Optimal Control of Nonlinear Systems with Temporal Logic Specifications

Eric M. Wolff¹

Ufuk Topcu² and Richard M. Murray¹
¹Caltech and ²UPenn

University of Michigan October 1, 2013

Autonomous Systems in the Field

Motivation

 How do we specify tasks for autonomous systems?

How do we compute optimal solutions?

 How do we handle high-dimensional continuous dynamics?

An Example Problem

Spec: Avoid obstacles, pick-up supplies at region A and then do surveillance on regions B and C.

Main Contributions

- Trajectory generation techniques for highdimensional (10+ dim) and nonlinear systems with temporal logic specifications
 - Automata-guided temporal logic planning
 - Wolff and Murray [ISRR 2013]
 - Mixed-integer linear encoding of LTL
 - Wolff, Topcu, Murray [IROS 2013, ICRA 2014-sub]

Improve on discrete abstraction techniques

Related Work

• **Discrete abstractions** (Alur00, Belta06, Habets06, Kloetzer08, Pappas06, Tabuada06, Wongpiromsarn10)

Low dimensional systems (<= 6)

- Mathematical programming:
 - Constrained trajectory generation (Bemporad99, Earl06, Richards02)
 - Finite-horizon LTL properties (Karaman08, Kwon08)

Simple tasks

These Problems are Hard!

Dynamic constraints -> undecidable

Task specification -> PSPACE

Outline

- Preliminaries
 - System model
 - Linear temporal logic (LTL)
- Automata-guided temporal logic planning
 - Constrained reachability
 - Examples
- Mixed-integer linear encoding of LTL
 - A finite-dimensional encoding
 - Examples

Outline

- Preliminaries
 - System model
 - Linear temporal logic (LTL)
- Automata-guided temporal logic planning
 - Constrained reachability
 - Examples
- Mixed-integer linear encoding of LTL
 - A finite-dimensional encoding
 - Examples

System Model

Discrete-time nonlinear system

$$x_{t+1} = f(x_t, u_t)$$

 $x \subseteq X \subseteq R^n$
 $u \subseteq U \subseteq R^m$

Labels

$$L: X \rightarrow 2^{AP}$$

Trajectory:

$$\mathbf{x} = \mathbf{x}(\mathbf{x}_0, \mathbf{u}) = \mathbf{x}_0 \mathbf{x}_1 \mathbf{x}_2 \dots$$

 $x_{i+1} = f(x_i, u)$ for some $u \subseteq U$ for i = 0, 1, ...

• Word: $L(x_0) = L(x_0)L(x_1)L(x_2)...$

Linear Temporal Logic (LTL)

Want to specify properties such as:

- Response: always SIGNAL after a REQUEST arrives
- Liveness: always eventually PICKUP
- Safety: always remain SAFE
- Priority: do JOB1 until JOB2
- Guarantee: eventually reach GOAL

Linear temporal logic (LTL):

- A logic for reasoning about how properties change over time
- Reason about infinite sequences $\sigma = s_0 s_1 s_2 \dots$ of states
- Propositional logic: \land (and), \lor (or), \Longrightarrow (implies), \neg (not)
- Temporal operators: \mathcal{U} (until), \bigcirc (next), \square (always), \diamondsuit (eventually)

Linear Temporal Logic (LTL)

Want to specify properties such as:

- Response: \Box (REQUEST \Longrightarrow SIGNAL)
- Liveness: □◇ PICKUP
- Safety: □ SAFE
- Priority: JOB1 *U* JOB2
- Guarantee: ♦ GOAL

Linear temporal logic (LTL):

- A logic for reasoning about how properties change over time
- Reason about infinite sequences $\sigma = s_0 s_1 s_2 \dots$ of states
- Propositional logic: \land (and), \lor (or), \Longrightarrow (implies), \neg (not)
- Temporal operators: \mathcal{U} (until), \bigcirc (next), \square (always), \diamondsuit (eventually)

Outline

- Preliminaries
 - System model
 - Linear temporal logic (LTL)
- Automata-guided temporal logic planning
 - Constrained reachability
 - Examples
- Mixed-integer linear encoding of LTL
 - A finite-dimensional encoding
 - Examples

Problem Overview

Spec: Avoid obstacles, pick-up supplies at region A and then do surveillance on regions B and C.

From Logic to Automaton

Informal spec: Avoid obstacles, pick-up supplies at region A and then do surveillance on regions B and C.

