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Introduction

tional equations), we view the flow as a limit of smooth flows, Unfortunately, the
variational theorems usually fail in the non-smooth case as is seen from elementary
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One of the main theorems concerns existence of a flow (defined almost every-
where) for a Hamiltonian whose singular support has measure zero. As the flow
need not be unique, we regard a physical system as being specified by H and a
sequence of (suitably well behaved) smooth functions H, converging to H. This
will then fix the flow. The usual theorems on conservation of energy, Poisson
brackets and Liouville’s theorem then carry over, although the methods are
quite different from the smooth case.

Chapter one deals with global distribution theory on manifolds. A certain
amount of this material is found in DE RHAM (1], although our approach is slightly
different. The main new concepts are the generalized Lie derivative and generalized
vectorfield with its associated flow.

Chapter two studies Hamiltonian systems in particular. Conservation laws
are given explicitly and the connection with the Bohr-Dirac “‘correspondance
principle” is proven. (This seems to have been first stated for manifolds by SEGAL
(1, p. 475).) We also give some applications to statistical mechanics (a global virial
theorem) and show that the generalized eigenfunctions of a smooth Hamiltonian
system uniquely determine the flow. In the appendix to section 10, we show how
our methods yield non-smooth geodesic flows.

The Lagrangian formalism is not discussed. This offers no difficulty in practice,
as it may be converted formally to a Hamiltonian one (ABRAHAM [1, § 18]).

Of course, not all the theorems here are claimed to be new. We have striven
for clarity of the exposition rather than a concise report of new results. For the
reader interested in a global Hamiltonian formulation of some classical continuum
systems and quantum mechanics, we refer to MARSDEN [1].

I wish to thank RALPH ABRAHAM who inspired this work and also ArRT WiGHTMAN and
Ep NEeLsox for reading the manuscript and making many useful suggestions, I also thank Caro-
LINE BROWNE for an excellent job of typing, and my wife GLYNIs for help in preparing the manu-
script.

Glossary of Symbols

Our notation follows that of ABRAHAM [1] almost exclusively. However, the
following brief summary may be helpful. Numbers in brackets refer to the follow-
ing sections where the definitions may be found and the prefix “A” refers to
ABRAHAM [1].

R, resp. C the reals, resp. complex numbers,

R" Euclidean n-space, RxR x-:- xR,

M finite dimensional smooth, orientable manifold (A 3.2,
A 11.6),

fiM-N mapping,

mv f(m) effect of the mapping f,

{g} partition of unity (A 11.2),

T.M tangent space to M at meM (A 5.3),

™™ tangent bundle, {T,,M: me M} (A 5.3),

T*M cotangent bundle (A 6.14),

F (M) smooth (C®) maps f: M —+ R (A 6.15),

F(M) elements of & (M) with compact support (1.2, 2.1),

F.(M)* linear maps a: F.(M)—~R (1.1 1),
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generalized functions (distributions) (1.2, 21),
delta function at me M (221f.),

C* vectorfields; sections of TM(A6.15),

C® one-forms; sections of T* A/ (A 6.15),
generalized vectorfields 4.3),

k-forms (A 10.3),

generalized k-forms=courants 2.1),
tensorfields of type (r, 5) (A 6.15),

@: (M)~ Q2*(M) the natural embedding (2.1),

II(MY
anf
d

[X, Y]
Ly

ix

Q

dety f
divy X

generalized tensorfields of type (r, ) (4.3),
exterior product (A 10.2), @B.0,

exterior derivative (A 10.5), (3.2),

Lie bracket (A 10.12), (5.3),

Lie derivative (A 8.18), (3.3, 5.5,

inner product (A 10.12), (3.4, 5.4),

volume on M (A 11.4),

determinant (Jacobian) of f: M — M (A 11.18),
divergence of Xeq& (M) (A 11.22), (5.6),
measure determined by Q (A 12.9),

Hq
Fy: Q"(N)—»Q"(M) pull back by F: M- N (A 10.7), (2.5),
F,

?f. &}
X

R
& MM
Py
A\B
AC
ASC
bd4

(¥, Vo, bd V)

flow; F,(m)=F(, m), (t, meR x M (A 1.5), (6.1),
symplectic form (A 14.8),

Poisson bracket (A 14.23), (7.4),

Hamiltonian vector field of Hes (MY (A 14.23), (7.3),
action of a Lie group (A 22.8),

momentum of X; Py(a,)=a,, - X (m) (9.1),
set-theoretic difference,

closure of 4 (A p. 236),

sequential closure of A (1.1),

boundary of 4 (A p- 236), A

compact orientable manifold with boundary (A 12.11).

Chapter One: Distributions on Manifolds
§1. Generalized Quantities

325

From the global point of view, the most natural approach to distribution theory
is to regard a distributional “quantity” as a weak limit of ‘“‘quantities”, thus
avoiding unnecessary coordinates. The general situation, which will recur many
times in the sequel is as follows:

1.1, Definition. Let T be q (real) topological vector space,

@ monomorphism (one-to-one linear ma
all countable lim
S quantities with

?(S).

23
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S a vector space and

p). Elements of {@(S))*, which denotes
Is of elements of ¢(S) (sequential closure) are called generalized
respect to ¢ and T, and are denoted S’. We often identify S and
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In this definition it is essential to use the sequential closure rather than the
closure to recover the Schwartz theory. The reason is as follows. In 1.1, the space
T is often L*, all real linear maps a: L — R for a vector space L. On L* we put the
relative product topology, sometimes called the weak s-topology or the pointwise
convergence topology. It is determined by: for any net a;eL®, a,—~aeL®* iff
a,(v) »a(v)eR for all veL. It can be shown that any point separating subspace
of L* is dense in L*. See KELLEY [1, p. 108 —109]. (It is easy to see that L* ijs a
topological vector space.)

This situation occurs in the main theorem of the local theory which we shall
employ in a few proofs and is as follows:

1.2. Theorem (SCHWARTZ). Let &.(R") denote the smooth real functions on R*
with compact support and define

¢: FR)-F(R)*

o(f)-g=[fgdu

where p is Lebesgue measure. Then ae %, (R%)* is a generalized ¥ (R") quantity iff
Jor every sequence f,e%.(R") with supports in a compact set K and f, together with
all its derivatives converge uniformly to zero, then a(f,) —0.

Furthermore, #(R")' is sequentially closed and sequential convergence defines
a topology (not obvious!). ’

For the proof we refer to any standard text on distribution theory (SCHWARTZ
[3), GELFAND [1], GARsoux [1], or Yosipa [1]).

As a further illustration, which will not be used in the sequel, we consider the
following example, often referred to as vector valued distributions, not to be con-
fused with generalized vectorfields, which we shall study later.

1.3. Definition. Let A be an orientable manifold and n: V — A be a vector bundle
over A equipped with a Riemannian metric ( , ) (a metric on the fibers of n). Let
T.(n) denote the smooth sections of = with compact support. Fix a volume Q on A,
and let y be the corresponding measure.

Define

¢: I'(n)-I(n)*
by
o(f)-g= jf f(a), g(a)> dp(a).

Then generalized I'(n) quantities are called generalized sections of n (using the
weak -topology).

Here it is easy to verify that ¢ is a monomorphism. Notice that 7 need not have
finite dimensional fibers, although A is finite dimensional, so this includes operator
valued distributions as well (Hilbert-Schmidt operators, for example).

§ 2. Generalized Forms

This section develops some of the basic properties of generalized forms such
as the action of orientation preserving diffeomorphisms, and integration. Inte-
gration is always done with respect to a fixed orientation (ABRAHAM 1, § 12)).
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2.1. Definition. Let dim M =p and Q¥ (M) denote the kforms on M whick gre
smooth and have compact support. Define

o: (M) - Q1 k(M)

P@-B=[anp.

Then generalized QM) quantities are called generalized k-forms and are
denoted Q*(MY'. We write F(M)=02(M) and & M) =0%M).

by

so that in this chart o AB=fdx'A-.. ndx® where /20, f(m)> 0 and has compact
support. Then [a A 840, which proves the assertion.

Thus we regard Q"(M)c.Q‘(M)'. Similarly we may regard Q}_,(M)CQ’(M)',
where 2§ (M) denotes the (equivalence classes of) locally integrable k-forms on M.
(That is, for each BeQi~*(M) and volume Q, A f= Ja 2 where J3 is locally inte-
grable with respect to #o.) (This condition depends only on the orientation.)
To see that ¢: 0}, (M —2XM) is a monomorphism, suppose | Jsdu=0 for
all 8. For U= i1 open with U° compact there are f,e# (M) $0 /, T Cy, the charac-
teristic function of U, Hence, by a theorem of Lebesgue,

Jf,dp=limit Ij,f,,dy-—-limitjf,_, dpu=0.

m such that m’'e U implies | £, (m) - Ja(m')| <e for all a.
2.2. Proposition, Suppose f, and J are continuous at xeM and the Jamily { £}
is equi-continuous at x. Thenif f,~fin & MY, f,(x)— J(x).

Proof. Consider those n such that £, (x) >f(x). We shall show this subsequence
converges to f(x). The case Ja(x)S f(x) is similar. Given £>0, choose a neigh-
borhood U of x such that ye U implies () =1, <&/3, | /(x)=1f ()| <ef3 and
,(y)>j(y), for all n.
~"Now there is an N so that nZ N implies there is g yeUso | £,0)—s( »)|<e/3.
For, if not, choose a smooth map ¢: M-R;05¢<1s0 ¢ =0 outside U and =]
on a neighborhood Ve U, Then

JUa=Noduzenwvys
contradicting f, - f in & (MY,
Thus n2 N implies

lf..(X)-f(x)lélf.(x)—f.(y)l+If.(_v)—f(y)l+lf(y)—f(x)l<e- 0

{‘; 124 dwry 7429» £of 2
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Without equi-continuity, the proposition is false. For example, sin(nx)—0
in & (R) but not pointwise. For further results along these lines see BELTRAMI [1).

