *)e0=0, or
Ly.. 8=0. Therefore since Ly =doiy+iyod and iyw=X?, we find X *' =X, where
P=—-6(X*). But 6(X*)oa,=0(z)oX* (2)=—0n T"oX*(x,), and
T2o X*=Xo1 from the flows. Hence the result. [

Thus if a symmetry action is of the cotangent bundle variety, the conserved
quantities are P(X").

Next we specialize further:

8.4, Theorem. Consider M =Ly (A, V) described in 3.4. Suppose ¥ is a smooth
action on A and leaves the volume Q invariant. On M, define an action by

¢g(j)=f° y’g" .
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Then if X is an infinitesimal generator on A (we assume X is smooth on A),
an infinitesimal transformation on M is

X'(f)="’-xf

so the domain of X' contains the smooth functions on A, and i X' has a self-adjoint
extension.

Furthermore, we have

(i) if H is a Hamiltonian on T* M, H is invariant under ®* iff

H(fo ¥)=H(/)
for f in the domain of H; f=(fi.f)=fi+if2;
(i1) P(X')Unfz)=£ Sulxf2do dﬂn=§(”-xf’f)o

(the “‘expectation’’ of the symmetric operator iLy), for 1\, f1 smooth.
If (i) holds and Xy has a flow with a fixed point, then the functions P(X') in
(i) are constants of the motion.

Proof. Since ¥, is volume preserving, it clearly maps L, into itself. Now if
F, is the flow of X, that of X’ is F*(f)=foF.,, so by differentiation X' (f)=
“'Lx f.

Statement (i) is clear from the definitions, as is (ii), using the identifications of
3.4, 3.5 and the fact that, since ¥, is volume preserving, i Ly is a symmetric operator.
The last statement follows at once from 5.2 and 5.3. [

Thus in these circumstances, we obtain the constants of motion quite explicitly.
For example, if ¥ is a group of rotations, then i Ly are just the quantum mechanical
angular momentum operators. We use the first expression for classical continuous
systems.

Also note that if P(X’) and P(Y’) are as in 5.4, then P(IX, YI')={P(X’),
P(Y")} and {P(X"), P(Y") () =2(ilLx, Lyl f,f)o, which isa standard remark in
quantum mechanics. That is, if iLy and iL, are constants of the motion, so is
{iLy, i Ly). For further discussion see §8.

§ 6. Canonical Transformations

The treatment of canonical transformations is similar to the finite dimensional
case, so that we shall be brief here, mainly emphasizing the points of departure.
We begin with time dependent systems.

6.1. Definitions. Ler (M, ®) be a symplectic manifold, R the reals, Rx M the
product manifold and =,: Rx M =R, 7;: R x M = M the projections, and j': M —
R x M the injection at time t.

Put ®=n, 4 W, called the contact form.

A functionf: DR x M — R with dense domain D is called a Hamiltonian func-
tion (time dependent) iff for each te R,

fi: D,cM =R
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is a Hamiltonian Sfunction (2.3), where D,=(j)"*(D), the domain at time t, and
fo=foj'. (The situation is somewhat simpler if D, does not depend on t, so that
D =R b d Do .)

If K: DeR x M —R is a Hamiltonian function, put
wx=a)+ dK A dﬂl

a two-form with domain D (dK ndn,=dy K Adn,), called the Cartan form.
Let t denote the unit vectorfield:

1(t,m)=(1,1,00e T(RxM)=TRxTM.
A time dependent vectorfield on M is a map X: DeRxM —TM such that
for each te R, X,=Xoj" is a vectorfield with domain D,.
We say X has a flow iff the vectorfield X: D +T(Rx M); X =t+ X has a flow.
If H: DR x M =R is a Hamiltonian function, we put

Xyu(t,m)=Xy (m)
for (t, m)e D, and for f, g with the same domain,

{ft g} (‘a m)'—'{fngt} (m)-

Of course for a system with time dependent Hamiltonian, energy is not con-
served. We leave it to the reader to develop conservation laws in the time dependent
case. See ABRAHAM [1, p. 136] and follow the methods of § 5.

The proof in ABRAHAM [1, p. 136] shows that for a Hamiltonian H: DcR x
M =R, X, is the unique vectorfield with domain D, so i3, wy =0 and iz, dn, =1.
Also, if « is a k-form on R x M with domain D, then a=§, + 8, Adn, where f3,
and f, are vertical forms; that is, ji B,=0 implies B,=0. (Choose B,(t, m)-
©y, ..., t)=al(t, m)- (v, ..., v;°) where ¢° denotes the component along A, and
BZ(’: m) : (rl’ ceey b -l)=ka('l m) * ('! U,", LRI ] l‘z-x)-)

6.2. Definition. Let (M, w) and (N, p) be symplectic manifolds. A canenical
transformation is an (admissible) map

F:D-D

where DR x M and D' =R x N are domains such that
(i) for each te R, F;=ny0 Foj* is a diffeomorphism of D, onto D;;
(i) for each (t, m)e D, F(t, m) is differentiable in t using the M, N topologies;
(iii) =, o F=mn, or F preserves time;
(iv) there is a Hamiltonian function K¢ with domain D such that on D,

F‘E=&-,+dK;Adﬂl .