LTL Specification

$$\phi = \langle A \& [] \langle B \& [] \langle C \& [] S$$

Automatic translation from **logic** to **automaton**!

Büchi Automaton

15

Gastin,Oddoux: http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/

Problem Statement

Given:

- a deterministic nonlinear dynamical system,
- initial state x_0 ,
- a Büchi automaton A (specification)

 Goal: Find a control input sequence u such that the word L(x(x₀,u)) is accepted by A

Solution

- Main idea: Use specification automaton to guide constrained reachability computations
- Compute a word (from the trajectory) that is accepted by the automaton

Solution

Spec:
$$\phi = \langle A \& [] \langle B \& [] \langle C \& [] S$$

Constrained Reachability

Given:

- sets X_1 , $X_2 \subseteq X$,
- horizon length N

• Goal: Find a control input sequence u and a horizon length N such $x_1,...,x_{N-1} \subseteq X_1$, $x_N \subseteq X_2$ such that $x_{t+1} = f(x_t, u_t)$ for t = 1,..., N-1

CstReach(X₁,X₂)

Solving Constrained Reachability

 CstReach(X₁,X₂) can be encoded as a mixedinteger linear program using the big-M formulation

- Big-M
 - Enforce that state is in union of polyhedra
 - $-H_i x \le K_i + M(1-Z_i), Z_i \in \{0,1\}, sum(z) = 1$

Independent of dynamics

Examples

- Systems
 - Quadrotor (10 dim)
 - Chained integrators (4, 12, 20 dim)
 - Car-like robot (nonlinear + drift)

- Specifications
 - Visit n goals
 - Repeatedly visit n goals

Examples

Model: 10-dim quadrotor

Spec: ϕ = <> D1 & <> D2 & <> D3 & <> D4 & [] safe

22

Eventually (solver)

Eventually (total)

Repeatedly (solver)

10/1/13

Review (1/2)

Spec:
$$\phi = \langle A \& [] \langle B \& [] \langle C \& [] S$$

Future Work (1/2)

- Stochastic constrained reachability
 - [Horowitz, Wolff, Murray ACC14-sub]

Improved composition of subproblems

Improved heuristics

Outline

- Preliminaries
 - System model
 - Linear temporal logic (LTL)
- Automata-guided temporal logic planning
 - Constrained reachability
 - Examples
- Mixed-integer linear encoding of LTL
 - A finite-dimensional encoding
 - Examples

Problem Description

- Discrete-time nonlinear systems
 - Piecewise affine
 - Differentially flat
 - Small-time locally controllable

- Cost function J
- Task specification φ

• min $J(\mathbf{x}(x_0,\mathbf{u}))$ s.t. $\mathbf{x}(x_0,\mathbf{u}) \models \varphi$

Core

```
\varphi_{safe}\coloneqq\Box\psi
```

$$\varphi_{goal} \coloneqq \Diamond \psi$$

$$\varphi_{per}\coloneqq \diamondsuit \,\square\, \psi$$

$$\varphi_{live} \coloneqq \Box \diamondsuit \psi$$

Core

Response

$$\varphi_{safe} \coloneqq \Box \psi$$

$$\varphi_{goal} \coloneqq \Diamond \psi$$

$$\varphi_{per} \coloneqq \Diamond \Box \psi$$

$$\varphi_{live} \coloneqq \Box \Diamond \psi$$

$$\varphi_{resp}^{1} := \Box(\psi \Longrightarrow \bigcirc \phi)$$

$$\varphi_{resp}^{2} := \Box(\psi \Longrightarrow \Diamond \phi)$$

$$\varphi_{resp}^{3} := \Diamond \Box(\psi \Longrightarrow \bigcirc \phi)$$

$$\varphi_{resp}^{4} := \Diamond \Box(\psi \Longrightarrow \Diamond \phi)$$

Core

$$\varphi_{safe}\coloneqq\Box\psi$$

$$\varphi_{goal} \coloneqq \Diamond \psi$$

$$\varphi_{per} \coloneqq \Diamond \Box \psi$$

$$\varphi_{live} \coloneqq \Box \diamondsuit \psi$$

Response

$$\varphi_{resp}^{1} := \Box(\psi \Longrightarrow \bigcirc \phi)$$

$$\varphi_{resp}^{2} := \Box(\psi \Longrightarrow \Diamond \phi)$$

$$\varphi_{resp}^{3} := \Diamond \Box(\psi \Longrightarrow \bigcirc \phi)$$

$$\varphi_{resp}^{4} := \Diamond \Box(\psi \Longrightarrow \Diamond \phi)$$

<u>Fairness</u>

$$\varphi_{fair}^{1} := \Diamond \psi \implies \bigwedge_{j=1}^{m} \Diamond \phi_{j}$$

$$\varphi_{fair}^{2} := \Diamond \psi \implies \bigwedge_{j=1}^{m} \Box \Diamond \phi_{j}$$

$$\varphi_{fair}^{3} := \Box \Diamond \psi \implies \bigwedge_{j=1}^{m} \Box \Diamond \phi_{j}$$