Examples of generalized forms are commonplace. For instance, if me M define
SnefX (M) by 6,(f)=f(m), the Dirac delta function. Notice that it is properly
interpreted as a generalized n-form, or measure and not a generalized function.
That 8,,€2"(M)' is easy to see. In fact suppose U, are open sets, U,|{m} and f,
bas support in U, and [/, Q=1. Then £,Q—4,.

Similarly we can define surface 5-functions. Let S=M be an orientable sub-
manifold of codimension k. Define 652" (M)’ by

Ss@)=fisa; ac@ (M)
S

where i: §— M is inclusion and » denotes the pull-back. It is an easy exercise in
approximation (or by 1.2) to show that these are honest generalized forms.

2.3. Definitions. 4 generalized n-form « is called positive iff feF. (M), f20
implies a(f)20. Similarly, ge ¥ (M)’ is called positive relative to the orientation
iff heF.(M), h20 implies g(hQ2)20 where Q is a representative of the orientation.

For aef2~X(M)*, Uc M open, we define «|UeQ:~*(U)* by «|U(B)=a(p),
and

suppa=M\U{UcM: U open, a|U=0}

the support of a, and
sing suppa=M\\J {UcM: U open, «|U is smooth}

the singular support, where “a| U smooth™ means a| Ue @*(M)c 22*(M)*.

It is easy to check that these definitions coincide with the usual ones. For
example, if f: M — R is locally integrable, then f 20, a.e., iff o (/)2 0iff o (f2)=0.
Using a partition of unity, we conclude at once that if «|U;=0 for an open cover
{U,}, then «=0. From this fact it is easy to see that the definition of support coin-
cides with the usual one if « is smooth or locally integrable.

Also, if aef"*(M)* and for some open cover {U}, a|U;e*(U)), then
acf*(MY. In fact, if {g,} is a subordinate partition of unity and @(al)—=a|U,
in Q*(U), then @ (B;) —a where

ﬂj=; 8:“.‘1-

.2.4. Theorem (RIESZ-MARKOFF-GELFAND). Let w be a positive generalized
n-form on M. Then there is a unique regular Borel measure p,, on M such that

o(f)={fdu,

for each fe ¥ .(M) (regular Borel=positive Rodon measure).

Proof. For g continuous with compact support, g2 0, define w(g) =sup{w(f):
feF.(M) and 0S /< g}. Then it is an easy exercise to check that this extension
maps into R and is linear and positive. Hence it is represented by a measure (a
Radon measure). [
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This proposition seems to have been first observed by GELFAND- VILENKIN [4).
The converse is also true; that is, each Bore] measure (in fact every Radon measure,
positive or not) defines a we ™ by the above formula,

For example, the measure associated with &, is the point measure at m. In
general a non-positive generalized n-form is not associated with a signed measure.
For example, on R consider ' (N)=—s(0).

Note that from the Radon-Nikodym theorem, if wis a positive smooth n-form,
and ae*(M)', 20, then H. <€, (absolute continuity) iff a=f¢ for some f
locally integrable,

The action of diffeomorphisms on forms extends uniquely to generalized ones
as follows:

2.5. Theorem. Let F: M N be an orientation preserving diffeomorphism. Then ’11‘\
F*: Q"(M)-»Q“(N) has a unigue extension as a continuous map F*; M) - 3 &
Q' (NY. In fact, 5 £

(F* ) (B)=a(F, ). N

)

Also F* is an isomorphism and homeomorphism and satisfies § §
N

(FoG)*=F*o 6", ¥

893

§

Proof. Consider F so defined. It is obviously continuous. To show that it =
coincides with the usual definition we must show, for xe (M), Be2=*(M),

j'aAF,ﬂ=jF"aAB

which is clear by the change of variables formula (ABRAHAM [1, 12.7)). It is also
clear that ac(M) implies F*aeQ*(N)'. The rest is obvious. [

Finally, in this séction we discuss briefly the integration of generalized forms.

2.6. Definition. Let o de g generalized n-form with compact support. Let {g,}
be a partition of unity with supp(g,) compact. Define

jm=; o(g)eR

(the sum has only a finite number of non-zero terms).
Clearly, the definition is independent of the partition of unity, since

Zi: ‘0(8:)=‘ZI (g hj)‘—‘z‘\: w(hj)
and coincides with the usual integral when w is smooth, If @ does not have compact
support but the sum in 2.6 converges (possibly to + co) independent of {8}, we
say it is integrable,
Positive generalized n-forms are integrable and
Jo=Yw(g)gw
f

and this coincides with {dp, by Lebesgue’s monotone convergence theorem.
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Also, if Q is a volume and f is pg-integrable, then [fR=]f du, if we use the
positive and negative parts of f.

2.7. Theorem (Change of Variables). Let F: M — M be an orientation preserving
diffeomorphism. Recall that if Q is a volume, det Fe (M) is defined by F,Q=
(det F)Q2. Then

() if we*(N) has compact support, or is positive or is integrable, then
[Fro=[w;

(i) if u is the measure of Q and f is p-integrable, then

§fdp=[(fo F)(det F)dpu.

Proof. The first part is clear since if {g,} is a partition of unity, so is {g;o F}.
For the second part it is sufficient to show that F, u=(detF)u by HALMos
{1, p. 163]. Thus, we must show Fy pp =g, o. But this follows from

[gFQ=[(F*®)duo=fgd(Fapg). O

The integral [: 2"(M).—R is not continuous. For example, on R, §,,, =0 if
m; =0, but (5, =1. Nevertheless, we have:

2.8. Proposition. [ is the unique mapping from generalized n-forms with compact
support to R such that [ is the usual integral on QX(M) and if w,—w all having
supports in some compact set, then fw,— [o.

Proof. First, { has this property, for if 4 is the compact set and {g;} is any
partition of unity,

; o(g) =; li’?it w,(g) =1il;1it ; w,(g)

since Z is a fixed finite sum.

For uniqueness, if weQ"(M) and has compact support, there are w,e£2:(M)
so w;—  and all have support in some compact set, as we see by multiplying by a
suitable function with compact support. [

Finally we remark that the hypothesis that diffeomorphisms preserve orientation,
used in this section, is really not restrictive for connected manifolds, for if Fis
orientation reversing for £, then it is orientation preserving for —£2.

§ 3. Exterior Algebra

This section covers more analytical aspects of generalized forms. The main
goals are to extend the exterior and Lie derivatives to the generalized case. We
state the de Rham regularization theorem and deduce a few important consequen-
ces such as the generalized Poincaré lemma. We also prove the important “flow
theorem™ relating the Lie derivative to its flow in the generalized case.

3.1. Definition. Let aeQ*(M)' and feQ'(M). Then define a A Be**' (M) by

@A) P)=a(BAy)
and put Baa=(=1"anpB.
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Clearly this coincides with the usual definition and is uniquely determined by
continuity in «.
The basic theorem on the exterior derivative is:

3.2. Theorem. The exterior derivative d: M)~ (M) has g unigue
extension 1o a continyoys map (denoted by the same letter)

d: QX (M) - 24+ 1(my.

Infact, da(B)=(-1)t+14 (dB) and satisfies

() dis R-linear and, d (x A B)=da)AB+(~1)an dﬁforaeQ"(M)',ﬂeQ’(M),
(i) dod =0,

(i) if 2~ (MY and has compact support, | da=0.

Proof. We first prove (iii) in case a is smooth. Let {2} be a partition of unity
subordinate to some atlas, so that ’

§ d«=;j & da=;I d(g )
since
Z‘:g,=1.

Hence it is sufficient to prove the result in R". But there it is obvious by Stokes’
theorem (ABRAHAM [1, p. 82)).

Now d so defined s clearly continuous. To show that the result coincides with
the usual one, note that
fda)ap=[d(a AB+(=1)** fandp
=(-1)**fandp,
for aef2*(M) and Bep™* (M),
Now (i) and (ii) are clear by continuity or directly. For (iii),

I“=; da(g,)=§:(—1)'¢(dgu)=0
(the sums are finite). [

Notice that 3.2 (iii) gives an easy proof that a compact orientable n-manifold
bas n™ de Rham cohomology group non-trivial (same for Cech cohomology by
the de Rham isomorphism). In fact, if Q2 is a volume dQ=0; but if R=da we
would conclude [ du, =0,

If F: M- Nis an orientation preserving diffeomorphism, then we conclude
by continuity, or directly that

F‘(aAﬁ)=F‘aAF'ﬁ
and

F*da=dF*q
for ae* (MY and ge'(M).



332 J.E. MARSDEN:

3.3. Theorem. Ler X be vectorfield (C®) on M and Ly: (M) —Q*(M) the
Lie derivative. Then Ly has a unigue continuous extension (denoted by the same
letter)

Ly: (M) = QX(M)'.
In fact,

(Lyo)- = —a(lyxp).
Moreover, we have

@) Ly is R-linear, and
Ly(aAaB)=Lyanf+anly B

SJor ae (MY, e Q' (M);

(i) Lyda=dLyux;

(iii) if F: M >N is an orientation preserving diffeomorphism, F*(Lyo)=
Lpx F* a5

(iv) if B has compact suppor!,

Ian/\ﬁ= —Ia/\Lxﬁ.

Proof. Since Ly(a A f)=dix(xA B) if a, B are smooth, (iv) follows in this case
from 3.2 (iii), and the rest of the proof proceeds like the proof of 3.2. O

In a similar way we have the following:

3.4. Theorem. Let X be a (smooth) vectorfield on M and iy: (M) = 2*~1(M)
the inner product. Then iy has a unique continuous extension

iy: M) - V(M) -

In fact (iya) - B=(~1)**! a(iy ) for acQ*(M)'. Moreover,
(i) iy is R-linear, and ix(a A B)=(ixa) A B+ (=1}  aniy B;
(i) ixoix=0;
(iii) Ly=iyod+doiy;
(iV) i[x.":LXO iy—iyo Lx;
) Lyx=/fLx+(@dSf)nix;
(Vi) Lix,yy=Lyo Ly—Lyo Ly;
. (vii) if F: M — N is an orientation preserving diffeomorphism, then F*(iya)=
ip X F*a.
The next theorem is stated without proof and may be found in DE RHAM
[1, p. 80]. (This theorem plays an important role in DE RHAM’s study of the homo-
logy of manifolds and says that the cohomology and generalized cohomology
groups are equal.)
A subset B of £25(M) is called bounded iff for any p=0 and some covering by

coordinate charts, all derivatives up to order p are uniformly bounded and all
clements of B have their support in some compact set.
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3.5. Theorem (SOBOLEV-SCHWARTZ-DE RHAM regularization). There exists a
sequence of R-linear maps

R,: @Y (MY - 2" (M)

Ay QMY - Q4 (MY
such that for each ae Q*(MY,

R,a—a=dA,a+ A, da

and A,(Q*(M))c *~Y(M); Y/eF (MY, A,f=0. Also, R, a —»a and A, —a uni-
SJormly on bounded sets.