The main theorem on canonical transformations is the following:

6.3. Theorem. Let (M, w) and (N, p) be symplectic manifolds and F: D — D’
satisfy (i), (ii), (iii) of 6.2. Then the following are equivalent:
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(i) F is canonical;
* (i) for all Hamiltonians H with domain D', there is a K" (K" =Ho F+Kp)
so that on D,
Fy py=wgn;

(iii) F, is symplectic for each t and there is a Kz on D 50 Fyt =Xy, on D;

(iv) F,_is symplectic for each t and for all Hamiltonians H on D', there is a
K¥ 50 FyXy=Xxn on D;

(v) there is a Hamiltonian Ky on D so that for all Hamiltonians H on D',

F, ™ i H= X KH
where K¥=Ho F+ K.

Since the proof is a fairly simple modification of ABRAHAM [1, § 21], together
with previous remarks, we omit it. Roughly, a map is canonical if it preserves
the form of time dependent Hamiltonian systems with a given domain. We call
K: the generating function.

Next we show that the evolution of a time independent Hamiltonian system is
given by a canonical transformation.

6.4. Theorem. Let (M, w) be a symplectic manifold and H a Hamiltonian with
domain D. Suppose Xy has a flow F,. Then the map

F: RxD—RxD; F(t,m)=(1,F(1,m))

is a canonical transformation with domain R x D. In fact, F transforms H to equi-
librium; that is, K® =0 and Kg=—-H.

Proof of 6.4. Clearly, (i), (i), (iii) of 6.2 hold, and, by 3.1, F,=F,is symplectic.
Then by 6.3 it suffices to show F,t=X_,. But the flow of ¢ is G,(s, m)=(t+s, m),
so that - -

F™'eG,o F(s,m)=(s+1t, F(—t,m)),

by the group property of the flow. But this is exactly the flow of X_p. [

Similarly, the map F~! is a canonical transformation with Kz-:=H.
Finally we state the Hamilton-Jacobi theorem. This does not seem to be in the

literature in the infinite dimensional case, but the same proof as in ABRAHAM
{1, p. 144~ 146] holds.

6.5. Definition. Let E be a reflexive Banach space and S: R xE x E =R a map.
Let
S,;: ExE—R; S,(e;,e;)=S(t,e,,¢;),

and suppose there is a domain D<R x E X E such that 8§[Ct exists on D and also
suppose

F,S: RXExE—-RxT*E; (t,e,,e;)~(t,e,,D,S,(ey, €3))
and

F2S: RXEXE-RxT*E; (t,e,,e;)=(t,e3, D3S,(ey,€3))
are diffeomorphisms. Under these circumstances we call S a principal function.
( We may also suppose S is defined only on D.)
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6.6. Theorem. If S: RxExXE-=R is a principal function, then G=—F;So
(F,8)"';RxT*E—-RxT*Eisa canonical transformation with domain (F,S)(D)
and

oS -
Kg=——-o(F:5) !

on (FyS)(D). Furthermore, if H is a Hamiltonian with domain G(F,S(D))=
F,S(D), G transforms H 1o equilibrium iff, on D,

as
H°Fts+7=0.

As in the finite dimensional case, this is a specialized method for finding the
flow of X,; which can be expected to work in only certain problems (e.g., Quantum
mechanical harmonic oscillator).

Some main theorems of the finite dimensional case do not hold in general.
We have in mind the Hamiltonian flow box and closed orbit theorems (ABRAHAM
(1, p. 142, 178]). To recover these we need to assume the domain of H is all of
M, and H is smooth on M. These are severe restrictions in practice, but we sketch
the theorems in the Appendix anyway.

Appendix: Hamiltonian Flow Box Theorem

For the theorems here to be applied, the crucial assumption is smoothness
on M. This rarely occurs in examples of physical interest. However, here we don’t
require the symplectic form to be an isomorphism, but only that it be non-degen-
erate, so the spaces can be adjusted. For example, by use of somewhat artificial
spaces, the theorem applies to the wave equation which is, in fact, Hamiltonian;
see MARSDEN [1].

6.7. Lemma. Let M be a Banach manifold, XeZ (M) and X (m)=0. Then there
is a chart at m, U=V x I, I=(—a, a) for a>0 such that for each ve V, the mapping
te(r, t) is an integral curve of X.

See ABRAHAM [1, p. 79] or ABRAHAM [3, p. 58] for the proof.

6.8. Theorem. Ler M be a symplectic manifold modelled on a Banach space,
He& (M) and dH(m)#+0. Then there is a chart U at m such that U=IxJx W,
I=(-a, a), J=(~¢, &) and the following hold:

(i) for e, weJ x W; t—(t, e, w) is an integral curve of Xy;

(i) H(t, e, wy=e—=H(m);

(ili) w=wo+dtAdH
where wy is a two-form on J x W.