Core

$$\varphi_{safe} \coloneqq \Box \psi$$

$$\varphi_{goal} \coloneqq \Diamond \psi$$

$$\varphi_{per} \coloneqq \Diamond \Box \psi$$

$$\varphi_{live} \coloneqq \Box \Diamond \psi$$

Response

$$\varphi_{resp}^{1} := \Box(\psi \Longrightarrow \bigcirc \phi)$$

$$\varphi_{resp}^{2} := \Box(\psi \Longrightarrow \Diamond \phi)$$

$$\varphi_{resp}^{3} := \Diamond \Box(\psi \Longrightarrow \bigcirc \phi)$$

$$\varphi_{resp}^{4} := \Diamond \Box(\psi \Longrightarrow \Diamond \phi)$$

Fairness

$$\varphi_{fair}^{1} := \Diamond \psi \implies \bigwedge_{j=1}^{m} \Diamond \phi_{j}$$

$$\varphi_{fair}^{2} := \Diamond \psi \implies \bigwedge_{j=1}^{m} \Box \Diamond \phi_{j}$$

$$\varphi_{fair}^{3} := \Box \Diamond \psi \implies \bigwedge_{j=1}^{m} \Box \Diamond \phi_{j}$$

- What is missing?
 - Nested temporal operators
 - Negations

Core

$$\varphi_{safe}\coloneqq\Box\psi$$

$$\varphi_{goal} \coloneqq \Diamond \psi$$

$$\varphi_{per} \coloneqq \Diamond \Box \psi$$

$$\varphi_{live} \coloneqq \Box \diamondsuit \psi$$

Response

$$\varphi_{resp}^{1} := \Box(\psi \Longrightarrow \bigcirc \phi)$$

$$\varphi_{resp}^{2} := \Box(\psi \Longrightarrow \Diamond \phi)$$

$$\varphi_{resp}^{3} := \Diamond \Box(\psi \Longrightarrow \bigcirc \phi)$$

$$\varphi_{resp}^{4} := \Diamond \Box(\psi \Longrightarrow \Diamond \phi)$$

Fairness

$$\varphi_{fair}^{1} := \Diamond \psi \implies \bigwedge_{j=1}^{m} \Diamond \phi_{j}$$

$$\varphi_{fair}^{2} := \Diamond \psi \implies \bigwedge_{j=1}^{m} \Box \Diamond \phi_{j}$$

$$\varphi_{fair}^{3} := \Box \Diamond \psi \implies \bigwedge_{j=1}^{m} \Box \Diamond \phi_{j}$$

Recently extended to all of LTL

[Wolff,Topcu,Murray ICRA14-sub]

Finite Parameterization of Trajectory

- Let $x = x_{pre} (x_{suf})^{\omega}$
 - $-x_{pre}$ and x_{suf} are finite
 - $-x_{suf}$ is a cycle
- Labels are disjunctions of polytopes
- Use a binary variable for each polyhedron every stage
 - Big M: $H x \le K + M(1-z), z \in \{0,1\}$
 - Convex hull

10/1/13 Wol

Linking the System and Logic

- Use a binary variable for each polyhedron every stage
 - Big M: $H x \le K + M(1-z), z \in \{0,1\}$
 - Convex hull

 Does system satisfy label ψ at time t?