Of interest in mechanics is a consequence, the generalized Poincaré lemma (3.6).
Recall that a is closed iff da=0 and is exact iff a=df for some feQ*~ (M)
Clearly if « is exact, then « is closed, and « is closed iff for all exact yeQ:~¥(M),
a(y)=0. ‘

3.6. Corollary. (i) Suppose ae* (M) and dua=0. Then Jor each me M, there is
a neighborhood U of m and a 8eneralized k-1 form y on M so that

a|lU=dy|U, k21,

@ii) if feF (M) and d f=0, and M is connected, then f is constant.

Proof. (i) a=R,a—dA,a so that dR,x=0. Hence by the smooth Poincaré
lemma, R,« is locally exact. For (i) we have f=R, 1, so S is smooth and hence
constant. (J

For a direct alternative proof of (i), see MARSDEN [3).

Another theorem of basic importance in mechanics is the following:

3.7. Theorem (Flow Theorem). Suppose X is a smooth vectorfield on M with
(complete) flow F,. Then for each aeQ*(MY', the map

t—F  acQ* (M)
is differentiable and

F,.an-:d—d‘(F,.a) at t=t.

In particular, Lya=0 iff a = et for all 1,

Proof. Let R, denote the smoothing operator of 3.5 and fix ¢>0, and fe-*.
Let g,(t)=F, 4 (R,2)- B and J(W)=F,4(2)- B. Now for —as<t<a the set of all
F# B is clearly a bounded set as F, is a smooth map on R x M. Therefore, g,
converges uniformly to f for —agr<a. However, the derivative of &y 52y
gr=Ly(F,o(R,a))- B, converges uniformly to Ly(F,,a)- by the smooth flow
theorem and the same boundedness arguement. Therefore by an elementary
theorem in analysis (AposToL {1, p. 402)) the derivative of J exists on —a<r<a
and equals Ly(F,,a)- B. Since a was arbitrary, we have the result. O

For a direct alternative proof using 1.2 in local coordinates, see MARSDEN [3).
This theorem is the analogue of ABRAHAM [1, 8.20] in the smooth case.
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Thus, if X is a smooth vectorfield, it induces a one-parameter group (flow) on

F (M) and Q*(M) in a natural way with infinitesimal generator Ly. We can re-
cover the original flow according to the following:

3.8. Proposition. Ler X be a smooth vectorfield on M with (complete) flow F,.
If m,=F,(m), then

F*6,=5,,.
Also, me M is a critical point of X (i.e., X (m) =0), iff
F*6,=6, iff Lys,=0.
The proof is immediate from 3.7 and the definitions.

Finally, in this section we briefly describe the more familiar coordinate lan-
guage, leaving proofs to the reader.

For fe&# (M), we define, in a coordinate chart, df/ox'e # (U) by
af 1 n ( ag 1 )
d =— d al
W(g X A AdX") fﬁf X' A Adx
Then we see that this equals
(=D)"*'df(gdx’ A AdX A A dx")
and so coincides with the usual derivative when J is smooth and
of i
df= dx'.
f Z a—xr/\ X
For weQ*(M) and Q a volume there is a unique generalized function £, so

w=ff.
Finally, every ae*(U)’ can be written uniquely

a= Y o . dx"A-.adx™
h<wiep

for ay,...,, generalized functions.

§ 4. Generalized Tensors

Although the only generalized tensors required later are forms and vector-
fields, we briefly consider the general case for completeness.

We begin with an alternative description of generalized forms which leads
naturally to the definition of generalized tensor. Recall that there is an isomorphism

¥: (M) 1%

where L denotes the alternating & (M)-multilinear mapsa: & (M) % xZ (M)~
F (M). (ABrAHAM [1, § 8].) In fact,

V(@) (X,,..., X)) (m)=a(m). (X 1(m), e Xy (m)).
4.1. Proposition. Y kas a unique continuous extension

v: @(M) - L]

wher
F(A
In f

ix, ..

by 3
o de

%%, span
™ ]

whe
so th

we |

2%(A
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shere L3 is the alternating F (M)-k-multilinear maps q: T(M)x- xT (M)~
7(MY, and as generalized quantities have the usual Ppointwise convergence topology.
In fact, ¥ is an isomorphism and g homeomorphtsm, and Y (a) (X,, vy X)=
iy, iy, afk! (see 3.4).
Proof. By use of a partition of unity, it is sufficient to prove the result locally,
Clearly, if xeQ*(MY’, then Yaell’ Also,

d (f!ow) on
Ve can re.

) flow F,,~

P X X)) = L iy, )

=kL! ix,..dx, o(a)
late lan-
by 3.4, so that ¥ as defined on (MY is an extension of ¥ on *(M). As usual,
¢ denotes the natural embedding.

Also notice that for ae (M), welX (M), we have

WX, ...,x,)-m=ki! &(igy.. iy, ).

From this formula, Y is clearly continuous, Also, ¥ is one-to-one as ixy iy, @
-span all the n—k forms,
To show ¥ is onto, let PELY and defipe o by

- @ix,...dy, 0)=k! p(Xy, ..., X,) - 0

n £, so where X,, ..., X, are basis vectors and extend by linearity. If P1—p, then a;— ¢
o that ae * (M)’ and Y~ js continuous. [

Therefore, in the language of L{’ all the structure of Y(MY carries over, and

we have, by continuity, the following basic formulae, (By abuse, we identify

(MY and LY")
4.2. Proposition. Le; aeQ*(MY, BeR'(M) and XeZ(M). Then we have

(i) a/\ﬂ(X,, ceny Xg+‘)
:ctor- =) (sign ma(X, ), --~.X.m)ﬂ(xx(k+n: o Xean)k+D)!,

leads the sum being over all permutations n;

. Lxa)(X,,... X,)
=Lx[a(X,, voey X‘)]— Z R(Xl, csey [X,X[], ...,X.),

[)—p im]

k
(i) de(K,,...,X,)= Lg(-l)‘Lx,a(xo,...,x,,...,x.)
+ ¥ (-1)'*/«(IX..X,],X.,.....J?,,....X.)]/(k+1)
05i<jsk

where X 1 denotes that X, is omitted,

ﬁ\
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Proposition 4.1 motivates this:
4.3, Definition. Let 57 (M) denote the tensorfields of type (r, 5) on M. A general-
ized tensorfield of type (r, s) on M is an & (M )-multilinear mapping
12 TH(M) X x T (M) X ZT(M) -+ xZ (M) = F(M)

where r copies of ¥*(M) and s of L (M) appear. Generalized tensorfields are

denoted I} (MY'.
In particular, T (M) =9,' (M) are generalized vectorfields. (Z'*(M) is iden-

tified with Q'(M)' by 4.1.)
On F7 (MY we put the topology of pointwise convergence, so that t;~ ¢ iff
1&gy eeer Oy X gy ooy Xg) - @ = 1(&yy eon @y X gy o0 X)) - 0

Sor all 0,eX*(M), X;eZ (M) and we:(M).

An alternative way to define 9,7 (M)’ is by means of generalized quantities (§ 1)
as the next proposition shows.

4.4. Proposition. Let L:(M)* denote the & (M )-multilinear maps

12 T (M) x - xZ* (M) x (M) x - x T (M) = 2 (M)*

with the pointwise convergence topology. Define @: J; (M) —LEX(M)* in the
obvious way (2.1). Then ¢ is a monomorphism, and (M) defined above are
exactly the generalized I7(M) quantities. In particular, T (MY is sequentially
closed in LE(M)*.

The proof is a simple modification of 4.1 and so is omitted.

We can define support, singular support, smooth efc. as in § 2, and thesame :

elementary properties hold.
Similarly, ® has a unique extension

®: T (MY x TP(M) » T2 (M),
and the action of an orientation preserving diffeomorphism F: M — N extends
to a map:
Fo: T/ (NY = T (M)
The Lie derivative also extends to a map:

Ly: ' (M) = (M)
for Xe2 (M).
Also, in local coordinates a tensor has the usual expansion only with generalized

coefficients, instead of smooth ones.
After this extension it is not hard to guess or to prove what properties hold.

For example,
Ly ®@1)=(Ly) @'+t @ L1,

F‘(Lx ‘)=prF.‘,
(FoG)*=F*oG"*

andif X

We 1

geometry
in the ap

F

The g
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mild exte
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t Nlear]
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and if X has flow F,,

eneral- F,,th=di‘(F,.t) at =7,

We have made no Systematic attempt at generalizing classical differential
geometry, such as connections efc. Hints as to how this might be done are given
'ds are in the appendix to § 10. See also MARSDEN [5].

' iden- § 5. Generalized Vectorfields

The goals of this section are an extension of the Lie derivative to generalized
vectorfields and their characterization as generalized derivations, We also provea
mild extension of Gauss’ divergence theorem.

5.1. Definition. Les p denote the set of derivations

S 6 1) 0: F(M)~ F(M)
(which is isomorphic to & (M); ABRAHAM [1, § 8]), and D* the derivations
0: F(M)- Q2 (M)*

with the pointwise convergence topology. Define @: D — D* in the obvious way (2.1).
1 the Oeneralized D-quantities are called generalized derivations and are denoted D'
e are (see§l).

wially Clearly D’ consists of derivations 0; # (M)—F (M) but need not be all of

{ ‘hem,
’ Then we have:
same 5.2. Theorem. The mapL: E(M)~D; X~ Ly has a unigue continuous extension

L: Z(MY-D and is an isomorphism and a homeomorphism. In Jact, Ly(f)=
Xdf)eF(M).