Proof. Using 6.7, write U= x V locally. Now H (t, v)=H(', v)forall s, 1’el,
by conservation of energy. Hence H defines a smooth mapping on V and dH+0.
By the implicit mapping theorem we may write V=J x W where H(1, e, w)=H(e).

Now define F: Ix U=IxU; (t', wyw (', FL @)=, 1+1", &, ) if u=(t,€,%).
By 6.4, Fis a canonical transformation with F,@=&—-dH adt’.



384 J.E. MARSDEN:

Define i: U=IxU; (t,e,w)~(t,(0,e,w)) and note that Foi(t, e, w)=
(1, (1, e, w)), and

(Foi)y@=(Foi)ym40=0,

as n,0 Foi is the identity.

Hence w=i, f‘. =i, d—i, (dHAdt’). But Hoi=H (conservation of energy)
and ¢’ oi=1 (abuse of notation).

Therefore let wy =i, ® which is given by

‘Do(', e, W)(T‘, El’ I'Vl)- (Tz ’ Ez * WZ))=w(09 e, W) : ((Ov Elt W‘), (0, Ez » Wz)) D

As an application of this theorem we consider the global geometric problem
of closed orbits. It is the analogue of a more refined version in the finite dimensional
case (ABRAHAM [, p. 178]).

We first recall a few facts. A closed orbit of a vectorfield, is an integral curve
¢: (—a, a) = M such that c(1)=c(0) for some >0, but ¢(t)+c(0) for O0<r<T.
Then ¢ may be extended to R and ¢(R) is compact.

A transversal section of X at me M is a submanifold S of M such that 7,5 @
X(s)=T,Mlor seS.

If ¢ is a closed orbit of X and S a transversal section of mec, a Poincaré map is
a diffeomorphism ©: Wy — W, such that

(i) Wy, W,<S are open (in S) neighborhoods of m;
(ii) there is a e F (W) so

O(s)=F(s,t=95(s))
where F is the flow of X; and

(iii) if 0<t<t—35(s), F(t, s)¢Wy.

We may now prove local existence and uniqueness of Poincaré maps exactly
as in ABRAHAM [1, p. 159). Finite dimensionality is not required.

We may also prove (ABRAHAM [1, 28.4]):

6.9. Proposition. Ler M be a symplectic manifold modelled on a Banach space,
HeF (M) and ¢ a closed orbit of Xy. Then there is a local transversal section S
and a Poincaré map ©: Wo— W, such that .

(@) Oy 0, =wo—ddAdH, 5 as above and w, =iyw i: Wy =M (wo similarl ;
defined);

(i) there are submanifolds Z,. on which H is constant, as in 6.8 such that SN Z,.
are submanifolds (W of 6.8) and @, (@y)o =(we)o where (@,)o is wo0f 6.8 0n S Zy.

With a slight change of hypotheses we can also recover the closed orbit theorem.
(The proof is essentially the same.)

6.10. Theorem (ABRAHAM). Let M be a symplectic manifold modelled on a
Banach space, He ¥ (M) and ¢ a closed orbit of Xy. Locally, in the notation of 6.8
suppose Y: Ix W =Jx W; (e, w)=0 (e, w)—w has D, (0, 0) an isomorphism.
Then for some ¢>0 and all &'e(e—e, e+¢), where H(c)=e there is a closed orbit
of energy e'. Moreover, this collection of closed orbits is diffeomorphic to a cylinder.
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In the finite dimensional case the condition is one on the spectrum of the flow.
Presumably something similar holds in general.

Chapter Three: Applications
§ 7. Some Conservative Classical Continuum Systems

Here we study some conservative classical continuum systems from the La-
grangian point of view. Typical systems are vibrating plates and the electromagnetic
field.

7.1. Definitions. Let =: V' — 4 be a vector bundle over an orientable manifold A
and consider the space

M=TL,(4.V)=L(A,V)xLy(4, V)
discussed in 3.4, with bilincar form on Ly (A, V);

(fv g)0=dj <f(ﬂ), 8(0»0 dﬂn(ﬂ) -

The kinetic energy function is defined by 3
"'1—1 T

T: M->R;, T(,.fa=1(f2e.

Let W denote the vector bundle over A x V whose fiber over (m, v) is L(T,, A, T, V)
and for f: A=V define Tf: A~ W as T f(a) is the linear map T f on the fiber over
a to the fiber over f(a). We often write D f for Tf considered this way. (W is called
a jet bundle; see ABRAHAM [3, p. 19].)

A potential density is a smooth map
h: AxVxW-R, bounded on A,
and the corresponding potential energy V,, defined on smooth functions, is given by

I"n(f1-fz)=’{“7(-\'-fx (x), Df (x))duq(x).

The Lagrangian L, corresponding 10 a potential density is defined by
L,=T-YV,.

How one might relax the smoothness assumptions is indicated in Appendix B,
following § 8.

In coordinate language, / is considered a function of x',f/(x%), éf//éx'. To
mainiain the coordinate free spirit it is necessary to introduce some more notation
at this point.