$$P_t^{\psi} \coloneqq \sum_{i \in \mathcal{I}_t^{\psi}} z_t^{\psi_i}$$

$$P_t^{\psi} \coloneqq \sum_{i \in \mathcal{I}_t^{\psi}} z_t^{\psi_i}$$

Encoding LTL Constraints

_ '

$$\varphi_{safe} \coloneqq \Box \psi$$

$$\varphi_{goal} := \Diamond \psi$$

$$\varphi_{per} \coloneqq \Diamond \Box \psi$$

$$\varphi_{live} \coloneqq \Box \diamondsuit \psi$$

$$P_t^{\psi} \ge 1 \quad \forall t \in \mathcal{T}_{pre},$$

 $P_t^{\psi} \ge 1 \quad \forall t \in \mathcal{T}_{suf}.$

$$\sum_{t \in \mathcal{T}_{pre}} P_t^{\psi} + \sum_{t \in \mathcal{T}_{suf}} P_t^{\psi} \ge 1.$$

$$P_t^{\psi} \ge 1 \quad \forall t \in \mathcal{T}_{suf}$$

$$\sum_{t \in \mathcal{T}_{suf}} P_t^{\psi} \ge 1.$$

Complexity

- Add all constraints (dynamics + LTL) and solve MILP using off-the-shelf software
- NP-complete
 - Branch + bound
 - Solvers work well in practice
- With H polyhedrons and T time steps

- Safety =
$$\mathsf{H}^\mathsf{T}$$
 $\varphi_{safe} \coloneqq \Box \psi$

$$-\operatorname{Goal} = \operatorname{HT} \qquad \varphi_{goal} \coloneqq \Diamond \psi$$

Examples

- Systems
 - Quadrotor (10-dim)
 - Chained integrators
 - Car-like robot
- Solution
 - Simultaneous (Sim)
 - Sequential (Seq)

Integrator (20 dim) Solution in 6 sec.

Examples

Quadrotor

Car-like robot

Quadrotor Example

- 10 dimensional quadrotor
- Linearized about hover (with fixed yaw)
- Feasible solutions found in seconds
- Cost function rewards staying left

Results

		Feasible s	soln. (sec)	Num.	solved
Model	Dim.	Sim.	Seq.	Sim.	Seq.
chain-2	4	$1.10 \pm .09$	$0.64 \pm .06$	20	20
chain-6	12	$4.70 \pm .48$	$2.23 \pm .15$	20	20
chain-10	20	9.38 ± 1.6	$3.74 \pm .29$	20	19

Results

		Feasible s	soln. (sec)	Num.	solved
Model	Dim.	Sim.	Seq.	Sim.	Seq.
chain-2	4	$1.10 \pm .09$	$0.64 \pm .06$	20	20
chain-6	12	$4.70 \pm .48$	$2.23 \pm .15$	20	20
chain-10	20	9.38 ± 1.6	$3.74 \pm .29$	20	19
quadrotor	10	$4.20 \pm .66$	$1.80 \pm .15$	20	20
quadrotor-flat	10	$2.26 \pm .36$	1.99 ± 1.0	20	20

Results

		Feasible s	soln. (sec)	Num.	solved
Model	Dim.	Sim.	Seq.	Sim.	Seq.
chain-2	4	$1.10 \pm .09$	$0.64 \pm .06$	20	20
chain-6	12	$4.70 \pm .48$	$2.23 \pm .15$	20	20
chain-10	20	9.38 ± 1.6	$3.74 \pm .29$	20	19
quadrotor	10	$4.20 \pm .66$	$1.80 \pm .15$	20	20
quadrotor-flat	10	$2.26 \pm .36$	1.99 ± 1.0	20	20
2	2	40.0 77	107 00	4	20
car-3	3	$43.9 \pm .77$	10.7 ± 2.0	4	20
car-4	3	42.4 ± 1.7	18.7 ± 3.1	2	18
car-flat	3	15.8 ± 3.8	14.0 ± 4.4	12	14

Improvement Over Abstractions

- Randomly generated `gridworld' problems
- Better performance than finite abstractions

Future Work (2/2)

Disturbances and reactivity (RHC)

Timed specifications

Using discrete solutions to simplify optimization

Conclusions

- Two new LTL planning methods
 - Automata-guided temporal logic planning [ISRR2013]
 - Mixed-integer encoding of LTL [IROS 2013, ICRA 2014-sub]
- High dimensional and nonlinear systems
- Optimal control

Conclusions

- Two new LTL planning methods
 - Automata-guided temporal logic planning [ISRR2013]
 - Mixed-integer encoding of LTL [IROS 2013, ICRA 2014-sub]
- High dimensional and nonlinear systems
- Optimal control

We can solve **high dimensional**, **nonlinear** LTL motion planning problems that were previously impossible.

10/1/13

Wolff

Thank you!

Contact: Eric M. Wolff

– Email: <u>ewolff@caltech.edu</u>

Web: www.cds.caltech.edu/~ewolff/

• Funding: NDSEG fellowship, Boeing, AFOSR