Proof. It follows at once from the definitions that Z maps into D’ and is con-
tinuous and & (M)-linear.

ends Also, L is clearly one-to-one, for X(df)=0 for all feF (M) implies X is zero
locally (using a basis) and hence globally.

To show Lis onto, suppose 8;,— 6 and 6,eD. Let 6,=Ly, for X,ex (M), We
claim X, converge in & (M) But this is clear locally using coordinates, and hence
globally. If X is the limit, obviously 0=Ly (see similar situations in §3). Bya
similar argument it follows that Z-* is continuous. [

This theorem allows us to define the Lie bracket (a direct definition in terms of
lized coordinates is also possible). As usual we often write X - SfiorlL, ¢

S.3. Theorem. The Lie bracket has g unique extension to a map |, ]: F (M) x
old. Z(M)->Z (MY continuous in the first variable. In Jact,

Lyy, r|f=Lx(er)‘Lr(fo)Ef(M)'
and the Jacobi identity

holds; XeZT (M), Y, ZeZ (M).
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Proof. Consider the derivation

0(f)=LyLyf—LyLyf.

We claim 8eD’. Suppose X;~ X. Then since Ly is continuous (3.3), [Ly,, L) -0,

Thus 8 defines a vectorfield [X, Y]e4 (M), continuous in Y by 5.2. The theoren
follows. O

Also by continuity, observe that if F: M —N is an (orientation preserving)
diffeomorphism, then

F*[X,Y)=[F*X,F*Y].

(Here F* X is given by (F*X)(f)=F*(X(F, /).

In local coordinates, if X=Y X'0/0x'; X'eF(U)Y and ¥ =Y Yia/ax';
Y'e# (U), then

[X,Y1=) (X'aY'fox'-Y'aX’/ax") ojax.

ni
5.4. Theorem. Ler aeQ*(M), k20 and consider the map i: L (M)-Q*Y(M);
Xwviya. Then i has a unigue continuous extension
i: I(MY - (M),
In fact, iya(X,, ..., X)=X(ay, x)eF (M) where
ey, x(Y)=a(Y, X,, ..., X,).
We have, in addition, for each ae *(M), Be Q' (M), Xe& wy,
() ix(zaP)=(ixa)AB+(=1)aniyB;
(i) ixa=X(a) if k=1, and iya=0 if k=0; and
(iii) '.[x_ n =ix LY—L" ix far YE.Q'(M) .
Proof. Merely observe that iy so defined is continuous in X and coincides with

the usual inner product if X is smooth. The rest holds by continuity. [
In a similar way we may prove:

5.5. Theorem. Let acQ*(M) and L: T (M) - Q*M); X Lya, Then L has a
unique continuous extension L: (M) = Q*(MY. In Jact, Lya=diya+iyda, and

k
(L)\’a)(xh "-an)=LX(a(Xh ---’Xk))_ Z a(Xln veey [val]v'"sxk)'

(=1
Moreover,

) Lxf=X(df);

(i) Lyd=dLy;
(iif) Ly(xAB)=(Lxya)AB+anLyB;
(iV) le‘nd':l.xl-ya-layl-xa;

(V) if F: M > N is an (orientation preserving) diffeomorphism F*(Lyo)
=Ley Fa;

(vi) Lyya=fLya+(df)rniya;
(vii) iix yy=Lyxiy—iyLy,

where a€
(i)~ (i) 4
We als
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where aeQ'(M), XeZ (MY, Yea (M), feFM). (It is also easy to see that
(i)— (iii) determine Ly: 0*(M) (M) uniquely.)

We also have a unique extension
Ly: I (M)— T (MY
and is a tensor derivation. (See §4.)
Finally in this section we consider divergence;

5.6. Definition. Ler XYea (M) and Q be a volume on M. Then divo Xe & (MY
is defined by
Lx «Q=(diVQ X) Q

and is called the divergence of X with respect to Q. (Of course, div, X is uniquely
determined. )
In alocal chart, if Q=dx! o ... 5 dx", then
» i
diV9x=laZ‘-aa%- .
Also, by continuity, we have for XeZ (M) the following:
@) if f(m)+0 for all meM, feF (M),

div o X =divg X +(Ly f)/f;

() divp(gX)=¢ divoX+Lyg; ge & (M).
For the proofs in the smooth case, which also hold here, see ABRAHAM [1, p. 77).
STOKES’ theorem (ABRAHAM [1, p. 82]) has the following mild generalization,

5.7. Proposition. Ler (V, Vo, bd V) be a compact orientable manifold with
boundary and xeQ*~ (VY have singular support Cc V,. Then du is integrable on
Vo, and

fda= [ i«
Vo bd Vo
where i: bd Vo — V is the inclusion map.
Proof. First, let we?"Y(VY and
C=singsuppwc Ve,

then we claim that  is integrable on V,. Let {2} be any partition of unity and 4
the sum of g, with supports intersecting C, the sum being finite as C is compact.
Hence

Yok)=oh)+[(1-hw
converges, as (1 -h)w is smooth. If {gi} is another partition of unity,

fa -ho-f(1 =h)o={(h'-hw
and also
[ho-fHo=((h-h)o
24 Arch. Rational Mech. Anal., Vol. 28

™
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so that o is integrable. In particular, d« is integrable. For the theorem, we have,
by definition:
fhda=—[(dh)yra

since | d(ha)=0 by 3.2(iii). On the other hand,
(-h)da=d(1-h)a)+(dh)ra

both terms of which are smooth as da=0 on C. Therefore
fda= [d((1-h)a)
Yo Vo
= [ iy(I-ha= | ia
bd Vo bd Vo

as h=0 on bd V,, using STOKES' theorem. [J
From this we have Gauss’ divergence theorem:

5.8. Corollary. Let (V, V,,bd V) be a compact orientable manifold with
boundary and Xe X (M)’ have singular support C<V,. If Qis a volume on V, then
[WiveX)2= | i,(ixQ).

Yo bd Vp

In particular if X is incompressible (divp X =0), then

J 1 (ixR)=0.
bd ¥o

Proof. This is an immediate consequence of 5.7 and the fact that (divp X)2=
Lx Q =d i X Q . D

§ 6. Flows

As we saw in the Introduction, there is a clear physical need for assigning a
flow to a generalized vectorfield. This is the central problem of this section.

To motivate the approach, we consider an example. On R? consider the general-
ized vectorfield

a 0
X(q,p)=p W-“s(ﬂ I

Voo "”'1'*1"

o e ——————— et

for (p, g)eR x R, and & the delta function. As we shall see later, this is the vector-

field associated with the Hamiltonian,

H(a,p)=1p’+V(9)
where V(g)=1 if ¢20 and V(g)=0 if g<0. Now approximating H by smooth

continuous flow one expects from high school physics. The flow is energy and
measure preserving.

Classically, following KooPMAN, we would properly view this flow as a unitary '

flow on L2(R?). If the flow were smooth, we would expect the infinitesimal genera-
tor to be just X itself, but this is not true here. In otherwords, one cannot shortcut

the problem
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point below. (Another possible method would be the use of the Trotter-Kato

theorem (Yosipa [1, p- 272]), although this is more complicated than our method
and Jeads to severe technicalities. )

6.1. Definition. Ler X be @ generalized vectorfield on M and X, smooth vector-
Jields with complete Slows Fl,and X, -+ X in & (M) We say that X has g (measure-
able) flow F, iff

() F'—F, almost everywhere for each teR;

(ii) for each teR ang each compact set C M, there is q compact set KM
with Ce K and FXC)<K for all i=],2,....

6.2. Theorem. If F, satisfies (i) and (i) of 6.1 then F is automatically a flow;
that is, Fii;=F,0 F, almost everywhere for each 1, seR.

Proof. Clearly F,!o F'=<F,, ae Let Cc) be compact and choose K, and
K; compact so that 1“,‘(C)<:Kl and F,/ (K))cK, for all j, By Egoroff's theorem,

formity being with fespect to some metric on M, It follows easily that FloF!w
F,o F, pointwise on C\4, and so F,y;=F,oF, on C\A. Since this holds on the
union of these sets, it holds almost everywhere. [

The basic existence theorem is an follows:

6.3. Theorem. Ler Q e a volume on M and Xeg (M. Suppose that
() X has compact support;

(ii) sing supp X Aas measure zero,

(iii) there are X=X all with Supports in some compact set and Jor a sequence
of open sets U,!sing supp x, X=X outside U

(iv) divy X, are uniformly bounded,

Then X has a flow. In Jact, if F' is the flow of X,, some subsequence of F}
converges as in 6.1,

Since the theorem is designed for the Hamiltonian case, the proof will be post-
poned until 8.4.

X(m)=L Em), 120

240
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or
d
X(N=gFouf,  1=0
will hold only off sing siipp X. But we do have
.. d
X(N)=limit 7= (FAS)  (1=0);
i~®

see, however, 6.5.
The next result will be quite useful in the Hamiltonian case.

6.4. Proposition. (i) In 6.1, suppose X,(f))=0 and f,—f a.e., for fieF (m);
then fo F,=f a.e. for all teR;

@) if, in 6.1, divy X; =0, then divy, X =0 and F, is measure preserving;
(i) & X,(f)=0 and f;—f a.e. off singsuppf for feF (M), then foF,=f
a.e. on the set (where it makes sense)
C,={meM: m¢singsuppf, F,(m)¢singsuppf}.

Proof. (i) We have f;o F,!=f,. Now argue as in 6.2 by Egoroff’s theorem.
The proof of (iii) is similar.