7.2. Lemma. In the above notation, suppose K: W —R is a smooth map, linear
on fibers. Then there is a unigue smooth map

divp K: V>R
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linear on fibers such that
§ K -Df(x)dpa(x)=— Af divg K - f(x) d ug(x)
A

for every smooth section f: A—V with compact support (feLy(4, V). We call
divg X the divergence of K.

Proof. Uniqueness is clear. For existence, using a partition of unity, it is enough
to work in a coordinate chart. Write f=(f*, ...,f™ and K- Df =K, - Df '+ +
K. Df™ Thus each component K; represents a vectorfield, and K;- Dff =Ly, f'.

But
JKI'ijdpa=-;fILKIQ

by STOKES' theorem (see MARSDEN [2, § 3]), and Ly, Q=div, K;Q by definition of
divergence. Therefore we may take

L J
divgK-f=Y (dive K))-f/,
i=1
proving the assertion. [
(It is also easy to see that these “‘multivectors™, or derivations on the sections
of V are isomorphic to the sections of the bundle whose fibers are L(7,* M,
= i(m)=V,) over M.)

From the above proof we see that divp X may be computed locally like the usual
divergence.

The main theorem of this section is as follows:

7.3. Theorem. In 7.1, suppose V,, is smooth on a domain D consisting of smooth
functions with compact support, or which vanish sufficiently rapidly at infinity so
STOKES' theorem (integration by parts) in 1.2 applies. (If D consists of smooth
functions (say with compact support) with the topology of uniform convergence on
compact sets this is guaranteed by the composition theorem quoted in § 1.)

Then the following hold:

(i) L, is a regular and hyperregular Lagrangian with energy E=T+V,
(ii) w is the symplectic form of 3.5,
(iii) f£,(t, x) is a base integral curve of X¢ in D iff

2
Z L (D, h(x, £1(1,%), DA, (0, 9) = diva Dy h(x, £1(t, x), Dy (1, )}

where k% is defined by
(k% 8)o= } k - g(x) dua(x)

(Ck*(x), g(x)Do =k - g(x); for k: V=R).
(iv) if £,(t, x) is a base integral curve in D, then

31 ) anot 1o 120,90, D1 0,0 )

is constant in t (assume the flow has a fixed point, or is linear; see 3.3).
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Proof. First we check that L, is a Hamiltonian function. Now we have (see §1)

DVy(f1,f2) - (81, 82)

=I D, h(x,f‘(x), Dfx(x)) + 81 dﬂn(x)‘l'IDs k(x, f1(x), Df, (x)) -Dg, dpgy(x)

=f D, h(x:fl(x): Df, (")) ‘81 d#n(x)-," divg D, h(x, f1(x), Dfy (x)) - gdug,
by the lemma. Thus for f; €D, it is clear that this bas an extension to all g, eL,(4,V).
Also, DT(f1,/2) - (81, 82) =(f2 82)0, by Leibnitz’ rule, which also extends. Thus
L, is Hamiltonian.

Clearly FL,=DT, so that (i) and (ii) are obvious by definition.

Finally, (iii) is just Lagrange’s equations (4.6), and (iv) is conservation of
energy (3.3). O

In a coordinate chart with the Euclidean metric, the equations become the
usual Lagrange density equations:

6’f‘=ah_i a dh
N TarTid ,sls;f‘;(—af)'
¥

(However, 7.3 is more general, holding in general relativity, for example, in
which case the indices in the above equation must be correctly positioned.)

For example, choosing potential density
h(x, f1(x"), of'jax"y=14 ¥ (3 jox')*
LJ

results in the classical wave equation. For the proper choice of domains and the
existence of the flow, we refer to Yosmpa [1, Ch. XIV].

Another example of importance is the electromagnetic field, which we briefly
sketch: Here we take ¥ to be a four dimensional bundle over A (with 4 considered
as a space like 3-surface) with a metric g, and take (, ) to be a bilinear form on V
of Lorentz type. Elements of L;(d4, V) are called the ‘“four poten ials”. For h,

take

h(x, f(x), Df(x)=% G(Df, Df)=(f, D)o <>,
where J is some fixed element of L, (4, V) called the ‘““four current” and G is the
natural metric on linear maps induced by g and {, .

In the flat case the equations reduce to the usual wave equation with source

az f' _ n az fl .
—Tat le—a?r'l'l (x).

In electromagnetic theory the flow preserves the symplectic structure ¢, Yos
called Lorentz invariance, and conservation of energy is known classically as
Poynting’s theorem.

The motion of a charged particle in an electromagnetic field without radiation
reaction is a Hamiltonian system, but the general case is not (even the coupled
system of the particle and fields). For details and more physics, see ROHRLICH 1.
The conservation theorems again yield standard results in this case. The electro-
magnetic field will be coupled with the Dirac wave equation in the next section.

27a  Arch, Rational Mech. Anal., Vol. 28
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In 3.2 we examined infinitesimally the Hamiltonian case. The real linear case
occurs often for classical continuum systems, so we restate that result in this special
case.

7.4. Theorem. In 3.4, 3.5 suppose X is a real linear vectorfield on the symplectic
manifold
M=TL,(4,V)=L;(4,V)xLy(4,V)
with domain D andflow F,: D = D, also real linear. Then the following are equivalent;
@) X is Hamiltonian;
(ii) X=Xy, where X=(X,, X;) and on D,

H(fufz)’—‘f{(Xx(f:-fz)vfz)o‘(xz(fnfz)-fx)o};
(iii) X satisfies

(fz’xt(gn 82))o+(xz(fn P 81)o=(xz(8u 82),f1)o+(82 ’ Xx(fnfz))o

Jor all (f1,12), (81, 82)eD;
(iv) F, is symplectic;
(v) F, satisfies; if Fy=(F}, F}%),

(f1sf2)o= (Fnzfn F:zfz)o
Jor all (f,,/;)eD.
Further, if X is a second order equation, (i) and (iii) become, respectively
(ii') X=Xy, where

H(fu-fz)'—'i(fzvfz)o“f(xz(fufz):fx)o

and (iii') X satisfies
(X;(gl, g2), fn)o=(xz(fu S 81)0 .

Notice that in (i), H automatically has a kinetic energy term. The theorem
follows at once from 3.2 and the definitions. These conditions are in fact quite
useful. For example, we can see at once that the wave equation is Hamiltonian and
use (ii') to compute the Hamiltonian (conserved), but that the heat equation is not
Hamiltonian.

Although the basic conservation laws were given in section 5, we repeat the
theorem in this special case for reference:

%.5. Theorem. Let X be a real linear Lagrangian system on Ly(A, V) xL;(4, V)
with domain D and flow F,. Let & be a volume preserving smooth action on A leating
D invariant. Let Y be some infinitesimal generator of ® with domain Dy> D. Then
if X, denotes the second component of X and we have

X:(f1, o #=X;(f10®,f209)
for all f,,f; in D, then the following function is a constant of the motion:

P(Y)(fufz)ﬂj Sulyfdodug.

This follows at once from 5.4 and 7.4.

Of course the conservation laws are valid in the non-linear case as well, but
the conditions are not so easy to state as transformation Iaws on the differential
equations.
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§ 8. Quantum Mechanical Systems

Here we study quantum mechanical systems in the sense of SCHRUDINGER and
DIrAC as special cases of Hamiltonian systems. These systems are not of Lagran-
gian type (§ 4) in contrast to the conservative classical continuum systems of the
preceeding section. Nevertheless, all the basic theorems about Hamiltonian
systems do apply.-

We are mainly interested in the abstract case, although the coupled Maxwell
and Dirac systems will be outlined.

As we saw before, Poisson bracket techniques (here commutators) are of limited
use, principally because of domain and smoothness problems. This difficulty is
well known. However, we can recover the basic conservation laws using the
methods of § 5.

8.1. Definition. In 3.4 consider CLy(A, V)=M with the natural symplectic
structure and { , ¢ positive definite. A quantum mechanical system is a Hamiltonian
vectorfield X on M such that X is complex linear on a linear domain D and X has
a complex linear flow F,.

The basic characterization of quantum mechanical systems is as follows:

8.2. Theorem. Suppose X is a complex linear vectorfield on CL,(A, V) and has
a complex linear flow. Then the following are equivalent:

() X is Hamiltonian;
(i) X=Xy where for fe D, the domain of X,
H(N)=3GX () S)os
(iii) iX is symmetric; for all f, ge D,
(I X (), 8)o=(f 1 X (o3

(iv) F, is symplectic;

(v) F, is unitary; for all f, gD,

(RN, F(2)o=(], 8)o-
In each case, F, extends as a continuous (unitary) map F;: M — M.

Although this is a special case of 3.2, it is instructive to see the details.

Proof. That (i) and (iv) are equivalent was proven in 3.1. Now (iv) and (v)
are equivalent, for (v) asserts that (F, £, F,8)0=(/, 8)o, 50 in particular the imag-
inary part is preserved (see 3.4). Since F, is complex linear, preserving the imag-
inary part implies the inner product is preserved (replace f by if).

Now X(f) - g=Im(X(f), £)o so that d X* =0 iff

2dX*(f) - (g, W)=1m(X (g), h)o—Im (X (h), g)o=0-
Thus (i) is equivalent to
Im(X(g), h)o—Im (X(B), 8)o=0
that is, i X is symmetric.
From the expression for X?, it is clear that a suitable Hamiltonian is
H(N=3GX(): o

27b  Arch. Ratiopal Mech, Anal., Vol 28
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which, by symmetry of iX is clearly a Hamiltonian function (2.4). This proves the
theorem. OO

8.3. Corollaries. (i) If X is a Hamiltonian vectorfield, X (ona possibly larger
domain) possesses a flow iff there exists a self-adjoint extension ofiX;
(i) In 8.2, y(t, x) is an integral curve of X in its domain iff
0
i’a_'fl'= op(\l’)
where H,,=iX is the energy operator (0/ét in M),
(iii) in 8.2 if Y (¢, x) is an integral curve in the domain, then

(Hep '1‘: ‘Ii)o

is constant in time.