For (ii), let A< M lie in some compact set and have characteristic function C,.
Then, using (ii) of 6.1, we have by bounded convergence (take A4 a disc, say)

#a(A)=limit { C40 F'dug={ C40 F,dug.
i~

This proves the assertion. O

6.5. Proposition. In 6.1, suppose X is locally bounded and X ;—» X a.e. and locally _§.

boundedly by an integrable function (that is, for each feF (M), X,(f)—=X(/}
a.e. and locally dominated).

Then for each fe ¥ (M), the generalized derivative of the map t+ fo F, is equal
to LyfoF,. Briefly, for all teR, we have

d
fo°"-n=m'(ﬁ.f)-

In particular, we have Ly f=0 implies fo F,= f a.e.
Proof. Let we22(M) and teR. Then

l'iinitfﬂ"("x.f) ro=(F¢lxf) o

by the dominated convergence theorem. But also this equals
limitif)"‘ f-m=ilimith o @
popal TRl dt '

since the generalized derivative is continuous. This proves the initial claim, and
6.5 follows. O
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In this proof we have made use of the fact that if f, g are locally integrable and
equal in & (MY, then they are equal a.e., which was Proven following 2.1.

Notice that 6.5 does not make sense if the hypothesis of local integrability is
removed. Also, the techniques may be used to give an alternative proof of 6.4

Finally we make a few remarks on the connection with Koopmanism. First,
fix a volume 2 on M and suppose divo X =0. If X is smooth with complete flow
F, then there is induced a unitary flow U, on L? (M). The infinitesimal generator
of this flow is an extension of X, acting on #,(M). On the other hand if i X has a
self-adjoint extension (say X (F(M))=L?(m)), there will be a corresponding flow
U, and F,. (See HaLmos B3, p. 42-45),) However, this procedure is extremely

Appendix: Closed Orbits
A basic theorem of the smooth theory is that an orbit is periodic iff it is com-
pact. Of course this is false for measurable flows.
6.6. Proposition. In 6.1 suppose for some me M that

() F'(m) = F,(m) (for all 1€R), and F(m) is continuous Jor almost all teR;
(i) F,'(m), ora subsequence are closed orbits with bounded periods, i =1 » 2, 3,....
Then there is a 120 such that Jor almost all teR, Fyyo(m)=F,(m).

Proof. Let F,’ have period 7, and taking subsequences, we may assume t; =z,

By EGOROFF's theorem, there is a set 4 <R of measure <& such that F!(m) = F,(m)
uniformly off 4, but in some interval containing all the periods. For ¢¢ 4,

Ll

1",+'('")=1‘imit I'}'+.(M)=1‘imit Fleeeu(m).
- -0

But if ¢ is a point of continuity of F,(m), this equals F,(m) in view of the following
inequality, where d is a metric on M;

d(Fl'd- il {1 (m)s Ft(m))’-<= d(Fl +r—1y (m)! Ft+t—n (m) + d(l';.‘.,-,‘ (M), E(m)) .

Therefore we conclude that Fryi(m)=F,(m) for all ¢ €xcept on a set of measure
<é&. Thus it holds almost everywhere. [

There is a variety of closed orbit theorems for smooth Hamiltonian flows to
aid in fulfilling the conditions of the theorem. The most important of these are
probably ABRAHAM'S closed orbit theorem (ABRAHAM [1, p. 178)), the Liapounov-
Kelley theorem (ABrAHAM [1, p. 180]) and ARNOLD's theorem (ABRAHAM [1,

allow critical points.)
The result is a follows (for this proposition only we assume a knowledge of
smooth Hamiltonian flows and the Morse lemma):
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6.7. Proposition. Let M be a two-dimensional symplectic manifold and He & (M ).
Suppose H has non degenerate critical points and its orbits are bounded. Then every
orbit is a closed orbit (or critical point) iff the critical points are of index zero or
two (i.e., are maxima or minima).

Proof. By the Morse lemma, if m, is a critical point of index O, then thereisa
local chart in which
H(x,y)=H(mo)+x*+y>.

Thus, in either case the points in a neighborhood of every critical point lie in a
regular energy surface, and hence all points lie in a regular energy surface. But an
orbit in a regular energy surface which is bounded is closed (use ABRAHAM [1, p. 40)).
The converse is equally clear. O

Chapter Two: Hamiltonian Systems
§ 7. Symplectic Geometry

The basic setting of Hamiltonian mechanics, smooth or generalized, is a sym-
plectic manifold. This section extends the basic operations to the generalized case.

Recall that a symplectic manifold (M, w) consists of a (finite dimensional)
manifold M and a non-degenerate closed two form . Here w is smooth.

The basic structure theorem is as follows:

7.1. Theorem (DARBOUX). Let (M, ) be a symplectic manifold. Then M is
even dimensional, say 2n, and for each me M there is a coordinate chart (g, ..., ¢",
D1s +evs Pn) Such that, locally,

w=Y dg'adp,.
i=s}

For the proof, see ABRAHAM [1, § 14).

The most important example of a symplectic manifold is the cotangent bundle
of a manifold with the natural symplectic structure; ABRAHAM [1, p. 96]). We shall
deal with this case explicitly in § 9.

It is meaningful to talk about generalized symplectic forms although this does
not lead to a satisfactory theory. Clearly Darboux’s theorem cannot hold in that
case.

Recall that if (M, ) is a symplectic manifold, we define w,: Z (M) -2*(M);
w,(X) - Y=w(X, Y), and it is an isomorphism. Its inverse is denoted w,, and we
put X?=2w,(X), «* =} w,(a).

7.2. Proposition. The maps X+ X* and a~ a¥ have unique continuous extensions
to maps;

b: F(M) - (M)

£ (M) - T (M)

These are homeomorphisms and isomorphisms and are inverse of each other. In fact,
X¥(Y)=—X(YYeF (M), and a*(B) = —a(f)e & (M) for YeZ (M), peZ*(M).
Also, X* =iy w (see 3.4).
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Proof. Consider the maps so defined. First, they extend the usual ones, for
if Xe&' (M), then
PX)- Y==0(X)- Yo= — (X (¥")

where @: (M) - % (MY is the embedding. But

X(Y)=20-(Y, X)=-Xx1),
so that

P(X)- Y=p(Xx).Y

proving the contention. Clearly b, ¥ map into & *(M) and &' (M) and are contin-

uous and inverses of one another. The statement X* =iy follows by continuity,
or directly. [

Of particular interest is the map

Hw Xy=(dH)
which extends as well:

7.3. Proposition. The map X: F (M) (M); Hw Xy has a unigue continuous
extension X: F (MY - & (MY It is Hvws Xp=(dH)*,

Proof. Clear from 7.3 and 3.2. 0
In particular, if H,~ H then Xg—Xyg. Il HeF (M)', then in a canonical chart
(given by 7.1)
S LML) 2
& o g o an|
Recall that the Poisson bracket is given by
{«.8}=-[% 5]  for ¢, Bex* (M)

and
{f: 8}'—‘ -ix, fx, m=l-x. J= -‘Lx, g J geF (M).
From ABRAHAM [1, p. 98] we see that {a, dH}=L, a.

7.4. Proposition. The Poisson brackets have unique extensions 10 maps contin-
uous in the first variable:

{}) z‘(M)'x.Q“(M)-.x'(M)'
. FMyx g0 #my.

The proof is clear. By continuity or an easy computation, essentially all the
basic formulae carry over. We list a few for reference:
7.5. Proposition. Ler JeF (M), geF (M), eeZ*(M)', and BeZ*(M). Then
0 {x B}=—-L: B+Lys a+d(izsiys ) and {d f, B} = =Ly, B;
() {f,8} =Ly, f=—-Ly,,e¢;
(ii) {/, 8} p=—f(Ly,p) for pee(M);
(iv) if Q,, is the standard volume given by

(=I(@A-aa)n!, r=n(n-1)2,
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then
{f.g}- (h2,)=f({g. B} Q.); heF.(M);
(v) in a canonical chart,
- (8 - 2528

i) {df, dg}=d{f, g};

(vii) Ly, =0,

(i) Xy, ==[X,, X;1.

Notice that by continuity we also have that a diffeomorphism F: M - M is
symplectic, that is, Few=w, iff FoXg=X; y for all HeF (M) iff F,{f,g}=
{F.f, F, g} for all feF (M), geF (M).

Some other theorems do not carry over in full generality. For example, the
Poincaré-Cartan theorem (ABRAHAM [1, p. 103]) holds only for functions and
n-forms, as F,« does not, in general, make sense. However, a little more of the
relative integral invariant theorem can be recovered using 5.7.

§ 8. Hamiltonian Systems

The basic philosophy of Hamiltonian mechanics is that the Hamiltonian func-
tion should determine the time evolution of the system. This, in fact, motivated
our treatment of § 6. All the machinery of preceding sections makes our job here
particularly easy.

8.1. Theorem. Ler (M, w) be a symplectic manifold and Xe X (M). Then the
Jollowing are equivalent :

@) ixo is closed,
(i) Lyw=0;
(iii) for each me M there is a neighborhood U of m so X|U=Xy|U for some
HeF (MY,
(iv) locally, there is an He & (U)' such that for each fe&F (U), Lyf={/, H};
(v) locally, there is an He & (U)' such that for each ae X *(M), Lya={a,dH}.
The proof is clear by the generalized Poincaré lemma 3.6. As usual, a vector-

field satisfying 8.1 is called locally Hamiltonian, and is (globally) Hamiltonian if
X=Xy for some He ¥ (M)'.

8.2. Definition. Let X=Xy be a Hamiltonian vectorfield for He ¥ (M)'. We
say X is Hamiltonian regular iff there exist He ¥ (M) so H,— H in (M), and
H— H almost everywhere off singsuppH (and so Xy,~Xy by 7.3) and Xy,
satisfy the flow conditions of 6.1.

If sing supp H has measure zero (and dH4 has compact support), this always
holds. See 8.4.

The basic conservation theorem is as follows (it applies to the example in § 6
for instance):
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8.3. Theorem. Suppose Xy, HeF (MY is Hamiltonian regular with flow F,.
Then

() F, is measure Ppreserving with respect to the standard volume (Liouville's
theorem);

(ii) Ho F,=H a.e. on the set (whose complement has measyre zero)
Ci={meM: m¢sing supp H; F,(m)¢sing supp H}.
This is an immediate consequence of 6.4 and the facts that
Xu(H)={H,,H}=0, and Ly, 2,=0 (7.5 (vii).

It is good to keep some examples in mind regarding 8.3. For instance, on
T*R~R? consider the Hamiltonian

H=4p’+4(q).

This corresponds to reflection off a wall at the origin. Obviously it is Hamiltonian
regular. Energy is conserved as long as we omit the origin. This is exactly what C,
in 8.3 does.

Notice that for /, ge & (M ), {/, g}is, in general meaningless, so that we cannor
deduce conservation of energy from {H, H} =0, but require some limiting proce-
dure as provided by 6.3.

From 5.8 note that for any He ¥ (MY with sing supp He Vo, where (M, V,,
bd¥;) is a compact orientable manifold with boundary, we have

[ in(iy, 0,)=0
since divy_ X, =0.

The usual elementary statements about constants of motion hold. First, sup-
pose H is smooth, fe # (M)’ and Ly, f=0,0r{/, H}=0. Then Fie f=f,0r [ is
a constant of the motion, and conversely. This follows by the flow theorem 3.7.
Il feF (M) and ge F (M) are constants of the motion, so is {/, &} by the Jacobj
identity. Similar statements hold for one forms.

Dually, suppose He#F (M) and Ly, /=0 for SeF (M) and Ly,2=0 for
8e¥ (M). Then L, w4/, 8} =0. These may be interpreted as constants of the motion
il 6.4 applies.

The systematic way of discovering constants of motion is given in the next
section,

We now prove the basic existence theorem for flows, promised in §6. For
Hamiltonian vectorfields the theorem is as follows:

8.4. Theorem. Ler (M, w) be a symplectic manifold and X, a generalized
Hamiltonian vectorfield on M with compact support and with singular support of
measure zero. Then Xy possesses a Hamiltonian regular flow which is measure
preserving (8.2).

Proof. As the proof is somewhat involved, we first sketch the idea. The first
step is to reinterpret flows as continuous maps from R to the measurable functions
J: M~ M with the metric of convergence in measure. Then in the framework of
the Ascoli theorem we extract a convergent subsequence from the approximating
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flows. Finally a further subsequence is extracted which converges almost every-
where. In view of 6.2, this will suffice.

Let C=sing supp H=sing supp Xy, and let U, be a sequence of open sets
decreasing to C. Find H, » H, H,e # (M) with H, = Houtside U,andsupp(dH ) K
for a fixed compact set K.

Let F{™ denote the complete flow of Xy, . Clearly F{™ satisfy @, (i) of 6.1. It
thus is sufficient to show that some subsequence of F® converges almost every-
where. Also, it is enough to work in the compact set X,

In order to do this, consider the complete metric space A consisting of measur-
able maps f: X — K with the metric

d(f.g)=inf{reR,r20: u{xeK: d(f(x), g(x)>r}<r}
where g is the volume measure on M and d is some metric on M.

Let C denote the topological space of continuous maps o: R— A4 with the
topology of uniform convergence on compact sets (see KELLEY [1, Ch. 7). Let
Fe C denote the subset of maps

t=»F";, n=0,1,2,....

We claim that there is an infinite subset of F which is relatively compact in C;
that is, has compact closure. To see this, we verify the hypotheses of the classical
Ascoli theorem (KELLEY {1, p. 233 and 239 ex. G)).

First we claim that F is uniformly equi-continuous. Equi-continuity at 7,=0
means for any £>0 there is a >0 such that [7] <6 implies d(F™, I <¢ for all n,
where 7 is the identity map. However this is clear since all £ equal a smooth flow
on a compact set outside a set (U,) of arbitrarily small measure. Now uniform
equi-continuity is immediate since

d(F™, F)=d(F2,, D),

by use of the semi-group property and the fact that each F{ is measure preserving.
(In the case of 6.3, here is where the uniform boundedness on the divergences is
applied.)

Secondly, we claim that for each reR the maps F™ have a convergent subse-
quence (in A). If this is not the case, we will obtain a contradiction by showing
{F{"} is totally bounded and hence compact. In fact, let >0 and V, be a disc of
radius § about F™ in A. It suffices to show a finite number of these cover {F"™}.
If not, there is a subsequence whose members are a distance 6/2 apart, at least.
That is,

n{xeK: d(F"(x), ™ (x))>8/2}>5/2.

Since X has finite measure, this means there is a further subsequence F{™(x) for
some xeK which does not have a convergent subsequence. This contradicts
compactness of X.

Third, we claim that the subsequences chosen in the previous step may be
assumed the same for all . In fact, choose a subsequence common to all rationals
&. Then if £, — ¢, we have

d(F", FF™)Sd(FD, F)+d(FD, F®)+d(F{™, F™).
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Choose k large so that the last two terms are <ef3 uniformly in n, and with this
k fixed the first term is small for n, m2 N. Thus, this subsequence converges for
all teR.

Thus, using the above subsequence for F, we see that F is relatively compact
in C and is uniformly equi-continuous. Hence by the Ascoli theorem there is a
subsequence which converges to an element F, of C uniformly on compact sets.

For each ¢ then, F® converges to F, in measure. Since it is uniform for HELR
we can find a single subsequence converging almost everywhere for lt|a (using
the proof in HaLMos [1, P. 93].) Choosing a an integer, we can find a single sub-
sequence F® converging to F, a.e. for all teR. This completes the proof. [J

Note that we have, as a corollary, that F, is continuous in 1, using the metric
of convergence in measure.

This theorem is basic to our presentation and justifies the intuitive feeling that
if H,— H, the flows of Xy, should converge (weakly); actually the theorem shows
a subsequence may be necessary. More precisely, we have

8.5, Corollary. Suppose, in 8.4 that for a sequence of open sets U, | sing supp H
we have H,=H outside Uiand Hi-»H in (M Y. Then for some subsequence of
H,, Xy is Hamiltonian regular.

The most important setting for Hamiltonian mechanics, smooth or not, is on
the cotangent bundle of a manifold, T*M, which has an intrinsic symplectic
Structure. See ABRAHAM [I, § 14]). Locally, in the natural coordinates, it is given
by the formula in 7.1,

In this setting, Hamiltonians are typically given by (locally)
H(g, p)=} le’ (@) pipy+V(a)

where g arises from a Riemannian metric. It often occurs that g and ¥ are not
smooth, as we have seen. However, intuition tells us that the Slow should produce
continuous curves in g-space, regardless of smoothness. This is in fact true in our
setting provided g are locally bounded functions and the approximating g converge
dominated by a locally integrable function. In fact, by the dominated convergence
theorem and the smooth equations of motion, we deduce

d0=3 oj £(a()) p,(5) ds

which proves the assertion. For further results along these lines see Section 10
and MARSDEN [5).

Appendix A: Symplectic Maps

We have seen that the flow of a generalized Hamiltonian vectorfield is volume

Preserving. It is reasonable to ask in what sense is it symplectic, or a canonical
transformation 7

8.6. Definition. Ler (M, ) be a symplectic manifold and F: M — M measurable.
We say F is symplectic iff there exist smooth symplectic maps Fy;: M ~ M such that
(@) Fy(x)=F(x) a.e.
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(i) for each compact set Cc M there is a compact set KeM so F(C)cK
Jor all i.

Notice that a statement like F, w=w does not make sense in general, but here

limit F,, o=w.
i~

8.7. Proposition. Suppose F is symplectic. Then
@) limit{F;y f, i g}={/, g}o F;
(i) limit F o X, =X,

Jor f, gr:f-;(M ), the limit being in ¥ (M)'.

Proof. Note that fo F;— fo Fin F(M)'. Since F;,— F a.e. and the assumption
(ii) of using the dominated convergence theorem. Then (i) and (ii) are clear, for
{Fief, Freg}={/, 8} F; and FiaXe=Xs.p,. DO

Thus, if XyeZ' (M), (HeF (M)') has flow F,, then F, is symplectic for each
teR.

Similar limiting statements hold for canonical transformations, provided
Fie1 converges (cf. ABRAHAM [I, § 21] for notations). This holds in particular for
F! as its generating function is — H,. More precisely, this motivates:

8.8. Definition. Let (M, w) be a symplectic manifold and F: Rx M -RxM a
bijection (measurable). Then F is a canonical transformation iff there exist canonical
transformations Fi: RxM =R xM which are diffeomorphisms with generating
Junctions K¢, such that F;—F a.e. and for each teR, F,,— F, as in the above (8.6)
and

Ke—=Kr in F(RxM).

Thus all the usual equivalences will hold as limiting statements. In particular,
the flow F, of X is canonical.

Appendix B: Energy Surfaces

For a smooth Hamiltonian system it is often useful to restrict one’s attention
to a given energy surface; that is, 5 ~*(e) for ee R a regular value of H. Then there
is induced on H ~'(e) a measure preserving flow. (Just what this measure is may
be seen from the Hamiltonian flow box theorem: ABRAHAM [l, p. 142].)

One can also consider energy surfaces in the generalized context and a similar
result holds as follows:

8.9. Theorem. Let (M, w) be a symplectic manifold and Xy a regular Hamil-
tonian system as in 8.5, with H;— H. Suppose eeR is a regular value of each H,
(or a subsequence) and of H|M\ (sing supp H) and the flow F, induces one defined
a.e. on the energy surface:

Z.={m¢singsupp H: H(m)=e}.

This will happen for almost all eeR. Then there exists a smooth measure on Z,
invariant under the flow induced on Z,.
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Proof. The first part is clear. For the second, each meZ, lies in a neighborhood
of Hi '(e) for some i, so a measure is inherited on Z,. Let 4 =Z, be measurable
and reR. We must show u(4) =u(F, A) where p is the measure on Z,. First note
that u(F,A) =l'imity(F,‘A) since Cr,i4 = Cy, , almost everywhere on Z,. (We may

-

assume the topological boundary of F, 4, has measure zero.)