Note: 1. With the appropriate selection of ¥, H,,, the equation in (ii) is the
Schrédinger or Dirac equation.

2. Conservation of energy (iii) does not require any assumptions about the
spectrum of H,, (e.g., that it be discrete).

The proof of 8.3 is clear. (i) is just STONE's theorem, (i) is just HAMILTON'S
equations and (iii) is conservation of energy 3.2. For the standard cases, (i) is
proven in KATO's basic paper [1]. Appendix B indicates how to deal with cases
in which X cannot have a self adjoint extension, corresponding to singular, that
is, distributional potentials.

Next we consider the relation between Poisson brackets and commutators.

8.4, Proposition. Suppose R is a symmetric linear operator in CL3(4, V)
with domain D; define
Re: D=R;  Re(N=}R(U) o

its expectation function. Then if Rg is continuous in D, Rgisa Hamiltonian function,
and for two such symmetric operators with the same domain,

i{RE: S£}=[R’ S]e.
Proof. From 8.2 we have X, =—iR, so that

{R;, Sp}(f)=2 m(xkga xs;)(f)
== (i RUN 5= (ISUN iR}
= -5 (RSN =SF(. Mo

The last step is really formal as S(f) need not be in the domain of R, although
this may often be assumed. In general the expression is defined by the previous
line. O

Note: 8.4 should not be confused with any correspondence principle between
Poisson brackets and commutators. (See MARSDEN {2, §9].) Here the Poisson
brackets are commutators. To apply Poisson brackets to the equations of motion
it is necessary to assume R and S are bounded operators.
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For a discussion of the existence of flows in the time dependent case, see
DerGuzov & Jakusovic (11

Although the basic conservation laws were treated in § 5, we repeat the theorem
in this case:

8.5. Theorem. Let X be a quantum mechanical system on M =CL;(4, V) with
domain D and flow F,. Let ® be a volume preserving smooth action on A and leaving
D invariant. Let Y be some infinitesimal generator of ® with domain Dy> D.

Then if, for each fe D, we have
X(f)od,=X(fod,),
the expectation of the symmetric operator iLy (in fact, a self-adjoint operator) is a
constant of the motion.

Next we briefly consider a non-linear Hamiltonian system, the coupled Dirac
and Maxwell fields.

This example is an illustration of a coupled system. Namely if M, and M, are
symplectic manifolds, consider M; x M, with symplectic form

Ty e @y +Ry W25 T My XM= M,
n, being the projection. On M, x M; we have
H=H1+H1+H!2

where H, is a Hamiltonian on M, and H,, is an ‘““interaction term”.

In our example, H, is quantum mechanical and H, is classical, and the coupled
system is Hamiltonian.

8.6. Definition (Dirac-Maxwell system in the flat case). Let A=R’ and V=R*
with { , ) the Euclidean metric and { , ) o the Lorentz metric. Asusual,letLy=L,(A4,V)
be the square integrable maps f: A=V and CL, =L, x L, the complexification. Let

M = CLz X Lz X Lz
with symplectic structure

o((W1, f1, 81 (V2 S, 8))=Im(, ¥2)+4(g: yJido=(f2: 810

where (¥4, /1, 8,)€ M and
(o gx)o-'-I(fy godn.

Let &%, 2%, o3, BeL(R*, R®) satisfy
f+Ba*=0, oa'+a'a*=0

al

e .o
for k#! and (*)*=$>=1 and o**=a*, f*=P where * denotes the adjoint with

respect to ).
Consider the following vectorfield on M:

X("’»ft g)=(¢,’ f't g')
=32 spyri(fvr 5ot v)s=
-tal -3_351- ¢ =1 * 3 g

where

~
s P,

fur

SHercu el

€501,

"
v
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and
3
g'=Y Ffi@x+j
x=1

where f=(f1, 3,13, f*), with indices raised and lowered according to the Lorent:z
metric, and where

j=(jl’jzv jsv J")ELz
jk=<al v, 'l’) ’ j4=<'nb9 ll’) .

This tectorfield is called the Dirac-Maxwell system; we leave the domain
unspecified; see below.

is defined as

Notice that X is non-linear. These equations do not take radiation into account.
See SCHWEBER [1, Ch. 4] for the physics. The basic theorem from our point of
view is the following:

8.7. Theorem. The Dirac-Maxwell system is Hamiltonian with Hamiltonian
Sfunction

_ . 1 1 (o af’
H 1, 9= o 0=0. Dot 5@ Do+ 5 (255 57),
where s
iHpy= 3 +py.