However, we also have p(F,‘(A))gp,(F,‘(A)) where g, is the measure on
H[ 1 (e), since p,=p if F,'(4) meets Z,. Also,

#(F'A)=p(A) S u(A)
since y; is measure preserving and AcZ,. Thus we have

u(F, A)S u(A4).
Similarly, using —¢ for 1, we have

(@)= p(F,4),
giving the result. [

This proof uses critically the fact that the energy surfaces H; '(e) actually
coincide with X, except on U, |sing supp H. The more general situation appears
to be more delicate, and perhaps the assertion is false there. Notice that the portion
of the energy surface belonging to the singular part of X is automatically washed
out (has measure zero, corresponding to particles moving infinitly fast along it).
In this regard it is instructive to study the examples mentioned in § 6 and in the
Introduction.

§ 9. Symmetry Groups and Conservation Laws

In this section we examine the classical method for obtaining conserved quan-
tities, based on Symmetry groups, in the generalized setting. This procedure also
works in the infinite dimensional case; see MARSDEN [1].

One of the basic ingredients of the theory is the momentum of a vectorfield,
which turns out to be the conserved quantity. The first main result deals with
these momenta. It is a rigorization of SEGaL [1, p- 475] with an adaption from
STERNBERG [1, p. 147). (For basic definitions about Lje groups, see ABRAHAM
[1, § 22] or ToNDEUR | 1])

9.1. Theorem ( Correspondance Principle). Let ®: G x M - M s P(m)=D(g,m)
be an action (transformation group) of a Lie group G on the manifold M, which is
smooth. Let ®*: GxT*M —T* M be the corresponding action induced on T* M
given by

¢:(an)=am° [Tlll ¢¢]- lv
where a,eT* M.

If XeZ (M) is an infinitesimal generator of & and X* the corresponding one
Jor ®*, then

X*=Xpx
( Hamiltonian vectorfield, using the natural symplectic structure on T*M), where
P(X)eF(T°M); P(X)(x)=an(X (m)),
and is called the momentum of X.
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Further, for X, YeX (M), feF (M) we have
=P([X, Y))={P(X), P(Y)}

~(Lx N*={P(X), 1}
where f*=fo t*, 1% T* M — M being the canonical projection,

Remark. The action ®* is called Hamiltonian, since each infinitesimal genera-
tor is globally Hamiltonian. Note that @} is symplectic for each 2€G. The theorem
is also of historical interest in the development of quantum mechanics.

Proof of 9.1. From the chain rule, we have
Pir(@m) =ano [T (S0 8],
=0,0[T,P,0 T, 0,]7,
=070 &) (en),

and from the local formula, ¢* is smooth, so is an action.
Let F, be the flow of X, so that F? is the flow of X *, where

F*(am)=tno[T, F]™".

and

n= ¢Ia('")s

Then we have
(Fl‘)t 0=0

where @ is the canonical one-form on T* M, given by
(6(ep) - W, = —ar,0 T1* w.,).
For this, see ABRAHAM [1, 14.16). Therefore, Ly.8=0, or
ixedb=—diy.0, or X*'=X_,;.,.
However, we have T't*o X *=Xo 1* since t*c F* =F,o t* which means

0(X*) - ()= —a,  T1*o X*(a,)=P(X) - Ay -
In a natural chart, we have

P(X)=3 p,; X'

and with this, a simple computation shows —P[X, Y]={P(X,), P(X,)}.

For the second formula, note that Ly, f*=(Lyf)*, from t*oF*=F,01",
so that {P, f*}=—Ly, . f*==Ly. f* The formula may also be proven
locally. O

One can define a generalized action of a group on M in much the same way
as we did for the special case of flows in 6.1, where now the infinitesimal generators
will be generalized vectorfields. In this case all of the above theorem carries over
(for P([X, Y]), one of X or Y must be smooth) and can in fact be used to obtain
non-smooth constants of the motion for smooth Hamiltonian systems (as in 9.3

below). Since this seems to have no important applications and is straightforward
anyway, we omit the details,
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9.2. Theorem. Let (M, o) be a symplectic manifold and & a Hamiltonian action
of a Lie group on M. Suppose He# (MY is Hamiltonian regular (8.2). H,—» H and
each H, is invariant; Ppe Hi=H,. Then if Xy is an infinitesimal 8enerator of P,
and F, is the flow of Xy, we have '

KoF,=K a.e. for each teR.

Proof. Let G, be the flow of Xg sothat G, o H,=H,, or Ly H;=0,or L,,‘K=0
for all i. Now 6.4 applies. [

If H is invariant under &, conditions in the appendix are given (e.g., Gis
compact) which guarantee the existence of invarjant H,, making H Hamiltonian
regular,

In applications, the following special case is the most important,

9.3. Theorem. Let & be an action on M and ®* the corresponding Hamiltonian
actiononT*M, Let He & (M)’ be Hamiltonian regular (8.2) with H,— H and each
H,invariant under @*, Then if X is an infinitesimal 8enerator of #, P(X)o F, =P(X),
where F, is the flow of Xg and P(X) is the momentum of X (9.1).

Proof. Clear from 9.1 and 9.2. O
For example, let M=R3, 7% pr~ RS and

H(q, p)=1 p*+55(g),

where §'is the unit sphere in R?, and Js is the delta function on S,

Then H is Hamiltonjan regular with H,- H as in 8.5 and H invariant under
rotations. (This is clear here but is proven generally in the Appendix.) Therefore,
by 9.3, angular momentum is conserved under the flow., Physically, the flow cor-
responds to a particle reflecting elastically from a sphere,

As another example, let & be a pseudo-Riemannian metric on M, smooth or
not (see appendix to § 10). We may regard $geF (T* M) and its flow as a Hamil-
tonian is called the geodesic Jlow. The curve parameter in this case is called proper
time. If g is invariant under an action we get conserved quantities by 9.3 (the Lo-
rentz action for example), and integral curves are preserved by the action (Lorentz
invariance).

Appendix: Distributions Invariant under an Action

Suppose H is a generalized function on a manifold M and is invariant under
an action @ of a Lije group G on M. As we saw in the conservation theorems, it is
natural to work with smooth functions H;— H so H, are also invariant, Here we
show this is possible under simple hypotheses on the action ®.

9.4. Definition. Let ¢ be g (smooth) action of a Lie group G on a manifold M,
We say that an orientable Submanifold N of M is q 8lobal cross-section Jor & iff
M is the disjoint union of the submanifolds O, (N) for geG; that is, M is diffeo-
morphic to N xG by &,

For example, the translation group on R” has a cross section, but the rotation
group (compact) does not.

The main result is as follows.
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9.5. Theorem. Ler & be an action of a Lie group G on a manifold M and H 4
generalized function invariant under @ (e H=H for all geG). Suppose either

(i) G is compact, or
(i) P possesses a cross-section.

Then there exist smooth functions H, invariant under & and H, 1= H. Further,
the H; can be chosen so that 8.5 holds.

Proof. (i) Let u denote (left) Haar measure on G (induced by translates of an

orientation at the identity). Suppose H/e# (M) and H! - H. Define a8 map
H;:M->Rby

Ha(M)=GI Hi(®,(m)) dp(g)/u(G)

for me M. Clearly H, is invariant under &, by the change of variables formula.
Also, His smooth, since it is the composite of H! and @, and we may differentiate
under the integral sign. (In fact, it is easy to see that

dHa=GI Pe o (dH;) du(g)/u(G)
in the sense that for each Xe 2 (M),
aH (X)(m)= [ [, 4 dH'(X)]) (m) d u(8)/1(G).)

Finally, we must show that H,— H. Let wefX(M) so that | H{ w - H(w). Then

[ Hiw= { [ Hjo ®,(m) dp(g)dv(m)/u(G)
M MG

where v is the (signed) measure of w. By FuBINt’s theorem, this equals
J (S Hio @y (m) dv(m)) dp(g)/u(G).

Letting i— co, we have the result, since Py o Hi (w) = &, , H(w)=H(w) and the
convergence may be assumed uniform by DE RHAM-SCHWARTZ regularization
({# 4 0: geG} is a bounded set), see 3.5.

For (ii), define a generalized function H, on N by
Ho(a)=H(aAﬁ)lGIﬂ

for aefi(N), dimN=k and BeQ~}(G). This does not depend on B, since
B~ H(x A B)/fs B is represented by a constant function by invariance of H. Now
let Hio— H, and define H, by H,(n, 8)=H{o(n). The H, are smooth, invariant
under ¢ and H,—+ H,

It is easy to argue that we can simultaneously obtain the conditions of 8.5 by
a slight modification of the above H,, in both cases. In fact, find U, | sing supp H
and A; such that /=1 on a neighborhood of sing supp / and with support in
U, (open). Symmetrizing as above (in each case), we may assume A, are invariant
under @. Let the new H, be defined by

h H;+(1-h)H,
which fulfill the requirements. [
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If the hypotheses of 9.5 are dropped, it is easy to construct counter examples.
For example, consider an action of R on R? with a saddle point at (0, 0). Then the
delta function at (0, 0) is invariant but cannot be approximated by invariant func-
tions.

§10. Applications

This section contains a variety of theorems of more direct physical interest.
In 10.1 we prove the classical viria] theorem in the smooth, but global case. This is
extended in 10.3 to the generalized case. We establish an elementary proposition
on mixing in 10.4 and 10.5 proves that the generalized eigenfunctions of a smooth
flow uniquely determine it. In the appendix we briefly consider (non-smooth)
geodesic flows from the Hamiltonian point of view.

10.1. Theorem (Virial Theorem). Ler M be g manifold with pseudo-Riemannian

metric g, and suppose H=T+ Ve (T*M ), where
T(“m)= 3 g(m)- (% )
(kinetic energy), and Ve & (M) (potential energy). Suppose eeR is a regular value
of HandZ,=H~(e)is compact (X, may also be a component). For each Xe & M),
define the virial function GyeF (T*M) by
Gx(an)=dT(x,)- X Py (@) +dV(m) . X (m)

where P(X) is the momentum of X (9.1).

Then if F, is the flow of Xy, we have

(i) limit foo F,(a,) dsft=0;
-0 0

(i) Gy dp,=0,
where p, is the invariant measure on Z,.

Recall that a measure preserving flow is ergodic iff whenever a set 4 is in-
variant under the flow, A or its complement is of measure zero. Then for each J
integrable, we would have

limit { fo F, dsft=] f duJu(Z)
- 0

(a constant) almost everywhere, by the Birkhoff ergodic theorem (see HaLMos [3D.
In local coordinates, the function Gy is given by

axX* 1 ag" ov
Gx(q', p)=- 8”(‘]) Pi Px W (‘1)'*'? a—gqr(Q) P p X‘(‘I)'I'a—qr X'(g)

(summation convention); we omit the simple computation. Classically, the second
term is omitted; that is, the space is assumed flat.
For the proof of 10.1, we prepare:

10.2. Lemma. Under the conditions of 10.1 (or on any symplectic manifold),
¥ feF(T*M),
!
(i) limit { {f,H}o F,ds/t=0 on z,,
f~ O
and
(i) [{s, H}dp,=0.

23 Arch. Rationa! Mech, Anal., Val. 28



356 J.E. MARSDEN:

Proof. On Z,,
d
{f'H}°E= d‘ (foFt ’

so that as f is bounded, (i) is clear.
To prove (ii), let £2, denote the volume on £,. Then on Z,,

{/ B} Q,=Ly, (fR)=d(ix, fQ.).

Therefore (ii) follows by 3.2 (ili). O

Proof of 10.1. We claim that Gy ={H, P(X)} which, in view of the lemma will
give the result. Now

{H, P(X)}=anx) T+Lo\’p(x» 4
=dT' XP(X)’ dV’Xp(x).
However, dV - Xp(x,=dV- X (see 9.1). O

In the case of a Hamiltonian regular (8.2) system we proceed as follows:

10.3, Theorem (Generalized Virial Theorem). Consider a Hamiltonian regular
system of the type in 8.5 on T* M with each H, of the type in 10.1; H;=T+V,.
Suppose all H{™ '(e) lie in some compact set and Q' is the volume on H{"*(e). Suppose
that (V- X) R,' converges in (M)’ to

@v-X)0,+0,,

the first term denoting the smooth portion on X, and 82, the “‘singular part”.
Then if the flow is ergodic on Z,, we have:

limit ( J' dT Xp x, d:) / t=([dV- 2,+§ 2)/u ().

=
Proof. I;'or each /, we have
(4T - Xpx, Q'+ [V, + 0./ =0.
Now if we let / — o0, since 2,' — £, (see 8.9) as measure, the first term converges to
§dT X, 00,

which by ergodicity equals the time average. The second term converges to the right
sideby2.8. O

For example, suppose on Ré" that
H(g, p=X pi2m+Y K(Q')+J¥k1’n(4'—4')-
Then if we put
1
3n T/2=limit | ¥ p}/2m o F,ds]t
t=x 0

we have
3n

called th
smooth «
In su
in detail
equation
case of b
otherwis:
Othe!
partition
Next
proach t
Recal

mixing i

(It is enc
ixing i
limit is v
“0.4.
and supp
8.9 are u

Proof
and

for 4, B
With
for gettis
mixing, 1
vature. V
interestir
refuted.
We 1
incidentl
is defined
cf. 3.8.
The 1

10.5.
and supp
25¢



na will

2gular
+ V.
ppose

esto

ight

Generalized Hamiltonian Mechanics 3s?
we have (using X(g)=gq in 10.3),
3n T=limit{{P¥,*(q)-q, 0i+lZ; PViii~a) - (2~ 2,'}u,(Z,),
- 0 <

called the virial equation of state. (The right side contains singular terms and
smooth ones; for example, the pressure exerted by a wall.)

In summary, the usual formalism of statistical mechanics goes through, but
in detail there are non-trivia] technicalities. It would be interesting to see the virial
equation of state worked out rigorously (i.e., the above limit evaluated) in the
case of hard spheres in a box. (It is non-trivial that the flow on Z, is ergodic, but
otherwise, the hypotheses of 10.3 seem to hold.)

Other elementary theorems of statistical mechanics also hold, such as equi-

mixing iff for each A, B M measurable,
limit y(F_ (4) 2 B)=p(A4) u(B)/u(M).

(It is enough to verify this for a family generating the measurable sets.) Obviously
mixing implies ergodicity. A family of flows is uniformly mixing iff the above
limit is uniform in F,.

10.4. Proposition. Consider a Hamiltonian regular system of the type in 8.5
and suppose the smooth Jlows on the energy surfaces Hi'(e), or components, of
8.9 are uniformiy mixing for A, B X,. Then the limit flow is mixing on X,.

Proof. (See proof of 8.9.) We have
limit limit ,(FL,(4) A B)=p(4) p(B)Ju )

I~ f-

and
Limit p,(Fi,(A) nB)= p(F.,(A) N B)
f=w

for 4, Bcz,. By uniformity we may interchange the limits. D

With regard to Svar’s theorem and this technique, there seems to be some hope
for getting bounds on the rate of convergence of the Limit in the definition of
mixing, by using properties of geodesic flows, perhaps in terms of the total cur-

We next give an application to smooth Hamiltonian systems. There are,
incidently, several trivial but useful facts. For example, if me M and 4, e F My
isdefined by §,,=4,, Q, then mis a critical point of X for He & (M)ift {H,4,}=0,
cf. 3.8.

The main theorem is:

10.5. Theorem. Suppose He ¥ (M), where (M, w) is a symplectic manifold,
and suppose that the Slow of Xy is complete. Then the generalized eigenfunctions of

25
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the flow (or equivalently of i Xg) completely determines the flow. That is, two smooth
Hamiltonian flows with the same eigenfunctions are equal.

To prepare the proof, we recall a few facts from the Gelfand spectral theory
(GELFAND-VILENKIN [4]) appropriate to this case.

If X5 has a complete flow F,, then as we have seen, /X is symmetric (and has
a self-adjoint extension by STONE's theorem in L?(M)). Then we say fe & (M)’
is an eigenfunction (complex valued now!) with eigenvalue A iff iLy, f=21f(Ly,
given by 3.3 with complexification). From the flow theorem (smoothness essential

- here), 3.7, this is equivalent to F,,f=exp(iit)f. For AeR, let E,={feF (M)":

iXg(f)=Af} and for geF.(M), g,: E; = C, g,(f)=1(g .). The map g, is called
the spectral decomposition of g.

The main spectral theorem is that the real spectrum of i Xy is complete; that
is g, =0 for all real A implies g =0. (This holds for any self-adjoint operator.)

Proof of 10.5. Suppose F, and G, are two flows (smooth) with the same eigen-
functions. Let fe#.(M)and g=F,, f-G,, f.Since F, and G, are diffeomorphisms,
geF.(M) and, by definition g,=0. Therefore, as the spectrum is complete,
Fiof=G,of for fe# .(M). Therefore by continuity and uniqueness (2.5),
F,,f=G,,f for all fe# (M)'. (Here smoothness is used very strongly again.)
Choose f=0,, and F,40,,=0F m (3.8) to conclude 5f,(m=J6,m), Proving the
assertion. [

Appendix: Generalized Geodesic Flows

Since the motion of a particle in a potential can be thought of as geodesic
motion, it is natural to ask what happens to Riemannian geometry when the
metric g is not smooth. Here we give a brief indication. See also MARSDEN [$].

10.6. Definition. A generalized pseudo-Riemannian metric on a manifold M is a
tensor ge I3 (M) (contravariant here) which is symmetric and non-degenerate
(g(a, B)=0 for all Be X *(M) implies a=0).

Let T, be the kinetic energy of g on T*M, (locally, T,(g,p)=%8"(g) P, P)).
and suppose the singular support has measure zero. Then the (possibly local) flow
determined by 8.5 for H=T, is called the generalized geodesic flow of g, on T* M.

Usually g is locally integrable, so that we may relate covariant and contra-
variant components. From conservation of energy (8.3) we have preservation of
the inner product along the flow, wherever that product makes sense.

It seems reasonable to let the metric carry the singular geometric information
rather than the differentiable structure of the manifold. This is the point of view
we have taken throughout the paper.

Since geodesic motion is a special case of the motion of a Hamiltonian system,
all the theorems of § 7~ 10 apply, so we shall not repeat these here. Instead we
discuss connections.

A generalized connection is a map P: T (M) x X (M) =Z (M) so that ¥ is
F (M) linear in the first argument, R-linear in the second and P(X,f Y)=
FVPX,Y)+Y -(Lyf)eZ (M) for X, YeZ (M), feF(M). As usual we write
PxY=F(X, Y). Then Py extends as a (generalized) derivation of the full tensor
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algebra in the usual way. The torsion of P is
T(X,Y)=p, Y-F X-[x, Y].
In general the curvature

R(X, Y)=py PP, Px=Fx p

is not defined. However if (in local coordinates say) the components of P, T},
are Jocally bounded, we can define $ R{,, as the generalized coefficients of

do'i+ gm‘, A WP,
where ’
o' =; Ldx*
(See HeLGasoN [1, p. 44])

Also, if g is a locally bounded pseudo-Riemannian metric, we can define a
corresponding connection ¥ by HeLGAsoN [I, p. 48].

The standard theorems of Riemannian geometry and the calculus of variations
break down in the non-smooth case. For example, two arbitrarily close points

in the base manifold need not be joined by a geodesic. For a further discussion,
see MARSDEN [5).

Note added in proof, (i) The assumption that H;= } outside U, in 8.5 [resp. X,= X in 6.3)
may be weakened to: H;— H is bounded by ;0 outside U, in the C? topology [resp, Xi-Xis
bounded by &;in the C1 topology].

(ii) Some interesting examples of non-uniqueness have been constructed, as well as some

theorems which witl guarantee uniqueness of flows. See J. MARsDEN, Applied Mathematics
Colloquium Lecture (mimeographed), Princeton University, 1968.
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