Then also X possesses a local flow and the following quantities are invariant
under the flow:

() energy: H(y./, 8);

(i) linear momentum:

Py(W.f, g)=(i 0%[ax", ¥)+4(2f [0x', gl

(iii) angular momentum (including spin):
M3, £, 8)=(i[x" 0p/ax*—x* 3y[ox'], V) +E(a 2 ¥, ¥)
+3([x' ofjox* —x*3f[6x']. 8)o -

The hard part of the theorem is existence of the flow. See GRoss [1]. Here Mo-
mmmmdmm.wymmw of periodic
functi 3 details will be left to another place.

The rest of the theorem is straightforward. To show X is Hamiltonian we com-
pute X =d H using Leibnitz’ rule and symmetry of H,. The last part follows from
the conservation theorems, since the flow has a fixed point (0, 0, 0), and is invariant
under the translation and rotation groups.

Appendix A: Transition from a Discrete to a Continuous System

Here we outline briefly the setting for a rigorous transition from a “discrete”
to a “continuous” system. Roughly, the number of degrees of freedom becomes
infinite and individual particles become smeared into a continuum; the change
in the classical case is from ordinary differential equations to partial differential
equations. Examples are classical systems with a finite number of degrees of



Hamiltonian One Parameter Groups 393

freedom converging to a continuum system [and quantum mechanical systems
converging to a field theory]. For further motivation, see GOLDSTEIN {1, Ch. 11].

8.8. Definition. Let E be a Hilbert space (real or complex, finite or infinite
dimensional) with inner product ( ,) which identifies E with E*. Let ExE~E x E*
have the natural symplectic structure given by

co((e,, ), (fnfz))=§ {(f2,e0)—(e2, 1)}

Let A be a finite dimensional orientable manifold with volume Q and let B< A
be a subset. Suppose ug is @ measure on B such that f: A —R, Q-integrable implies
f is pg integrable. Let po=p,. Let L,(B, E xE) be the maps f: B—~E xE with
§(f(x), 7(x)) dug(x) < 0, called the phase space for card(B) ( cardinality} particles
at points of B and motions in E, with symplectic form:

ag((f1, f2), (81, g2))=1 {.f (820 /1 () dﬂa(x)—f(fz (x), 81(x)) dus(x)}.
1f B is finite, say card B=n and E=R", then L,(B, R* xR") is just R"" xR",
the phase space for n-particles in R*, and the symplectic structure is the usual one.
More generally, if 7* M has the natural symplectic structure and also a Rie-
mannian metric we can consider the manifold of L, maps f: 4 —T* M. The inte-
grated symplectic structure coincides with that above. This is the most natural
setting but we use that in 8.8 to be specific.

8.9. Proposition. Let B, be an increasing sequence (or net) of subsets of A with
measures p, such that p,— p, uniformly. That is, for each >0 there is an @y so
a>aqy implies | (A’ N B)—p(A") <e for all A'c A measurable.

Then w, —w, in the sense that for each f, geL, (A, E x E), and bounded,

wa((fh fZ)’ (81’ gz)) @y ((flo fZ)’ (gh gl)) .

Proof. For f: A - Rintegrable, and bounded, it suffices to show | f dy, - [ fdp.
We may assume f=0. The assertion is clear for simple functions. Suppose f; are
simple functions and f;1 /. Then

1§ f dug=§ FdpISIf =L A +1§(U=fDdpl+I[(f dpa—{ fidul.

For a2 a, the last term is bounded by &- (sup | f]) uniformly in i. Now choose {
large such that the first two terms are small. [

8.10. Definition. Under the conditions of 8.9 we say that the phase spaces
L,(B,, E xE) converge to L,(A4, E xE). If H, are Hamiltonians on L,(B,, E xE)
we say they converge to a Hamiltonian H with domain Dc=L,(A, E xE) iff for
each fe D, H,(f|D)— H(f) and d H,~d H similarly.

Then we have Xy - Xy or the equations of motion for the approximating
systems converge to that for H. In general, this is not enough to guarantee con-
vergence of the flows. For this, one can use the Trotter-Kato theorem; for ex-
ample, see YosiDa 1, p. 269].

Appendix B: Distributional Hamiltonians

In mechanics one is generally given the Hamiltonian and not the flow. Un-
fortunately, in the non smooth case the infinitesimal generator of the flow need
not coincide with the Hamiltonian. Therefore, there is required a new definition
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of the solution (of partial differential equations with distributional coefficients).

Physical examples are commonplace. For example a quantum mechanical
particle with a d-function potential (the flow consisting of partial reflection and
partial transmission), or the vibration of a plate with non-uniform density.

In the case of (classical) Hamiltonian systems with a finite number of degrees
of freedom the problem has been satisfactorily solved. See MARSDEN [2]. There we
even have a general existence theorem. In the general case, the existence question
is much more delicate. The basic theorem applicable here is the Trotter-Kato
theorem (YosiDA {1, p. 249]). We suppose, for simplicity that we are in the linear
case.

8.11. Definition. Consider the symplectic manifold (see 3.4) M=L,(4, V) x
L,(A, V) and suppose X is a (real or complex linear) map with domain D= M
and with range in the distributional sections of V (see MARSDEN [2, § 1.3] for details).
We call X a generalized vectorfield on M. We say X is Hamiltonian iff there exists
Hamiltonian vectorfields Xy, defined on D so feD implies

X H, f - X f
in the sense of distributions, and there is a continuous map H: D =R so

H(f)-H(f)

for feD. In this case we write X=Xy.
For example, if ¥, =4 the delta function on R, then

P R2+Vi>p2+5

in this sense in both the classical and quantum mechanical cases.

8.12. Definition. In 8.11, we say X has a flow F, iff Xy, have flows F! which
are equicontinuous (this will hold if they are all unitary for example; see 8.2) and
for each feD, F!(f)~F(f) on D.

8.13. Proposition. In 8.12, F, so defined is a strongly continuous flow: F,, =
F,o F,; moreover if each F,! is unitary, so is F;.

Remark. The infinitesimal generator of F, is not in general X. (This is analogous
to what happens in the finite dimensional case.) The Trotter-Kato theorem,
however is the basic tool used to verify 8.12. (If it applies, then 8.13 is well known.)

Proof. The assertion is clear from the following inequality:
I Fyes(f) = Fro F (DI S I Fas(N=F2(NI
+IFO(FD ) —-FO(FEU+ I F(FN)-FFEUI. O
8.14. Proposition. In the above, suppose H,—H uniformly on D. Then on D:

HoF,=H.
Proof.

|HoF®—HoF|S|Hy,o F™=HoF®|+|Ho F™-HoF|. O



Hamiltonian One Parameter Groups 395

In a similar way we recover the other conservation laws. (Assume each H,
has conserved quantity P(X), then so will H.)

Because of the lack of measure theory, these techniques lack the delicacy
of the finite dimensional case. See MARSDEN [2]. We shall leave a fuller treatment
to another place.
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. Index
Abraham’s theorem, 6.10 induced action, 5.4
action, 5.1, 4.5 infinitesimal transformation, 5.1
admissible diffeomorphism, 1.2 inner product, § 1, 3.4

admissible function, 2.3
base integral curve, 4.1

canonical forms, 2.4 . .
canonical transformation, 2.8, 6.2 I.L.:grangg :egt;auons. 4.6
Cartan form, 6.1 grangian, 4.

. Lagrangian density, 7.1
charged particle, 7.3 /. " .
2 p Lagrangian symplectic form, 4.3, 4.4
classical continuum system, 7.3 Legendre transformation, 4.7

Jacobi’s theorem, 6.3
kinetic energy, 7.1

closed orbit, 6.8 7. o

complex linear Hamiltonian, 8.2 E'b:'t.z n:}e, §§' 123
compaosite mapping theorem § 1 lin:areilz‘]a\;?o:'e‘l 3 ’3 2
conservation of energy, 3.3, 8.14 locally Hamiltonian, 3.1 f/,

conservation theorem, 5.2, 7.5, 8.5

contact form, 6.1 Lorentz invariance, 7.2 ff.

convergence of phase spaces, 8.9, 8.10 momentum, 5.3
correspondance principle, 5.3 f7. Moser's theorem, 1.3
cotangent bundle, § 1, 2.4, 5.3 multivectors, 7.2

coupled sysiem, 8.5 1. partial derivative, § 1

current, 7.3 . phase space for n particles, 8.8
derivative, § 1 Poincaré map, 6.8 /.

Dirac matrices, 8.6 Poisson bracket, 2.6
Dirac-Maxwell system, 8.6 potential density, 7.1
divergence, 7.2 Poynting’s theorem, 7.3 /7.
domain, § 1 . principal function, 6.5

clectromagnetic field, 7.3 /1. product manifolds, 8.5 /.
energy, 3.3,4.5 product rule, § 1
energy operator, 8.3 quantumn mechanical system, 8.1

expectation, 5.3, 8.4 real linear system, 7.4

flat map, 2.1 regular Lagrangian, 4.3
gg‘w"ui:orix:a 7 Schrédinger picture, 6.4.1.
four potcntia; 734 second' qrder equation, 4.1

¢ T self-adjoint, 8.3
generalized Hamiltonian, 8.11 sharp map, 2.1
generalized vectorfield, 8.11 skew adjoint, 3.2
generating function, 6.3 spin, 8.7
geodesics, 4.7 f/. symmetric operator, 8.2, 3.5 /.
globally Hamiitonian, 3.1 4. symplectic action, 5.1
Hamiltonian flow, 3.1 symplectic manifold, 2.1
Hamiltonian flow box, 6.8 symplectfc map, 2.8
Hamiltonian function, 6.1, 2.3 symplectic structure, 3.5
Hamiltonian operator, 8.3 tangent bundle, § 1
Hamiltonian vectorfield, 2.3, 3.1 time-dependent, 6.1
Hamilton-Jacobi theorem, 6.6 transform to equilibrium, 6.4
Hamilton’s equations, 2.5 transversal, 6.8 f/.
Heisenberg picture, 6.4 f. .
homogeneous canonical map, 2.8 unitary flow, 8.2
hyperregular Lagrangian, 4.7 vectorfield, § 1
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